Light Propagation in the South Pole Ice

Dawn Williams University of Alabama VLVNT 2013 Stockholm, Sweden

From neutrino to DOM

Photons undergo scattering and absorption in ice

Modeling the light propagation in ice is critical to reconstructing the properties of IceCube events

IceCube Calibration Devices

Dust logger (8 locations)

Muons from cosmic rayinduced air showers

2 nitrogen laser ''standard candles''

One camera located at the bottom of a string near the center of lceCube (see talk by Per Olof Hulth, this session)

12 LED flashers aboard each DOM

Flasher Measurements in IceCube

Flasher data collected in 2008 during IceCube construction 40 strings active

Received charge vs. time from flashing DOMs, collected by neighboring DOMs

time from the flasher event [ns]

Received charge vs. depth

Depth increases with DOM number from 1450 m (DOM 1) to 2450 m (DOM 60)

Received charge is plotted for flasher at the same depth as the receiver

Strong depth-dependent variations => depth-dependent scattering and absorption due to layers of dust in the ice

Simulation

- Direct photon propagation with Photon Propagation Code (PPC)
- Geometric scattering coefficient b : distance between successive scatters is 1/b
- Effective scattering coefficient b_e

 $b_e = b \cdot (1 - \langle \cos \theta \rangle)$ θ is the angle between scatters

- Absorption coefficient a : distance travelled by photon before absorption is 1/a
- Divide detector into 100 10-m layers in depth, fit to a and $\rm b_e$ in all layers (200 parameters)
- Simulate many values of a and b_e, find best fit to data using likelihood method

Scattering Function

Use linear combination of simplified Liu and Henyey-Greenstein models to approximate Mie Scattering $g = \langle \cos \theta \rangle = 0.9$

Simplified Liu:

 $p(\cos\theta) \sim (1 + \cos\theta)^{\alpha}$, with $\alpha = \frac{2g}{1-q}$

Henyey-Greenstein:

$$p(\cos \theta) = \frac{1}{2} \frac{1 - g^2}{[1 + g^2 - 2g \cdot \cos \theta]^{3/2}}$$

Mie:

Describes scattering on acid, mineral, salt, and soot with concentrations and radii at South Pole

Hole Ice Model

Melted and re-frozen "hole ice" introduces additional scattering Effective scattering length of 50cm in the hole (under study) modeled as a change in the effective angular sensitivity of the DOM

Results: SPICE Mie

SPICE = South Pole Ice model

Absorption

Scattering

Gray band: range allowed by uncertainties: ±10%

Aartsen et al., Nucl.Instrum.Meth. A711 (2013) 73-89

Likelihood

Likelihood functions using charge information only (left) and both charge and time information (right)

Comparison with Dust Log Data, Tilt

Delta T from Muons

Comparison of difference in arrival times at neighboring DOMs on a string

Anisotropy in Scattering

Ratio of simulated (SPICE Mie) charge to data on strings surrounding the flashing string

Maxima of ratio histograms vs. azimuth

angle in xy plane [deg]

Anisotropy

Ice Model with Anisotropy: SPICE Lea

Absorption

Scattering

D. Chirkin, ICRC 2013

Model error improvement

SPICE Mie flasher data/ simulation comparison

SPICE Lea comparison

Comparison with Muon Data

Data SPICE Mie simulation

Ratio of data to simulation

Direction of maximum charge agrees with data from flashers

Summary

- Ice at the South Pole has complex depth- and x-ydependent variations
- Model fit to flasher data using direct photon propagation shows good agreement with data
- Many more studies are ongoing
 - Using flasher data at multiple locations in the detector
 - Using multi-wavelength flasher data
 - Direct simulation of the hole ice