

Proposal of a new generation of Laser Beacon for Time Calibration in the KM3NeT Neutrino Telescope

Diego Real IFIC (CSIC – Universidad de Valencia)

VLVnT13 - Very Large Volume Neutrino Telescope Workshop 2013

Stockholm, 5 August 2013

KM3NeT Collaboration

40 Institutes

KM3NeT Neutrino Telescope

Deployment Of KM3NeT Detection Units

640 string with optical sensors in the deep sea at 3-5 km depth

KM3NeT Time Calibration System (I)

- The experience from the previous projects shows that a system of external light sources with a known emission time ensures the time calibration and provides measurements of the optical water properties.
- Decoupling the intra/inter detection unit (DU) calibration seems the best solution.
- The **calibration constants** are obtained putting all the information together.

KM3NeT Time Calibration System (II)

Decoupling within the same Detection Unit (intra- D.U.) and between D.U. (inter-D.U.) calibration systems INTRA D.U. Calibration (See David's talk):

One Nanobeacon per Digital Optical Module. Looking upwards

KM3NeT Time Calibration System (III)

Decoupling within the same D.U. (intra- D.U.) and between D.U. (inter-D.U.) calibration systems
INTER D.U. Calibration:

One Laser Beacon every 8 D.U

Laser Beacons @ 532 nm

- \checkmark Higher in intensity and shorter pulses < 1 ns
- ✓ More expensive but less redundancy required
- ✓ Tunable by Liquid Crystal Optical attenuator
- Collimated beam -> Diffusion device needed

Laser Beacon Description

LASER BEACON:

- ✓ Titanium Container
- ✓ Internal Mechanics
- ✓ Connector
- ✓ Laser Head
- ✓ Built-in Photodiode
- ✓ Antibiofouling system
- ✓ The Voltage Controller
 - **Optical Attenuator**

Laser Beacon Mechanics

Cylinder of 650 mm high and 142 mm of diameter Made in Titanium grade 5 (Ti6AI4V) to avoid marine corrosion Composed of three different pieces:

- \checkmark The cylindrical tube
- ✓ The lower cap (connector cap)

✓ The upper cap with the anti-biofouling system
 Designed to resist up to 5000 meters deep
 Pressure test at 400 bars

Internal Mechanics And Connector

	Block.	POWER STP1 1	A
	White	POWER STP1.2	
Y			Y .
0	Block	SIGNAL STP2.1	0
	White	SIGNAL STP2.2	
Y			- Y
	Block	SIGNAL STP3.1	0
X []	Blue	SIGNAL STP3.2	$(1 \times)$
			Y .
0	Block	SIGNAL STP4.1	0
\rightarrow \sim \sim \sim	Green	SIGNAL STP4.2	
Y			Ŷ
	Block	SIGNAL STP5.1	0
\longrightarrow (1	Grey	SIONAL STP5.2	
Y			Y
	Wiri	na diaaram	

10

Inner mechanics:

- ✓ Provides the structure where the different devices of the laser beacon are integrated
- ✓ Internal mechanics developed in aluminum
- ✓ two aluminum rings joined together by two aluminum beams

Connector :

- ✓ Made in titanium grade 5 from MacArtney
- ✓ Allows connection between the LB and the D.U

The Anti-Biofouling System

VLVnT13

The cylinder quartz

- ✓ pressure-resistant quartz
- ✓ refractive index 1.4585
- ✓ 60 mm x 80 mm
- ✓ Inserted 10 mm into the upper titanium cap

Possible to illuminate photo-sensors located at a horizontal distance of **200 m and 50 m** above the seabed.

Diffuser

- ✓ model 48010 from ORIEL (Flashed opal diffuser)
- ✓ Thickness of 2.2 mm
- ✓ Diameter of 25 mm.
- ✓ Lambertian distribution

11

KM3NeT Laser Beacon Tests Head (I)

- ✓ Diode pumped Q-switched Nd-YAG laser
- ✓ Short pulses. FWHM ~ 400 ps
- ✓ Energy per pulse of 3.5 µJ (manufacturer)
- \checkmark 4.15v 4.25 µJ measured in laboratory

KM3NeT Laser Beacon Tests Head (II)

Measurements carried out with the Spectrometer Ocean Optics HR4000

The laser presents the main spectrum at **532 nm** as expected

Built-In Photodiode

- A jitter the laser pulse emission time of a few hundred nanoseconds
- ✓ Internal Built-in photodiode that provides the exact time of the laser light emission (0.5 ns)
- ✓ The read-out system to acquire the photodiode signal of the laser is not located in the laser container but in the D.U where the LB is connected
- ✓ The jitter of the internal photodiode has been measured using an external photodiode (Newport 812-20 photodiode with a rise time lower than 200 ps) directly illuminated by the laser beam
- ✓ The FWHM of the measured built-in photodiode **jitter is lower than 550 ps**

The Voltage Controller Optical Attenuator

- ✓ Unlike LED sources the amount of light emitted by the laser is fixed
- ✓ A voltage-controlled optical attenuator using a liquid crystal variable retarder located in the beam path is used
- a beam-splitting polarizing cube is used since they have a higher damage threshold to laser exposure than standard linear polarizer
- ✓ The model used is optimized to work in the 420 to 680 nm range

KM3NeT Laser Beacon Tests

- 1 laser beacon integrated in the ANTARES IL13
- 1 laser beacon integrated in the KM3NeT "Nemo

Tower Phase II"

Both use a 3.5 µJ the laser head STG-03E-1S0 from Teemphotonics which emits light with a wavelength of 532 nm after frequency doubling of the original Nd-YAG wavelength of 1064 nm

KM3NeT Laser Beacon Developments

KM3NeT Laser Beacon Developments

KM3NeT Laser Beacon Developments

New laser head. More powerful 25 µJ per pulse versus 3.5 µJ of previous head.

Model	PNP- B06010	PNP- B08010	PNG- B02010
Energy/Pulse (µJ)	70	90	25
Pulse Width (ps)	400	400	300
Peak Power (kW)	175	220	80
Repetition rate (Hz)	1,000	1,000	1,000
Average Power (mW)	70	90	25
	Typical values	-	

Conclusions

- <u>1 laser beacon</u> integrated in the ANTARES IL13
 (3.5 µJ)
- <u>1 laser beacon</u> integrated in "KM3NeT Nemo Tower Phase II" (3.5 µJ)
- Proposal to use a new laser head for KM3NeT.
 More powerful with 25 µJ per pulse