Neutrinos from charm production in the atmosphere

Rikard Enberg, Uppsala University

VLVnT 2013
Stockholm, August 7, 2013

+ work in progress
(RE, Reno, Sarcevic + K. Kutak, A. Szczurek)
Main message

QCD is crucial for some astrophysical processes:

- Atmospheric neutrinos
- Neutrino-nucleon cross-section at high energy
- Interactions in astrophysical sources

For example:

- What happens at **small Bjorken x**?
 (Much smaller x than in colliders)
- Forward region
 (Hard to measure at colliders)
- Fragmentation of quarks → hadrons
- Nuclear effects in pA hard interactions
Atmospheric neutrinos

- Cosmic rays bombard upper atmosphere and collide with air nuclei
- Hadron production: pions, kaons, D-mesons ...
- Interaction & decay \Rightarrow cascade of particles
- Semileptonic decays \Rightarrow neutrino flux
Conventional neutrino flux

- Pions (and kaons) are produced in more or less every inelastic collision

- π^+ always decay to neutrinos ($\pi^+ \rightarrow \mu^+ \nu_\mu$ is 99.98 %)

- *But* π, K are long-lived ($c\tau \sim 8$ meters for π^+)
 - \Rightarrow lose energy through collisions before decaying
 - \Rightarrow neutrino energies are degraded

- This is called the *conventional neutrino flux*
Prompt neutrino flux

- Hadrons containing heavy quarks (*charm* or *bottom*) are extremely short-lived:
 - decay before losing much energy
 - neutrino energy spectrum is harder

- However, production cross-section is much smaller

- There is a cross-over energy above which prompt neutrinos dominate over the conventional flux

- This is called the *prompt neutrino flux*
Prompt vs conventional fluxes of atmospheric neutrinos

Prompt vs conventional fluxes of atmospheric neutrinos

Pions & kaons: long-lived ⇒ lose energy before decay

Prompt vs conventional fluxes of atmospheric neutrinos

Pions & kaons: long-lived \Rightarrow lose energy before decay

Charmed mesons: short-lived \Rightarrow don't lose energy \Rightarrow harder spectrum

Prompt vs conventional fluxes of atmospheric neutrinos

Pions & kaons: long-lived \(\Rightarrow\) lose energy before decay

Charmed mesons: short-lived \(\Rightarrow\) don't lose energy \(\Rightarrow\) harder spectrum

\[\approx 10^{5.5} \text{ GeV}\]

and smaller background rates from conventional atmospheric signatures allow a very precise energy reconstruction.

Waxman-Bahcall bound. The limit on a different predictions are not yet in reach with the current sensitivity.

Figure 3 shows the limits on several prompt neutrino flux predictions in comparison to prompt flux expectations. These limits are below the prediction by Bugaev et al. (RQPM) [3], but other prompt neutrino flux predictions follow the slightly different shapes of the models.

The completed IceCube detector will provide much higher statistics than this data sample and an expansion of the physical flux is presented in Fig. 4.

ν_μ atmospheric flux is calculated by Enberg et al. [1], which has been modified for astropart. Phys. 18 (2003) 593–613.

Our calculation of the primary cosmic-ray spectrum and composition [5]. This analysis provides an improved parameterization of the primary cosmic-ray spectrum and composition [5].

The hatched area represents the envelope containing all limits on each of the models are similar in normalization.

The preliminary upper limit derived on a generic atmospheric flux is 10^{-4}, which is slightly above the Enberg et al. + H3a knee [14] E. Waxman, To be published in Astronomy at the Frontiers of Science.

The atmospheric neutrinos are the major background to e.g. the recent observed high-energy events.

A. Schukraft for IceCube, arXiv:1302.0127

R. Enberg: Neutrinos from charm
Calculating the flux

- To find the neutrino flux we must solve a set of cascade equations given the incoming cosmic ray flux:

\[
\frac{d\phi_N}{dX} = -\frac{\phi_N}{\lambda_N} + S(NA \to NY)
\]

\[
\frac{d\phi_M}{dX} = S(NA \to MY) - \frac{\phi_M}{\rho d_M(E)} - \frac{\phi_M}{\lambda_M} + S(MA \to MY)
\]

\[
\frac{d\phi_\ell}{dX} = \sum_M S(M \to \ell Y)
\]

- \(X\) is the slant depth: “amount of atmosphere”
- \(\rho d_M\) is the decay length, with \(\rho\) the density of air
- \(\lambda_M\) is the interaction length for hadronic energy loss
Z-moments

- We solve the cascade equations by introducing Z-moments:

\[Z_{kh} = \int_{E}^{\infty} dE' \frac{\phi_k(E', X, \theta)}{\phi_k(E, X, \theta)} \frac{\lambda_k(E)}{\lambda_k(E')} \frac{dn(kA \rightarrow hY; E', E)}{dE} \]

