Neutrino Oscillations with IceCube DeepCore and PINGU

PENNSTATE

Tyce DeYoung
Department of Physics
Pennsylvania State University

VLVvT Stockholm, Sweden August 7, 2013

PRECISION ICECUBE NEXT GENERATION UPGRADE

Oscillations of Atmospheric Neutrinos

 Neutrinos oscillating over one Earth diameter have a ν_μ survival minimum at ~25 GeV

- Hierarchy-dependent matter effects below ~10-20 GeV
- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach

Cross-section

- Original IceCube design focued on neutrinos with energies above a few hundred GeV
- DeepCore provides reduced volume with threshold ~10 GeV

The IceCube Neutrino Observatory

- Original IceCube design focued on neutrinos with energies above a few hundred GeV
- DeepCore provides reduced volume with threshold ~10 GeV
 - Higher efficiency far outweighs reduced geometrical volume
 - Note: comparison at trigger level – analysis efficiencies not included (typically ~10%)

- Original IceCube design focued on neutrinos with energies above a few hundred GeV
- DeepCore provides reduced volume with threshold ~10 GeV
 - Higher efficiency far outweighs reduced geometrical volume
 - Note: comparison at trigger level – analysis efficiencies not included (typically ~10%)

IceCube DeepCore

- A more densely instrumented region at the bottom center of IceCube
 - Eight special strings plus 12 nearest standard strings
 - High Q.E. PMTs
 - ~5x higher effective photocathode density
- In the clearest ice, below 2100 m
 - $\lambda_{atten} \approx 45-50 \text{ m}$
- IceCube provides an active veto against cosmic ray muon background (around 10⁶ times atmospheric neutrino rate)

- Compare zenith-dependent response of standard IceCube muon analysis (high energy) to a modified version for DeepCore
 - Look for oscillation signature in event rate suppression at low energies
 - Detector systematics reduced by comparing HE and LE rates
 - Based on traditional muon analysis, no new techniques designed for DeepCore – lower efficiency accepted

Muon Neutrino Disappearance

arXiv:1305.3909 (accepted PRL)

Statistically significant angle-dependent suppression at low energy, high energy sample provides constraint on uncertainties in simultaneous fit

Shaded bands show range of uncorrelated systematic uncertainties;
 hatched regions show overall normalization uncertainty

Muon Neutrino Disappearance

- Oscillation parameter allowed regions extracted from zenith distributions
 - Systematics included
- Excellent agreement with world average measurements (with large uncertainties)
 - Potential for significant improvement with inclusion of energy estimators, more advanced reconstructions and event selections

Measuring Flux Modulation due to Oscillations

- Wide range of baselines and energies observed permits marginalization over nuisance parameters
 - Theoretical uncertainties
 - Detector systematics
- Actual analysis is done in 2D, but difficult to visualize
 - Projected here onto reconstructed L/E for illustration

Coming Improvements

- First two-dimensional analyses (energy and angle) coming soon
 - Still based on single year data sets – focus now on technique development
- Multiyear results also in the works
 - Estimated sensitivity for several years is encouraging, even without further improvements on systematics

Tyce DeYoung VLVvT 2013 August 7, 2013

PINGU

- Targeting 40 additional strings of 60-100 Digital Optical Modules each, deployed in the DeepCore volume
 - 20-25 m string spacing (cf. 125 m for IceCube, 73 m for DeepCore)
 - Precise geometry under study
 - Systematics will be better understood with additional in situ calibration devices
- Cost and technical issues well understood from IceCube experience
 - Start-up costs of \$8M \$12M
 - ~\$1.25M per string

DeepCore Only • 9.28 GeV v_{μ} event: • 4.9 GeV muon 4.5 GeV cascade • ~20 vs. ~50 hit DOMs

DeepCore + PINGU

PINGU Energy Range

- A preliminary event selection based on DeepCore analysis
 - 23,000 muon neutrinos per year after oscillations
 - Oscillation signature is the disappearance of 12,000 events per year
- Sufficient to measure neutrino mass hierarchy via matter effects in the 5-20 GeV range without direct v_{μ} – \bar{v}_{μ} discrimination
 - Exploit asymmetries in cross sections and kinematics

