Development of a multi-PMT optical module for PINGU

L. Classen, O. Kalekin, U. Katz, J. Reubelt, M. Tselengidou

VLVNT 2013, Stockholm

PINGU 05.08.2013

PINGU

- Precision IceCube Next Generation Update
- 40 additional strings
- standard optical modules
- opportunity for module R&D

physics goals

- energy limit ~ GeV
- neutrino mass hierarchy
- Iow-mass WIMPs

2

Multi-PMT module

IceCube & DeepCore	KM3NeT	
13 inch sphere	17 inch sphere	
1 × 10 inch PMT	31 × 3 inch PMT	

Advantages

superior photo-electron counting:

from number of hit PMTs, rather than signal waveform

- angle of signal acceptance up to 4π
- direction sensitivity
- no magnetic shielding needed
- increase of sensitive area

similar overall price
 per photocathode area

PPM-DOM

- first multi-PMT DOM deployed
- mounted on instrumentation line at Antares site
- opportunity of in-situ calibration

KM3NeT 2013

5

Adaptation for ice

- maximum diameter: ~13 inch
- ► temperature: 35°C
- overpressure during refreezing

 reuse of 3-inch PMTs & low voltage bases

Cylindrical vessel

- stainless steel flanges & titanium screws
- wall thickness up to 18 mm
- rated for 700 bar (≈ 10 000 psi)
- mass (f/m): 28.2 kg/22.5kg

mDOM interior

- segmented cylindrical vessel
- ▶ 41× 3" PMT
- main electronics in center
- ~ four times larger photocathode

PMT candidates

▶ testing in Amsterdam, Catania, Erlangen, Patros

R12199	D792KFL	XP53B20
Hamamatsu	ET Enterprises	HZC
180x	12x	2x
		G C C C C C C C C C C C C C C C C C C C

9

PMT testing status

requirements (KM3NeT)				
quantum efficiency @ 470 nm	> 20%			
transit time spread (σ , FWHM)	< 2 ns, < 4.6 ns			
gain	> 2 · 10 ⁶			
supply voltage	< 1400 V			
dark count rate @ 15°C	< 1.5 kHz			
peak to valley ratio	> 3			
length	< 120 mm			
outer diameter	≤ 82 mm			
Hamamatsu	ETEL HZC			
talk by Leonora	alk by Kalekin			
	ERLANGEN C			

- ---

PHYSICS

Readout principle

from analogue signal to time stamped data (talks by Real & Calvo)

Holding structure

- 3D printing / rapid prototyping
- adequate precision
- Iow price (prototyping)
- segmentation possible
- high flexibility
- alternatives considered for mass production

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Module integration

ERLANGEN CENTRE FOR ASTROPARTICL PHYSICS

Angular acceptance

- 41 PMT mDOM
- flat vs. measured PMTs
- area scaled in single PMT
 effective areas (1 PMT ≈ 50 cm²)

200

phi [deg]

250

300

350

ERLANGEN CENTRE

50

0

100

150

2

MICA

- Megaton Ice Cherenkov Array
- denser instrumentation
- new optical module technology

physics goals

- energy threshold ~ 10 MeV
- Cherenkov ring imaging
- supernova neutrinos
- proton decay

Grant 2011

Detector simulations

- different detector configurations
- number of strings 20 41

common detector properties			framework	IceTray
string spacing	7 m		ice model	SPICE-Mie
OMs per string	151		decay propagation physics photon propagation	GEANT4 CLSim
OM spacing	2 m			
height	300 m			
location	2148 – 2448 m [*]			

[∗] z ∈ [-500 m; -200 m]

Simulated footprints

Proton decay simulation

- 10 proton decays generated inside cylinder
- radius 10 m
- ▶ x₀ = 10 m

 $p \rightarrow e^+ + \pi^0 \rightarrow \gamma\gamma$

- ▶ y₀ = -10 m
- ▶ z ∈ [-490 m; -210 m]

configuration	number of strings	number of OMs	hits / decay
OrA	20	3020	2688
OctA	26	3926	3592
HexA	28	4228	3724
LaSqA	41	6191	4354

radioactivity of holder & glass

low temperature behaviour

adaptation of electronics

design holding structure

build prototype for testing

Thank you for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Picture graveyard