- Then

\[\frac{d\phi_M}{dX} = -\frac{\phi_M}{\rho d_M} - \frac{\phi_M}{\lambda_M} + Z_{MM} \frac{\phi_M}{\lambda_M} + Z_{NM} \frac{\phi_N}{\lambda_N} \]

- Solve equations separately in low- and high-energy regimes where attenuation is dominated by decay and energy loss, respectively, and interpolate
Particle production

The particle physics inputs are the energy distributions for decay or production

\[
\frac{d\ n(k \rightarrow j; E_k, E_j)}{dE_j} = \frac{1}{\sigma_{kA}(E_k)} \frac{d\sigma(kA \rightarrow jY, E_k, E_j)}{dE_j}
\]

\[
\frac{d\ n(k \rightarrow j; E_k, E_j)}{dE_j} = \frac{1}{\Gamma_k} \frac{d\Gamma(k \rightarrow jY; E_j)}{dE_j}
\]

along with the interaction lengths, or cooling lengths

\[
\lambda_N(E) = \frac{\rho(h)}{\sigma_{NA}(E) n_A(h)}
\]

We thus need the charm production cross section \(d\sigma/dx_F\)
Problem with QCD in this process

Charm cross section in LO QCD:

\[
d\sigma_{LO} \over dx_F = \int \frac{dM_{cc}^2}{(x_1 + x_2)s} \sigma_{gg\to cc}(\hat{s})G(x_1, \mu^2)G(x_2, \mu^2)
\]

where

\[
x_{1,2} = \frac{1}{2} \left(\sqrt{\frac{x_F^2}{s} + \frac{4M_{cc}^2}{s}} \mp x_F \right)
\]

CMS energy is large: \(s = 2E_p m_p \) so \(x_1 \sim x_F \) \(x_2 \ll 1 \)

\[
x_F=1: \quad E=10^5 \rightarrow x \sim 4 \cdot 10^{-5} \\
E=10^6 \rightarrow x \sim 4 \cdot 10^{-6} \\
E=10^7 \rightarrow x \sim 4 \cdot 10^{-7}
\]

\[
x_F=0: \quad E=10^5 \rightarrow x \sim 6 \cdot 10^{-3} \\
E=10^6 \rightarrow x \sim 2 \cdot 10^{-3} \\
E=10^7 \rightarrow x \sim 6 \cdot 10^{-4}
\]

So very small \(x \) is needed for forward processes (large \(x_F \))!
Problem with QCD at small x

- Parton distribution functions poorly known at small x

- At small x, large logs must be resummed: $[\alpha_s \log(1/x)]^n$

- If logs are resummed (BFKL):
 power growth of gluon distribution as $x \rightarrow 0$

- Unitarity would be violated (T-matrix > 1)
How small x do we know?

- We haven’t measured anything at such small x

- E.g. the MSTW pdf has $x_{\text{min}} = 10^{-6}$

- But that is an extrapolation!

- HERA pdf fits: $Q^2 > 3.5 \text{ GeV}^2$ and $x > 10^{-4}$!
Kinematic plane

HERA: $x_{\text{min}} \sim 10^{-4}$ used for PDF fits ($Q^2 \sim 3.5 \text{ GeV}^2$)

Note LHeC!
Small x

F$_2$ measured at HERA (ZEUS) as a function of Bjorken-x.

Note the steep power-law rise

Can this rise continue?

Theoretical answer: no
Parton saturation

- **Saturation** to the rescue:
 - Number of gluons in the nucleon becomes so large that gluons recombine
 - Reduction in the growth

- This is sometimes called the **color glass condensate**

- Non-linear QCD evolution: **Balitsky-Kovchegov equation**
Saturation: theoretical description

- Gribov-Levin-Ryskin and Mueller-Qiu
- Phenomenological saturation model: Golec-Biernat and Wüsthoff

Color Glass Condensate:
McLerran-Venugopalan, JIMWLK, Balitsky

(Functional integro-differential eqs. or infinite system of nonlinear integro-differential eqs.)

- Balitsky-Kovchegov equation:
Mean field approximation of the above

(The simplest description: can be more easily used for phenomenology — one nonlinear integro-differential eqn.)
Charm production

- We calculate the charm production cross section $d\sigma/dx_F$

- We use the dipole picture (see backup slides), and a solution of the Balitsky-Kovchegov equation

- Cross section at large energy suppressed relative to NLO QCD
Uncertainties in charm cross section

Different charm mass, factorization scale, pdf choice

Resulting neutrino fluxes

The band shows uncertainty of the dipole calc. Upper line in right plot: old NLO QCD

Fixed order calc at small x

- At $x \ll 10^{-4}$ a power-law extrapolation of parton distributions is not warranted if there is saturation.

