

Characterization of KM3NeT photomultipliers in the Hellenic Open University

G. Bourlis, T. Avgitas, A. Tsirigotis, S.E. Tzamarias

Physics Laboratory Hellenic Open University

VLVnT13, Very Large Volume Neutrino Telescope Workshop 2013

Outline

- The KM3NeT telescope
- The KM3NeT optical modules
- PMT characterization
 - Calibration setup
 - Gain slope and single pe characteristics
 - Peak-to-Valley
 - Transit Time Spread
 - Dark current rate
 - After pulses fraction and multiplicity
- Summary and outlook

The KM3NeT Telescope

Optical Module (OM): pressure resistant sphere cointaining photomultpliers

Detection Unit (DU): mechanical structure holding OMs, environmental sensors, electronics,... DU is the building block of the telescope KM3NeT in numbers

- ~12200 DOMs
- ~620 DU
- ~20 DOM/DU
- ~40m DOM spacing
- ~1 km DU height
- ~100 DU distance

HELLENIC OPEN UNIVERSITY

• $\sim 4 \text{ km}^3 \text{ volume}$

KM3NeT Optical Modules

■ 31 3'' PMTs (~30% max QE) inside a 17'' glass sphere with 31 bases (total ~6.5W)

- Cooling shield and stem
- Full prototypes under testing

- Single vs multi-photon hit seperation
- Large (1260 cm²) photocade area per OM

PMT Characterization

- PMTs under testing (Nikhef, ECAP Erlangen, INFN Catania)
- 200 Hamamatsu R12199 PMTs (E. Leonora talk)
- 94 ETL PMTs
- 7 HZC PMTs (O. Kalekin talk)

Tested for

- Quantum efficiency
- Gain slope
- Dark current rate
- Transit Time Spread (TTS)
- After pulse fraction
- Peak-to-valley ratio
- Effective area

KM3NeT specifications for PMTs:

- QE @ 470nm > 20%
- HV for 5x10⁶ gain 1000-1400V
- TTS <2ns sigma
- Dark current rate <1kHz</p>
- Peak-to-valley ratio >3

HOU PMT Calibration Setup

- Dark box hosting the PMT under calibration
- PMT power base provided by Erlangen
- HLMP-LB11-FJ000 LED (blue 470nm) inside the dark box powered by a \sim 3V pulse with adjustable width
- NIM Pocket Pulser Model 417 (10kHz)
- NIM electronics: discriminator and NIM/TTL
- External high voltage power supply for the PMTs

HELLENIC **OPEN** UNIVERSITY

HOU PMT Calibration Setup

- 5GS/s high sampling rate oscilloscope (Tektronix 5052B) with LAN connectivity
- Custom software for data acquisition (LabVIEW and C++)
- Acquisition rate 350Hz if the full pulse waveforms are saved, >1kHz otherwise
- PMT stays in darkness without supply voltage for ~3h
- PMT powered with the typical voltage for ${\sim}1{\rm h}$ before measurements begin

Gain slope & single pe characteristics Setup

- PMT in spe conditions by narrowing the LED pulse width
- Oscilloscope triggered by the LED power pulse
- Around 100000 pulses acquired for each PMT voltage supply in the range 1000-1400V with 50V step
- Procedure may be repeated for higher light level

Gain slope & single pe characteristics Results

Data Analysis

- \rightarrow Binary data converted to V=f(t)
- \rightarrow Check data quality
- → Correct dc offset (if any) due to temperature changes
- \rightarrow Noise reduction
- \rightarrow Charge and pulse height distributions

PMT charge distributions:

- spe mean charge

- spe mean pulse height for every PMT high voltage supply

Charge Distributions (single pe level)

worksho

worksho

Charge Distributions (more light)

Charge Distributions (more light)

Using the charge distributions for each number of photoelectrons, we can estimate the number of events for 0, 1, 2, ... photoelectrons

→ the mean number of photoelectrons is estimated assuming poissonian statistics and fitting the discrete distribution

Gain slope & single pe characteristics Results

Gain as a function of supplied voltage

 $G_V = A \cdot V^{kn}$

But

$$G_V = \frac{\mathcal{L}V}{N_{pe} \cdot e}$$

 $O_{u}^{N_{pe}}$

$$\log Q_V^{N_{pe}} = \log (N_{pe} \cdot e \cdot A) + kn \cdot \log V$$

Slope is calculated at every light level employed

Calculation of the operational voltage for a specific gain of $5 \cdot 10^6$

$$G_V = G_{V_0} \cdot \left(\frac{V}{V_0}\right)^{kn}$$

UNIVERSITY

Peak-to-Valley measurements

workshop

Peak-to Valley preliminary results for ZB6160

1 1.2		High Voltage (V)	Peak-to-valley	7
160		1100	3,3±0,1	
00V		1200	3,5±0,1	
		1300	3,6±0,2	
		1400	3.4±0,1	
^س ر میروند مراجع میروند 6 1.8 2				
<u>160</u> 10V	700 r of bulses		ZB6160 1400V	
	Solution 100			
	300	՝ [՝՝ [՝՝՝ [՝՝՝՝՝՝՝՝՝՝՝	۹.	
	200			
``L	100) E] [] [] [] [] [] [] [] [] [] [] [] [] []		A
2.5 3 Charge (pC)	ultipl	0.5 1 1.5 2 2.5 3	3.5 4 4.5 Charge (pC)	HELLENIC OPEN UNIVERSITY

UNIVERSITY

Transit Time Spread (TTS) measurements

Sheffield Pulser for the LED with a ~ 0.5 ns light output width

- PMT at spe conditions
- Acquisition of 100000 waveforms
- Distribution of the arrival time of the pulse (measured at a threshold equal to 1/3 of the spe mean pulse height)

O. Kalekin, DE. Leonora, D. Samtleben, Test Report, 200 Hamamatsu PMTs of type R12199-02, 1-4-2013

210

2.2

HELLENIC **OPEN** UNIVERSITY

1.672

0.1301

Dark current measurements

KM3NeT

- PMT signal input to the CAEN Mod. N844 Low Threshold Discriminator
- PMT voltage set for a gain of $5{\cdot}10^6$
- Discriminator threshold set to 1/3 of the spe average pulse height
- Discriminator output fed to ORTEC 871 TIMER AND COUNTER and the dark current rate is measured

ZB6277 ~2.5kHz ZB6160 ~1.4kHz

Measured at a room temperature of $\sim 25^{\circ}$ C

After pulses

Work for after pulses fraction is underway

- Same setup as for gain slope
- $10 \mu s$ or $100 \mu s$ window recorded
- Pulses registered if higher than 1/3 of the spe mean pulse height
- Time distribution of the pulses following the main pulse
- Multiplicity of after pulses is also measured

UNIVERSITY

Summary and Outlook

HOU 3" PMT Calibration

spe characteristics, gain slope, TTS, peak-to-valley

Acquisition of ~100000 pulses at 8-10 power supply values up to 1400V (around 1h)
Dark current rate measurements at various room temperatures measured instantly
After pulses fraction and multiplicity

- 3-4M waveforms (around 1h)

Outlook

- Automation of the measurements and analysis procedures
- Development of the first DOM construction center of the KM3NeT-Gr

