Characterization of KM3NeT photomultipliers in the Hellenic Open University

G. Bourlis, T. Avgitas, A. Tsirigotis, S.E. Tzamarias

Physics Laboratory
Hellenic Open University

VLVnT13, Very Large Volume Neutrino Telescope Workshop 2013
Outline

- The KM3NeT telescope
- The KM3NeT optical modules
- PMT characterization
 - Calibration setup
 - Gain slope and single pe characteristics
 - Peak-to-Valley
 - Transit Time Spread
 - Dark current rate
 - After pulses fraction and multiplicity
- Summary and outlook
The KM3NeT Telescope

Optical Module (OM): pressure resistant sphere containing photomultipliers

Detection Unit (DU): mechanical structure holding OMs, environmental sensors, electronics,...

DU is the building block of the telescope

KM3NeT in numbers
- ~12200 DOMs
- ~620 DU
- ~20 DOM/DU
- ~40m DOM spacing
- ~1 km DU height
- ~100 DU distance
- ~4 km³ volume

G. Bourlis et al. - Characterization of KM3NeT photomultipliers at the Hellenic Open University
KM3NeT Optical Modules

- 31 3'' PMTs (~30% max QE) inside a 17'' glass sphere with 31 bases (total ~6.5W)
- Cooling shield and stem
- Full prototypes under testing

- Single vs multi-photon hit separation
- Large (1260 cm2) photocade area per OM
PMT Characterization

PMTs under testing (Nikhef, ECAP Erlangen, INFN Catania)
- 200 Hamamatsu R12199 PMTs (E. Leonora talk)
- 94 ETL PMTs
- 7 HZC PMTs (O. Kalekin talk)

Tested for
- Quantum efficiency
- Gain slope
- Dark current rate
- Transit Time Spread (TTS)
- After pulse fraction
- Peak-to-valley ratio
- Effective area

KM3NeT specifications for PMTs:
- QE @ 470nm > 20%
- HV for 5x10^6 gain 1000-1400V
- TTS <2ns sigma
- Dark current rate <1kHz
- Peak-to-valley ratio >3
HOU PMT Calibration Setup

- Dark box hosting the PMT under calibration
- PMT power base provided by Erlangen
- HLMP-LB11-FJ000 LED (blue - 470nm) inside the dark box powered by a ~3V pulse with adjustable width
- NIM Pocket Pulser Model 417 (10kHz)
- NIM electronics: discriminator and NIM/TTL
- External high voltage power supply for the PMTs
HOU PMT Calibration Setup

- 5GS/s high sampling rate oscilloscope (Tektronix 5052B) with LAN connectivity
- Custom software for data acquisition (LabVIEW and C++)
- Acquisition rate 350Hz if the full pulse waveforms are saved, >1kHz otherwise
- PMT stays in darkness without supply voltage for ~3h
- PMT powered with the typical voltage for ~1h before measurements begin
Gain slope & single pe characteristics

Setup

- PMT in spe conditions by narrowing the LED pulse width
- Oscilloscope triggered by the LED power pulse
- Around 100000 pulses acquired for each PMT voltage supply in the range 1000-1400V with 50V step
- Procedure may be repeated for higher light level
Gain slope & single pe characteristics

Results

Data Analysis
→ Binary data converted to V=f(t)
→ Check data quality
→ Correct dc offset (if any) due to temperature changes
→ Noise reduction
→ Charge and pulse height distributions

PMT charge distributions:
- spe mean charge
- spe mean pulse height
for every PMT high voltage supply
Charge Distributions (single pe level)

→ Gaussian distribution for the noise
→ Exponential distribution for the dark current
→ Polya functions used for the signal

\[
P(x) = \frac{(a \cdot x / M)^a}{x \cdot \Gamma(a)} \cdot e^{-a \cdot x / M} \\
\bar{x} = M \\
\sigma_x = \frac{M}{\sqrt{a}}
\]
→ Gaussian distribution for the noise
→ Exponential distribution for the dark current
→ Polya functions used for the signal

\[P(x) = \frac{(a \cdot x / M)^a}{x \cdot \Gamma(a)} \cdot e^{-a \cdot x / M} \]
\[\bar{x} = M \]
\[\sigma_x = \frac{M}{\sqrt{a}} \]
Using the charge distributions for each number of photoelectrons, we can estimate the number of events for 0, 1, 2, ... photoelectrons

→ the mean number of photoelectrons is estimated assuming poissonian statistics and fitting the discrete distribution
Gain slope & single pe characteristics

Results

Gain as a function of supplied voltage

\[G_V = A \cdot V^{kn} \]

But

\[G_V = \frac{Q_V^{N_{pe}}}{N_{pe} \cdot e} \]

\[\log Q_V^{N_{pe}} = \log (N_{pe} \cdot e \cdot A) + kn \cdot \log V \]

Slope is calculated at every light level employed

Calculation of the operational voltage for a specific gain of 5 \(\cdot 10^6 \)

\[G_V = G_{V_0} \cdot \left(\frac{V}{V_0} \right)^{kn} \]
Peak-to-Valley measurements

Peak-to Valley preliminary results for ZB6160

<table>
<thead>
<tr>
<th>High Voltage (V)</th>
<th>Peak-to-valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>3.3±0.1</td>
</tr>
<tr>
<td>1200</td>
<td>3.5±0.1</td>
</tr>
<tr>
<td>1300</td>
<td>3.6±0.2</td>
</tr>
<tr>
<td>1400</td>
<td>3.4±0.1</td>
</tr>
</tbody>
</table>
Transit Time Spread (TTS) measurements

Sheffield Pulser for the LED with a ~0.5ns light output width
- PMT at spe conditions
- Acquisition of 100000 waveforms
- Distribution of the arrival time of the pulse (measured at a threshold equal to 1/3 of the spe mean pulse height)

ZB6277 FWHM = 3.55ns TTS = 1.4ns

J. E. McMillan, Using the Sheffield Pulser, Sheffield, 2001

O. Kalekin, DE. Leonora, D. Samtleben, Test Report, 200 Hamamatsu PMTs of type R12199-02, 1-4-2013
Dark current measurements

- PMT signal input to the CAEN Mod. N844 Low Threshold Discriminator
- PMT voltage set for a gain of $5 \cdot 10^6$
- Discriminator threshold set to 1/3 of the average pulse height
- Discriminator output fed to ORTEC 871 TIMER AND COUNTER and the dark current rate is measured

ZB6277 ~2.5kHz
ZB6160 ~1.4kHz

Measured at a room temperature of ~25°C
After pulses

Work for after pulses fraction is underway
- Same setup as for gain slope
- 10μs or 100μs window recorded
- Pulses registered if higher than 1/3 of the mean pulse height
- Time distribution of the pulses following the main pulse
- Multiplicity of after pulses is also measured
Summary and Outlook

HOU 3"

PMT Calibration
spe characteristics, gain slope, TTS, peak-to-valley
- Acquisition of ~100000 pulses at 8-10 power supply values up to 1400V (around 1h)

Dark current rate measurements at various room temperatures measured instantly

After pulses fraction and multiplicity
- 3-4M waveforms (around 1h)

Outlook
- Automation of the measurements and analysis procedures
- Development of the first DOM construction center of the KM3NeT-Gr