Opto-Acoustical Modules for KM3NeT

Alexander Enzenhöfer
VLVνT 2013
Stockholm, 05.08. – 07.08.2013
KM3NeT

- Water-Cherenkov neutrino telescope
- Multi-cubic-kilometre instrumented volume
- Located in the Mediterranean Sea (multi-site)
- Detection Units (DUs) equipped with ~ 18 Digital Optical Modules (DOMs)
 - several ten DUs in Phase I
 - 690 DUs in Phase II
- Each DOM houses 31 PMTs
- Flexible structures require constant position monitoring
“Acoustic Positioning System”

Detection Unit

Receiver

Acoustic emitter/receiver ("Pinger")

\[\left| \vec{r}_{\text{reception}} - \vec{r}_{\text{emission}} \right| = c_s \times (t_{\text{reception}} - t_{\text{emission}}) \]
Two different types of receiver

Opto-Acoustical Module:
- new type of sensor
- subject of this presentation

Hydrophone:
- proven technology
- various devices available
Basic concept
Integration of acoustical sensor(s) in DOMs
Optical module + Acoustical sensor = Opto-Acoustical Module (OAM)

Reference: www.km3net.org
Simplified deployment

- LOM (Launcher of Optical Modules) favours compact design without additional mechanical support structures
Current implementations of OAMs

for KM3NeT

for NEMO Phase-II

Applicable to different configurations
Lab measurements

PMTs off
PMTs on
PMTs operating at nominal voltage inject noise into system
Hydrophone and piezo on PPM-DOM
Hydrophone and piezo data from PPM-DOM

~~0.3 ms

signal [V]

time, arbitrary offset [s]
Piezo data from PPM-DOM

Acoustic emitter cycle from ANTARES emitters on anchors

Footprint of ANTARES

signal [V]

PPM-DOM

time since run start [s]

saturation

VLV ν T 2013 - 05.08. - 07.08.2013 - Alexander Enzenhöfer
Single signal in detail (strong signal)

Signal building up as expected
Single signal in detail (weak signal)
Angular dependence of signal strength

Signal strength vs. angle; assume piezo is at “south pole”; low statistics
Some preliminary conclusions about positioning with piezos in PPM-DOM

- Positioning under investigation, some synchronization issues between ANTARES emitters and DOM receivers. First results look promising
- S/N for pinger signals in situ better than expected
- Signal distortions observed
- For KM3NeT: different pinger signals (e.g. chirp, signals with orthogonal base)
 - Improvements compared to sine-waveform e.g.:
 - Precision of arrival time determination
 - Robustness against signal distortion
 - Tests ongoing with prototype acoustic emitter from Valencia also on ANTARES IL
Piezo improvement and development

Prototype:
- "analogue piezo"

Final Design for KM3NeT Phase I:
- "digital piezo"

Diagram:
- **Sensor Head**
- **Main Amplifier**
- **ADC**
- **DAQ (FPGA)**

Connections:
- External to sensor head
- Main amplifier + filter to DAQ (FPGA)
Piezo improvement and development

- "analogue piezo": current system designed for low power dissipation: ~ 0.1 W (w/o ADC)
- Hope that with better shielding noise can be suppressed (PPM-DU)
- “digital piezo”: foreseen for KM3NeT Phase I
 digital piezo will be a major overhaul:
 Improvements with analog piezo will not help for the digital piezo
 estimated power dissipation ~ 0.5 W
Summary and outlook

- Positioning with piezo in PPM-DOM is possible, signals are as expected
- Some features intrinsic to piezo-in-sphere observed: superposition, angular dependence
- Investigation of the absolut precision (to be done)
- Design of digital piezo kicked off

- possible application to acoustic particle detection
Acoustic particle detection

Deep sea

Hydrophone array
(ca. 100/km3, >100 km3)

Sonic wave

Particle cascade
(10 m x 10 cm)
Signal generation

Bipolar pressure pulse detectable with acoustical sensor in OAM studies on acoustic particle detection are possible
Thank you for your attention!