Detection of Extended Galactic Sources with an Underwater Neutrino Telescope

Apostolos Tsirigotis, Antonios Leisos, Spyros Tzamarias Physics Laboratory H.O.U Dimitrios Lenis INPP-NCSR Demokritos

Very Large Volume Neutrino Telescope Workshop 2013

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: "THALIS - HOU - Development and Applications of Novel Instrumentation and Experimental Methods in Astroparticle Physics"

OUTLINE

- The un-binned method using the energy and the angular resolution of muon tracks
- Extended Sources Modeling
- Discovery Potential of RXJ1713-3946 using the Source Morphology
- Clusters of Galactic Plane Candidate v-Sources
- Combined Signal of Clusters and Isolated Sources

 $P(E_{\mu}, \Delta\Omega_{disk}) = P(E_{\mu}, \Delta\Omega_{disk} / signal) \cdot P_{signal} + P(E_{\mu}, \Delta\Omega_{disk} / bck) \cdot P_{bck}$

$$P(E_{\mu}, \Delta\Omega_{disk} | signal) = P_{signal}^{angle} (\Delta\Omega_{disk}, \theta_{x}, \phi_{y}) \cdot P_{signal}^{energy} (E_{m}, \theta_{m}; \gamma)$$

$$P(E_{\mu}, \Delta\Omega_{disk} | bck) = P_{bck}^{angle} (\Delta\Omega_{disk}, \theta_{x}, \phi_{y}) \cdot P_{bck}^{energy} (E_{m}, \theta_{m}) = \frac{1}{\Delta\Omega_{disk}} \cdot P_{atmospheric}^{energy} (E_{m}, \theta_{m})$$

Energy and Angular distributions

Reconstructed Energy Distributions for Signal (E⁻² spectrum) and Atm. Neutrino Background

Where $s_x\,s_y$ incorporate the uncertainty of the angle between the v- μ

Likelihood estimations

$$L(\boldsymbol{\gamma}, \boldsymbol{N}_{s}) = \prod_{i=1}^{N_{total}} P_{i}(\boldsymbol{\theta}_{x}, \boldsymbol{\phi}_{y}, \boldsymbol{E}_{m}, \boldsymbol{\theta}_{m}; \boldsymbol{\gamma}, \boldsymbol{N}_{s})$$

Point source δ =-60^o and R_{max}=0.6^o Detector: 308 Towers-180m distance True Values: 15 Signal Events on top of 15 background events with γ =2

Estimated Signal events

Discovery potential of known galactic sources

$$\begin{aligned} P_{signal}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma\right) &= P_{signal}^{angle}(\theta_{x},\phi_{y}) \cdot P_{signal}^{energy}(E_{m},\theta_{m};\gamma) \\ P_{bck} &= P_{bck}^{angle}(\theta_{x},\phi_{y}) \cdot P_{bck}^{energy}(E_{m},\theta_{m}) \\ P_{i}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma,N_{s}\right) &= \frac{N_{s}}{N_{total}} \cdot P_{signal}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma\right) + \left(1 - \frac{N_{s}}{N_{total}}\right) P_{bck}\left(\theta_{x},\phi_{y},E_{m},\theta_{m}\right) \end{aligned}$$

$$m = m_B + m_S = m_B + m \frac{N_s}{N_{total}} \Longrightarrow m = \frac{m_B}{1 - \frac{N_s}{N_{total}}}$$

 $L(N_s) = \frac{m^{N_{total}} e^{-m}}{N_{total}!} \cdot \prod_{i=1}^{N_{total}} P_i(\theta_x, \phi_y, E_m, \theta_m; N_s)$ Extended Likelihood

Two hypotheses:

- the data sample is only background (null hypothesis)
- •The data sample contains signal events (discovery)

$$\lambda = -2 \cdot \ln \frac{L_0 \left(N_s = 0 \right)}{L \left(\hat{N}_s \right)}$$

Test statistic:

Distribution of λ and Discovery probability

Distribution of λ when N signal events are present on top of background

Fraction of events with λ greater than a λ value

Discovery probability and integrated flux

If r is the mean number of expected signal from a source then we expect 0, 1, 2, 3, 4,... tracks to be observed with probabilities according to the Poissonian probability function P(n;r).

