

Extending IceCube-DeepCore to Low Energies for a Dark Matter Search toward the Galactic Center

Samuel Flis for the IceCube Collaboration

Stockholm University

VLVnT-2013 Stockholm, Sweden August 6 2013

 DM particles (WIMPs) annihilate with each other in the GC region and produce neutrinos through different annihilation channels

$$\chi + \chi \rightarrow \nu + \overline{\nu}$$
 $\chi + \chi \rightarrow W^+ + W^ \chi + \chi \rightarrow b + \overline{b}$

Neutrinos propagate + oscillate to the South Pole, convert into muons in CC interactions

Galactic Center (seen from South Pole at zenith angle $61^{\circ} \rightarrow$ down-going analysis)

The IceCube Neutrino Observatory at the South Pole

Analyses Description

 Goal: Searching for neutrinos from self-annihilating WIMPs in the GC with WIMP masses between 30 GeV and 10 TeV with the 79 string configuration of IceCube-DeepCore (320 live days of 2010 - 2011)

two independent analyses

90% CL calculated via Feldman & Cousins ordering principle

Low-Energy (< 300 GeV): Events are partially or well contained within DeepCore
 extends the methodology developed for the IC79 solar WIMP analysis [1]

- Looking for downward going starting tracks within DC
- Use IceCube as an active veto
- Focus on contained events

[1] M. G. Aartsen et al., Phys. Rev. Lett., 110(13) (2013) 131302.

VLVnT-2013, Stockholm, Sweden, August 5-7 2013 M. Wolf, S. Flis for the IceCube Collaboration

mar Klee

- Identifying starting events opens up the Southern Sky for Icecube.
- Vetos needed to reject incoming tracks.
- Veto methods for this analysis focus on low energy events.
 - -Using DeepCore as fiducial volume.
- Vetos need in general 'uncleaned hits'.
 - -Reconstructions use cleaned hits.

- Identifying starting events opens up the Southern Sky for lcecube.
- Vetos needed to reject incoming tracks.
- Veto methods for this analysis focus on low energy events.
 Using DeepCore as fiducial
 - volume.
- Vetos need in general 'uncleaned hits'.
 - -Reconstructions use cleaned hits.

- Identifying starting events opens up the Southern Sky for lcecube.
- Vetos needed to reject incoming tracks.
- Veto methods for this analysis focus on low energy events.
 - Using DeepCore as fiducial volume.
- Vetos need in general 'uncleaned hits'.
 - Reconstructions use cleaned hits.

- Identifying starting events opens up the Southern Sky for Icecube.
- Vetos needed to reject incoming tracks.
- Veto methods for this analysis focus on low energy events.
 - -Using DeepCore as fiducial volume.
- Vetos need in general 'uncleaned hits'.
 - -Reconstructions use cleaned
 - hits. Cleaning algorithms collect hits that are causally connected into clusters.

- These cluster are too distant and faint for the cleaning algorithms to connect them.
- Consider hits in veto region before the event entered the fiducial volume.
 - A modifed cleaning algorithm tries to find the largest cluster.

Veto methods

- Incoming atmospheric muon track might leave small clusters of hits in the veto region.
 - These cluster are too distant and faint for the cleaning algorithms to connect them.
- Consider hits in veto region before the event entered the fiducial volume.
 - A modifed cleaning algorithm tries to find the largest cluster.

M. Wolf, S. Flis for the IceCube Collaboration

Low Energy Analysis Sensitivity determination

Sensitivities

- 2 optimized event selections
 - DC-contained optimized on bb
 - DC-partial optimized on W⁺W⁻
- Data rate: O(1)
 m mHz
- For each annihilation channel & WIMP mass, run the analysis with both event selections
- For each case, choose event selection that gives the best sensitivity

Sensitivities

M. Wolf, S. Flis for the IceCube Collaboration

Sensitivity to other experiments

M. Wolf, S. Flis for the IceCube Collaboration

- First IceCube analysis looking at GC for low WIMP masses (< 100 GeV)</p>
- 4 orders of magnitude better sensitivity @ 100 GeV τ⁺τ⁻ channel w.r.t. IC40 GC analysis
- New veto methods to reject atmospheric muon background using DeepCore as fiducial volume developed.
 - Improves IceCube WIMP searches in the Southern Hemisphere
- Results Soon!

Thank you!

Additional slides

Additional slides

Procedure to weight signal events sampled from nugen MC

Sensitivity

to other experiments

the fiducal volume

E-200

-250

-300

-350

-400

-450

0

hit in Z.

N

the starting point (vertex) and time of a track.

Track Likelihood Veto

- Consider hits in veto region before the time of the reconstructed event vertex.
 - Construct a cylinder in the veto region around the track reconstruction.
 - Compute the track likelihood using hits in the cylinder.
- The likelihood value will reflect how likely the hits in the cylinder are associated with the track.

Veto

Event Selection

- Split data into a high energy (HE) and low energy (LE) event selection.
 - LE events are DeepCore dominated (more hits in DeepCore)
- Apply cuts suited for each event selection independently.

