Pairing and quarteting in proton-neutron systems

Nicolae Sandulescu

National Institute of Physics and Nuclear Engineering, Bucharest

Main message: proton-neutron pairing is properly described by alpha-like quartets, not by Cooper pairs

<u>Outline</u>

- A) Isovector pairing with alpha-like quartets
 - quartet model for N=Z and N>Z systems
 - *isovector pairing and Wigner energy*
- B) Isoscalar- isovector pairing with alpha-like quartets
 - competition between J=1 and J=0 pairing

Isovector pairing of protons and neutrons N=Z $H = \sum_{i} \varepsilon_{i} (N_{i}^{(v)} + N_{i}^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^{+} P_{j,\tau}$ $P_{i0}^{+} \propto v_{i}^{+} \pi_{\bar{i}}^{+} + \pi_{i}^{+} v_{\bar{i}}^{+} \qquad P_{i1}^{+} \propto v_{i}^{+} v_{\bar{i}}^{+} \qquad P_{i-1}^{+} \propto \pi_{i}^{+} \pi_{\bar{i}}^{+}$ • Exact solution: g = V(i, j) Richardson, 1966 J. Links et al, J.P(2002) J. Dukelsky et al, PRL(2006) SO(5) $|\Psi\rangle = \left[\prod_{\alpha=1}^{M} B_{-1}^{+}(e_{\alpha})\right] \prod_{\beta} \left[T_{+}(\omega_{\beta}) - \sum_{\alpha} \frac{I_{+,\alpha}}{\omega_{\beta} - e_{\alpha}}\right] |\Lambda\rangle \qquad B_{\tau}^{+}(e_{\alpha}) = \sum \frac{P_{i,\tau}^{+}}{2s - e_{\alpha}}$

• BCS approximation: two degenerate solutions (which do not coexist)

$$\Delta_{\nu\pi} \neq 0, \ \Delta_{\nu} = \Delta_{\pi} = 0 \qquad \text{or} \qquad \Delta_{\nu\pi} = 0, \ \Delta_{\nu} = \Delta_{\pi} \neq 0$$

typical errors in correlation energies 30-40%

isovector pairing in the PBCS approximation

 $|PBCS0 > \propto (\Gamma_{\nu\pi}^+)^{-2} | - >$

	\mathbf{SM}	PBCS1	PBCS0
$^{44}\mathrm{Ti}$	5.973	5.487 (8.134%)	4.912 (17.763%)
$^{48}\mathrm{Cr}$	9.593	8.799 (8.277%)	7.885~(17.805%)
52 Fe	10.768	9.815 (8.850%)	8.585~(20.273%)

• no mixing of pn with nn and pp pairing !

restoration of the isospin symmetry ?

Isospin conservation and quarteting

$$H = \sum_{i} \varepsilon_{i} (N_{i}^{(v)} + N_{i}^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^{+} P_{j,\tau}$$

$$P_{i1}^{+} \propto v_{i}^{+} v_{\bar{i}}^{+} \qquad P_{i-1}^{+} \propto \pi_{i}^{+} \pi_{\bar{i}}^{+} \qquad P_{i0}^{+} \propto v_{i}^{+} \pi_{\bar{i}}^{+} + \pi_{i}^{+} v_{\bar{i}}^{+}$$

$$non-collective quartets$$

$$Q_{ij}^{+} = [P_{i\tau}^{+} P_{j\tau}^{+}]^{T=0} \propto P_{vv,i}^{+} P_{\pi\pi,j}^{+} + P_{\pi\pi,i}^{+} P_{vv,j}^{+} - P_{v\pi,i}^{+} P_{v\pi,j}^{+}$$

$$Collective quartet$$

$$Q^{+} = \sum_{ij} x_{ij} (P_{vv,i}^{+} P_{\pi\pi,j}^{+} + P_{\pi\pi,i}^{+} P_{vv,j}^{+} - P_{v\pi,i}^{+} P_{v\pi,j}^{+})$$

$$quartet condensate$$

 $|QCM>=Q^{+n_q}| ->$ (has T=0, J=0)

Quartet condensation and Cooper pairs

$$|QCM\rangle = Q^{+n_q}|-\rangle$$

ansatz:

$$Q^{+} \approx \sum_{ij} x_{i} x_{j} (P_{\nu\nu,i}^{+} P_{\pi\pi,j}^{+} + P_{\pi\pi,i}^{+} P_{\nu\nu,j}^{+} - P_{\nu\pi,i}^{+} P_{\nu\pi,j}^{+})$$
$$Q^{+} \equiv (2\Gamma_{\nu\nu}^{+} \Gamma_{\pi\pi}^{+} - \Gamma_{\nu\pi}^{+} \Gamma_{\nu\pi}^{+}) \qquad \Gamma_{\tau}^{+} = \sum_{i} x_{i} P_{i,\tau}^{+} \qquad \text{collection}$$

collective Cooper pairs

$$|QCM\rangle = (2\Gamma_{\nu\nu}^{+}\Gamma_{\pi\pi}^{+} - \Gamma_{\nu\pi}^{+}\Gamma_{\nu\pi}^{+})^{n_{q}}|-\rangle$$