Consequently, the Discovery Potential for r expected signal tracks is the convolution of the discovery probabilities for certain number of tracks with the corresponding Poissonian probabilities for mean equals to r

Modeling the Spatial Distribution of the Sources

Flat disk treatment

Point source ightarrow

$$P_{signal}^{angle}(\theta_x, \phi_y) \rightarrow P_{signal}^{angle}\left(\left(\frac{R_m}{d}\right)^2, \cos\theta_t\right)$$

 $(R_m/d)^2$

RXJ1713 Morphology

Simulate the v emission to follow the (raw) VHE gamma emission topology

3D angular distribution of the reconstructed (v) signal induced muons

RXJ1713

Each bin of the source-model contributes as

$$P_{signal-bin}^{angle}(\theta_{x},\phi_{y}) = \frac{1}{1-e^{-\frac{R_{\max}^{2}}{s_{x}^{2}+s_{y}^{2}}}} \frac{1}{2\pi s_{x}s_{y}} \iint_{\Delta} e^{-\frac{1}{2}\left(\frac{(\theta_{x}-\theta_{t})^{2}}{s_{x}^{2}}+\frac{(\phi_{y}-\phi_{t})^{2}}{s_{y}^{2}}\right)} \frac{1}{\pi d^{2}} d\theta_{x} d\phi_{y}$$

$$P_{signal}(\theta_x, \phi_y, E) = \Pi(E) \cdot \sum_{i=1}^{101} w_i \cdot P_{signal-bin-i}^{angle}(\theta_x, \phi_y)$$
$$P_{total}(\theta_x, \phi_y, E) = \frac{n_s}{N} P_{signal} + \left(1 - \frac{n_s}{N}\right) P_{back}$$

Detector Geometrical Layout

Strings: 616 strings with 100m inter string distance. Each string comprise 20 Multi PMTs, 40 m apart.

Detectors Footprint

RXJ1713

Source	Size (degrees)	Flux (TeV ⁻¹ cm ⁻² s ⁻¹), E in TeV
RXJ1713.7-3946	Radius = 0.65°	1.68*10 ⁻¹¹ *(E ^{-1.72})*exp(-sqrt(E/2.1))

Required Flux (in units of the source flux)

for 50% discovery probability (5 σ)