Neutrino Oscillations in Vacuum

 $\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ $\sin^2(2\theta_{23}) = \frac{\pi}{4}$

Neutrino Oscillations in Matter

Neutrino Oscillations in Matter

Preliminary Hierarchy Sensitivity Studies

- Measuring a somewhat complicated modulation of a complicated two-dimensional distribution
 - Rather difficult to visualize the data in a simple way
- A useful metric for visualizing the signature is the significance estimate of Akhmedov, Razzaque & Smirnov (arXiv:1205.7071)
 - Binned counting experiment in energy and zenith angle, comparing difference in expected number of events for normal vs. inverted hierarchy due to mass effects

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}} \quad \begin{array}{ccc} i & = & \cos(zenith) \\ j & = & energy \end{array}$$

Experimental Signature of the Mass Hierarchy

 Idealized case with no background, perfect flavor ID, 100% signal efficiency

Experimental Signature of the Mass Hierarchy

- Idealized case with no background, perfect flavor ID, 100% signal efficiency
 - Different assumed resolutions smear the signature but do not eliminate it
- Hierarchy signature is a distinctive structure in energy-angle plane
 - Key to our approach to controlling systematics

- Efficiency errors (30%)
- Atmos. v spectral index (±0.05)
- Energy calibration (10% bias)
- Pointing accuracy (10% bias)
- Energy resolution (10% error)
- Angular resolution (10% error)
- Further studies underway now

PINGU Hierarchy Sensitivity

- Sensitivity depends on final detector scope, assumed analysis efficiency, detector resolution, etc.
 - Caveat: not all systematics included in each study
- Even with pessimistic assumptions, 3σ determination expected (median) with 2 years' data
 - 5σ in 2-4 more years
- Working now to refine details and extend systematic studies

First Steps Toward Flavor Identification

- Current sensitivity studies assume no flavor ID statistical subtraction of backgrounds from v_x NC, v_e , v_τ
- First step: tag v_{μ} CC based on presence of track with v > c/n
 - Good efficiency for v_{μ} with $E_{\mu} > 3$ GeV with 40 string geometry

Other Neutrino Measurements

- δ_{CP} has no effect on our hierarchy measurement
 - Hierarchy determination via v_{μ} disappearance, not appearance resolve degeneracy for other experiments
- High-statistics measurement of v_τ appearance
 - In the standard oscillation scenario, the disappearing v_{μ} are converted to v_{τ} confirmation of tau appearance at expected rate is an interesting test
 - Oscillation effects scale as L/E_v, so longer baselines move effect to higher energy with reduced kinematic suppression of tau neutrino cross section
- Improved measurement of atmospheric oscillation parameters
- Over-constraint of parameters in the standard oscillation paradigm is essential for testing non-standard scenarios (e.g. A. Friedland)

Advantages of PINGU

Relatively cheap

- Start up costs of \$8-12M, plus ~\$1.25M per string, split between the US and foreign partners
- Well understood technology and techniques low risk

Relatively quick

- Could begin deployment in the 2016/17 austral summer season, completion in 2-3 years (depending on scope)
- 3σ determination of the hierarchy by 2020, 5σ in 2-4 more years
- Targeted measurement would resolve degeneracies
 - Allow LBNE to focus on CP violation
- Working now on a detailed Letter of Intent and full proposal

Backup Slides

Best-fit Oscillations

- Statistical significance of observation established with respect to world average oscillation parameters
- As a second step, we fit Δm^2_{23} and $\sin^2(2\theta_{23})$ by χ^2 minimization, with nuisance parameters fit simultaneously

- $\Delta m^2_{23} = 2.3 \times 10^{-3} \text{ eV}^2$, $\sin^2(2\theta_{23}) = 1.0$
- $\chi^2 = 15.7$ for 18 degrees of freedom

Theoretical Uncertainties

• E.g., uncertainty in Δm_{31}^2 is partially degenerate with the hierarchy

PINGU

- One of several candidate geometries under investigation
- Exploring requirements for mass hierarchy measurement additional strings may be added if better angular and energy resolution is needed
 - Systematics can be addressed with additional in situ calibration devices