- We can take this as an upper limit on the cross section if there is no saturation: use modern PDFs.

- Improve calc with FONLL: NLO QCD with NLL resummation of $\log(p_T/m)$.

- Saturation could in principle be included in pdf fit with data at higher energies.
Quark fragmentation to hadrons

Hadronization degrades energy of quark compared to hadron: Use fragmentation functions fitted to data

\[
\frac{d\sigma(pp \rightarrow hX)}{dE_h} = \int_{E_h}^{\infty} \frac{dE_c}{E_c} \frac{d\sigma(pp \rightarrow cX)}{dE_c} D_c^h(E_h/E_c)
\]

Used Kramer-Kniehl (KK) and Peterson functions

Uncertainty in normalization and average energy fraction
Total cross section, $pp \rightarrow cc$

Very different energy dependence!

R. Enberg: Neutrinos from charm
Gluon pdfs: very small x

GJR-V is a new pdf: *extrapolated* down to $x = 10^{-9}$
CTEQ3 was used in original calculation
Intrinsic charm

“Normal” charm parton distribution is generated from gluon splittings

There may be an “intrinsic” non-perturbative charm component in the nucleon

[Brodsky, Hoyer, Peterson, Sakai, 1980]

Would contribute charmed mesons at large xF

[See e.g. Thunman et al or Bugaev et al.]
Theoretical uncertainties

Given all these uncertainties, can we get a better handle on how uncertain our prediction is?

Important given that this is a major background for neutrino telescopes and affects their significance calculations.

We are investigating the variation in theoretical predictions using different approaches.
Updating the prediction

Three issues:

• **Saturation prediction**
 - Compare previous calculation with
 - Running-coupling BK (numerical solution, AAMQS)
 - BK/DGLAP matching (numerical solution)

• **Fixed order prediction using small-\(x\) PDF**
 - Use NLO QCD with NLL resummation (FONLL)

• **Nuclear dependence of incoming cosmic ray flux**
 - Previously used proton flux only. Assess impact of using e.g. polygonato flux with mixture of elements

Work in progress!

R. Enberg: Neutrinos from charm
Backup slides
Dipole frame picture of DIS

It is convenient to use the dipole frame:

→ Go to frame where the photon has very large lightcone q+ momentum (e.g. proton’s rest frame)

Then the photon fluctuates into a color dipole before hitting the target and the dipole scatters on the proton:

Fluctuation is long-lived at small x:
Very useful in small-x physics

R. Enberg: Neutrinos from charm
DIS at small x in dipole picture

The factorization is different from “standard” pQCD:

$$
\sigma(\gamma^* N) = \int_0^1 dz \int d^2 r |\Psi_T(z, r, Q^2)|^2 \sigma_{q\bar{q}N}(x, r)
$$

Dipole cross section from BK eqn

The wave function for the fluctuation is given by:

$$
|\Psi_T^f(z, r, Q^2)|^2 =
$$

$$
e_f^2 \alpha_{em} N_c \left[(z^2 + (1-z)^2) \epsilon^2 K_1^2(\epsilon r) + m_f^2 K_0^2(\epsilon r) \right]
$$

R. Enberg: Neutrinos from charm
Generalize to hadron-hadron

Generalized to dipole picture for heavy quark production in hadron-hadron collisions by Nikolaev, Piller & Zakharov; Raufeisen & Peng; Kopeliovich & Tarasov.

\[
\frac{d\sigma(pp \rightarrow Q\bar{Q}X)}{dy} \sim x_1 G(x_1, \mu^2) \sigma_{Gp\rightarrow Q\bar{Q}X}(x_2, \mu^2, Q^2)
\]

Gluon distribution of the projectile hadron gives dipole

Scattering of this dipole on the target hadron

R. Enberg: Neutrinos from charm
Dipole cross section from BK

Iancu, Itakura and Munier: model for σ_d from the BK equation:
Match two analytic solutions in different regions:
- Saturated region when the amplitude approaches one
- Color transparency region when it approaches BFKL result

\[N(rQ_s, Y) = \begin{cases}
N_0 \left(\frac{\tau}{2} \right)^{2\gamma_{\text{eff}}(x, r)}, & \text{for } \tau < 2 \\
1 - \exp \left[-a \ln^2 (b\tau) \right], & \text{for } \tau > 2
\end{cases} \]

where \(\tau = rQ_s, Y = \ln(1/x) \quad \gamma_{\text{eff}}(x, r) = \gamma_s + \frac{\ln(2/\tau)}{\kappa \lambda Y} \)

Then \(\sigma_d(x, r) = \sigma_0 N(rQ_s, Y) \)

Fitted to HERA data at small x: good description
(we use an update by Soyez for heavy quarks)