1% improvement in DP. 50% for 5 σ discovery : 5.6 ys \rightarrow 5.55 ys

Galactic Plane Sources

TABLE 1

H.E.S.S. CATALOG SOURCES

		4		SPECTR	al Paran	ETERS	$E_{\nu} \ge 1$ Te	eV	$E_{\nu} > 5$ Te	V
Source Name	Reference	(deg)	VISBILITY	k _v	Γ_{ν}	e_{ν}	N _{src}	Natm	Narc	Natm
			Source Clas	is 1 (SNR	s)					
RX J1713.7-3946	1	1.3	0.74	15.52	1.72	1.35	7-14 (11)	41	2.6-6.7 (4.6)	8.2
R X J0852.0-4622	2	2.0	0.83	16.76	1.78	1,19	7-15(11)	104	1.9-6.5 (4.2)	21
HESS J1640-465	5	0.1	0.83	0.93	2.41		0.4-3.3 (2.2)	8.7	0.0-2.1 (1.3)	1.8
HESS J1745-290ª	4	< 0.1	0.65	0.85	2.29		1.1-2.7 (2.0)	6.4	0.5-1.8 (1.3)	1.3
HESS J1834-087	5	0.2	0.54	0.80	2.45		0.2-1.7 (1.1)	6.0	0.0-1.1 (0.7)	1.2
HESS J1713-381	5	0.1	0.73	0.23	2.28		0.0-1.5 (0.6)	7.2	0.0 - 1.1 (0.4)	1.4
Sums for source class 1							~27	173	~12	35
		So	ource Class 2 (Binary Sy	stems)					
LS 5039 (INFC) ^b	6	0.1	0.57	2.50	1.61	1.01	0.3-0.7 (0.5)	2.5	0.1-0.3 (0.2)	0.5
LS 5039 (SUPC) ^b	6	0.1	0.57	0.26	2.51		0.1-0.3 (0.2)	3.0	0.0-0.2 (0.1)	0.6
PSR B1259-63	7	< 0.1	1.00	0.34	2.72		0.1-0.9 (0.6)	9.1	0.0-0.4 (0.3)	1.7
	S	ource Class	3 (No Counter	rparts at C	ther Way	ve length:	s)			
HESS J1303-631	8	0.3	1.00	11.99	1.29	0.21	0.8-2.3 (1.6)	11	0.1-0.5 (0.3)	2.1
HESS J1745-303	5	0.4	0.66	1.01	1.79		0-18 (9)	9.0	0-16 (7)	1.8
HESS J1614-518	5	0.5	1.00	2.41	2.44		1-10 (6)	19	0.0-6.7(3.7)	4.0
HESS J1837-069	5	0.2	0.53	1.65	2,27		1.2-4.5 (3.3)	5.9	0.4-3.2 (2.2)	1.2
HESS J1634-472	5	0.2	0.85	0.64	2.36		0.0-3.1 (1.7)	9.8	0.0 - 2.2(1.1)	2.0
HESS J1708-410	5	0.1	0.76	0.44	2.33		0.1 - 1.6(1.1)	7.6	0.0 - 1.1 (0.7)	1.5
Sums for source class 3							~23	63	~15	13
			Source Clas	8 4 (PWN	()					
Vela X	9	0.8	0.81	11.75	0.98	0.84	9-23 (16)	23	5-15 (10)	4.6
HESS J1825-137	10	0.5	0.57	10.73	2.08	4,24	5-10 (8)	93	2.2-5.2 (3.7)	1.8
Crab Nebula	11	< 0.1	0.39	22.38	2.15	1.72	4.0-7.6 (5.8)	5.2	1.1-2.7 (1.9)	1.1
HESS J1632-478	5	0.3	0.87	1.87	2,11		0-15 (9)	12	0-12 (7)	2.4
MSH 15-52	12	0.2	1.00	1.89	2,27		3.4-9.6 (7.1)	10	1.5-6.6 (4.7)	2.0
HESS J1616-508	5	0.3	1.00	2.11	2.36		2.0-9.0 (6.6)	14	0.3-5.9 (4.1)	3.0
HESS J1420-607	13	0.1	1.00	1.16	2.25		2.0-6.3 (4.6)	9.6	0.7-4.4 (3.1)	1.9
HESS J1418-609	13	0.1	1.00	0.94	2.19		1.7-6.1 (4.2)	9.6	0.8-4.5 (3.0)	1.9
HESS J1813-178	5	0.1	0.59	0.96	2.09		0.7-4.6 (3.2)	5.8	0.2-3.6 (2.4)	1.1
HESS J1702-420	5	0.2	0.77	0.82	2.32		0.5-3.3 (2.1)	8.4	0.0-2.3 (1.4)	1.7
HESS J1804-216	5	0.4	0.61	1.49	2.73		0.6-2.0 (1.5)	8.4	0.1-1.0 (0.7)	1.7
G 0.9+0.1	14	< 0.1	0.65	0.27	2.31		0.1-0.9 (0.6)	6.2	0.0-0.6 (0.4)	1.2
Sums for source class 4							~68	122	~41	24

$$\frac{dN_{\gamma/\nu}}{dE_{\gamma/\nu}} \approx k_{\gamma/\nu} \left(\frac{E_{\gamma/\nu}}{1 \text{ TeV}}\right)^{-\Gamma_{\gamma/\nu}} \exp\!\left(-\sqrt{\frac{E_{\gamma/\nu}}{\epsilon_{\gamma/\nu}}}\right)$$

THE ASTROPHYSICAL JOURNAL, 656:870–878, 2007 February 20 © 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Source Grouping

H.E.S.S. Galactic Plane survey

Galactic Longitude (°)

Source Grouping Modeling

HESSJ1708-410

RXJ1713-394

SSJ1702-420

- Assume a disk large enough to contain the sources
- Collect N events for a certain experimental time
- Apply some technique like in RXJ1713 source morphology method but:
 - numbers of bins \rightarrow number of sources
 - Different profile for each source
 - Different energy distribution for each source

$$P_{signal}(\theta_x, \phi_y, E) = \sum_{i=1}^{Nsources} w_i \cdot P_{signal-source-i}^{angle}(\theta_x, \phi_y) \cdot \Pi_{signal-source-i}(E)$$

$$P_{total}(\theta_x, \phi_y, E) = \frac{n_s}{N} P_{signal} + \left(1 - \frac{n_s}{N}\right) P_{back}$$

0.25

HESSJ1713-38

4/5,

n_s: signal events w_i : relative strength

Distribution of signal events inside the search disk

HESSJ1640-465 HESSJ1634-472 HESSJ1632-478

Galactic Longitude (°)

Source	R(deg)	RA	Declination	κν	Г	eν
HESSJ1640-465	0.05	16:40:43.2	-46:31:48	0.93	2.41	-
HESSJ1634-472	0.1	16:34:57.6	-47:16:12	0.64	2.36	-
HESSJ1632-478	0.15	16:32:9.6	-47:49:12	1.87	2.11	-

2/5,

-2 -3 -4 -5 5

4 3 2 1

0

AIRA)

Disk center: RA=16:35:56.8 δ =-47:12:24 Radius=1.91 degrees Expected number of background events (5 ys) = 94.8

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ1640-465	0.67	1.19	2.6
HESSJ1634-472	-0.06	-0.24	2.1
HESSJ1632-478	-0.61	-0.94	12.95

VELAX RXJ0852.0-4622

Source	R(deg)	RA	Declination	kν	۲v	ev
HESSJ0835-455	0.4	8:35:00	-45:36:00	11.75	0.98	0.84
HESSJ0852-463	1.0	8:52:00	-46:22:00	16.76	1.78	1.19

Disk center: RA=8:43:30 δ =-45:58:59 Radius=3.82 degrees Expected number of background events (5 ys) = 364.58

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ0835-455	-2.12	0.38	19.5
HESSJ0852-463	2.12	-0.38	10.27

HESSJ1745-290 HESSJ1745-303 G09+01

Source	R(deg)	RA	Declination	kν	Γν	ev
HESSJ1745-290	0.05	17:45:39.6	-29:00:22	0.85	2.29	-
HESSJ1745-303	0.2	17:45:2.4	-30:22:12	1.01	1.79	-
G09+0.1	0.05	17:47:23.2	-28:09:06	0.27	2.31	-

Disk center: RA=17:46:1.7 δ =-29:10:33 Radius=1.91 degrees Expected number of background events (5 ys) = 67.57

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ1745-290	-0.09	0.17	2.64
HESSJ1745-303	-0.25	-1.19	17.28
G09+0.1	0.34	1.02	0.78

HESSJ1834-087 HESSJ1837-069

Source	R(deg)	RA	Declination	kν	Г	ev
HESSJ1834-087	0.1	18:34:45.6	-8:45:36	0.8	2.45	-
HESSJ1837-069	0.1	18:37:38.4	-6:57:00	1.65	2.27	-

Δ(δ)

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ1834-087	-0.36	-0.905	1.4
HESSJ1837-069	0.36	0.905	4.78

HESSJ1614-518 HESSJ1616-508

Galactic Longitude (°)

Source	R(deg)	RA	Declination	kν	۲v	eν
HESSJ1614-518	0.25	16:14:19.2	-51:49:12	2.41	2.44	-
HESSJ1616-508	0.15	16:16:24	-50:54:00	2.11	2.56	-

Disk center: RA=16:15:21.6 δ =-51:21:36 Radius=1.2 degrees

Expected number of background events (5 ys) = 45.14

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ1614-518	-0.26	-0.46	7.12
HESSJ1616-508	0.26	0.46	7.73

Required Flux (in units of the source flux) for 50% discovery probability (5σ)

HESSJ1420-607 HESSJ1418-609

320

Source	R(deg)	RA	Declination	kν	Гч	eν
HESSJ1420-607	0.05	14:20:12	-60:45:32	1.16	2.25	-
HESSJ1418-609	0.05	14:18:2.4	-60:58:12	0.94	2.19	-

Disk center: RA=14:19:7.2 δ =-60:51:52 Radius=0.72 degrees Expected number of background events (5 ys) = 17.57

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
HESSJ1420-607	0.27	0.106	9.17
HESSJ1418-609	-0.27	-0.106	8.96

Galactic Longitude (°)

Source	R(deg)	RA	Declination	kν	۲v	eν
RXJ1713-3946	0.65	17:13:00	-39:45:00	16.84	1.72	2.1
HESSJ1713-381	0.05	17:13:57.6	-38:12:00	0.23	2.28	-
HESSJ1708-410	0.05	17:8:14.4	-41:4:48	0.44	2.33	-
HESSJ1702-420	0.1	17:2:45.6	-42.4.12	0.82	2.32	-

Disk center: RA=17:09:29.4 δ =-40:16:30 Radius=3.16 degrees Expected number of background events (5 ys) = 217.9

Source	Δ(RA) (with respect to disk center)	Δ(δ) (with respect to disk center)	Expected number of events (5 ys)
RXJ1713-3946	0.525	0.877	26.88
HESSJ1713-381	2.075	1.12	1.16
HESSJ1708-410	-0.805	-0.31	1.95
HESSJ1702-420	-1.795	-1.68	3.69

LS5039INFC LS5039SUPC HESSJ1825-137

Source	R (deg)	RA	Declination	kν	Γν	ev	Nexp (5ys)
LS5039INFC	0.05	18:26:13.8	-14:50:01	2.5	1.61	1.01	1.19
LS5039SUPC	0.05	18:26:13.8	-14.50.01	0.26	2.51	-	0.41
HESSJ1825-137	0.25	18:26:2.4	-13:45:36	10.73	2.08	4.24	8.75

PSR131259-63 HESSJ1303-631									
Source	R (deg)	RA	Declination	kv	Γν	ev	Nexp (5ys)		
PSR131259-63	0.05	13:2:49.2	-63:50:2	0.34	2.72	-	0.59		
HESSJ1303-631	0.15	13:3:0.4	-63.11.55	11.99	2.51	-	1.18		

Source	R (deg)	RA	Declination	kν	Γν	ev	Nexp (5ys)
HESSJ1804-216	0.2	18:4:31	-21:42:00	1.49	2.73	-	1.42

Source	R (deg)	RA	Declination	kν	Γν	ev	Nexp (5ys)
HESSJ1813-178	0.05	18:13:36	-17:50:24	0.96	2.09	-	5.08
Source	R (deg)	RA	Declination	kν	Гν	ev	Nexp (5ys)
MSH15-52	0.1	15:14:7	-59:9:27	1.89	2.27	_	10.41

Combined Results of SNRs

Source	HESSJ1640-465	HESSJ0852-463	HESSJ1745-290	HESSJ1834-087	HESSJ1303-631	RXJ1713-3946 + HESSJ1713-381
R (deg)	0.05	1.0	0.05	0.1	0.15	0.65, 0.05
Expected Signal (5ys)	2.55	9.97	2.55	1.41	1.22	19.36
Expected Background (5ys)	18.28	52.96	13.34	12.09	22.79	78.76

Required Flux (in units of the source flux)

Combined Results of SNRs + Category 3

Source	RXJ1713-3946 + HESSJ1713-381 + HESSJ1708-410	HESSJ0852-463	HESSJ1640-465 + HESSJ1634-472	HESSJ1745-290 + HESSJ1745-303	HESSJ1834-087 + HESSJ1837-069	HESSJ1303-631	HESSJ1614-518
R (deg)	0.65, 0.05, 0.05	1.0	0.05, 0.1	0.05, 0.2	0.1, 0.1	0.15	0.25
Expected Signal (5ys)	21.13	9.97	4.63	19.88	6.2	1.25	7.22
Expected Background (5ys)	106.2	52.96	46.76	32.65	39.14	26.35	27.39

Required Flux (in units of the source flux)