'coherent' mixing of condenstates formed by nn, pp and pn pairs

$$|QCM> = \sum_{k=0}^{n_q} \dots (\Gamma_{vv}^+ \Gamma_{\pi\pi}^+)^{n_q-k} (\Gamma_{v\pi}^+ \Gamma_{v\pi}^+)^k |->$$

PBCS condensates are only two terms in QCM

$$|PBCS0 > \propto (\Gamma_{v\pi}^{+2})^{n_q}| - > |PBCS1 > \propto (\Gamma_{v\nu}^{+}\Gamma_{\pi\pi}^{+})^{n_q}| - >$$

Quartet condensation: calculation scheme

$$H = \sum_{i} \varepsilon_{i} (N_{i}^{(\nu)} + N_{i}^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^{+} P_{j,\tau}$$
$$|\Psi(x)\rangle = (2\Gamma_{\nu\nu}^{+}\Gamma_{\pi\pi}^{+} - \Gamma_{\nu\pi}^{+}\Gamma_{\nu\pi}^{+})^{n_{q}} |-\rangle \qquad \Gamma_{\tau}^{+} = \sum_{i} x_{i} P_{i,\tau}^{+}$$

 $\delta_x < \Psi \mid H \mid \Psi >= 0$ with $< \Psi \mid \Psi >= 1$

Method of recurrence relations

auxiliary states $|n_1, n_2, n_3 \rangle \equiv \Gamma_{\nu\nu}^{+n_1} \Gamma_{\pi\pi}^{+n_2} \Gamma_{\nu\pi}^{+n_3} |0\rangle = \sum_k \binom{n_q}{k} (-1)^{n_q-k} 2^k |k, k, 2(n_q-k)\rangle.$

$$< n_1' n_2' n_3' | H | n_1, n_2, n_3 >$$

coupled, recursive relations for

SO(5)
$$\langle P_{i\tau}^{+} \rangle \langle N_{i\tau} \rangle \langle T_{i\tau} \rangle$$

 $\langle P_{i\tau}^{+} P_{j\tau'} \rangle$

Recursive relations: example

$$\begin{split} & \langle n_1' n_2' n_3' | P_{i,1}^+ P_{j,1} | n_1 n_2 n_3 \rangle = n_1 x_j \langle n_1 - 1 n_2 n_3 | P_{i,1} | n_1' n_2' n_3' \rangle \\ & - x_i x_j^2 (n_1' n_1 n_3 \langle n_1 - 1 n_2 n_3 - 1 | P_{j,0} | n_1' - 1 n_2' n_3' \rangle \\ & + n_1' n_1 (n_1 - 1) \langle n_1 - 2 n_2 n_3 | P_{j,1} | n_1' - 1 n_2' n_3' \rangle \\ & + \frac{1}{2} n_1' n_3 (n_3 - 1) \langle n_1 n_2 n_3 - 2 | P_{j,-1} | n_1' - 1 n_2' n_3' \rangle) \\ & + x_i^2 x_j^2 [n_1' n_3' n_1 n_3 [\langle n_1' - 1 n_2' n_3' - 1 | P_{j,0}^+ P_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 2 n_2' n_3' | P_{j,0}^+ P_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \delta_{ij} \langle n_1' - 2 n_2' n_3' | P_{i,0}^+ P_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & + \frac{1}{2} n_3' (n_3' - 1) n_1 n_3 [\langle n_1' n_2' n_3' - 2 | P_{j,0}^+ P_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & + \delta_{ij} \langle n_1' n_2' n_3' - 2 | T_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle] \\ & + n_1' n_3' n_1 (n_1 - 1) [\langle n_1 - 2 n_2 n_3 | P_{i,0}^+ P_{j,1} | n_1' - 1 n_2' n_3' - 1 \rangle \\ & - \delta_{ij} \langle n_1 - 2 n_2 n_3 | T_{i,-1} | n_1' - 1 n_2' n_3' - 1 \rangle \\ & + \delta_{ij} (\langle n_1' - 2 n_2' n_3' | T_{i,-1} | n_1' - 1 n_2' n_3' - 1 \rangle] \\ & + \delta_{ij} (\langle n_1' - 2 n_2' n_3' | T_{i,-1} | n_1' - 1 n_2' n_3' - 1 \rangle] \\ & + \delta_{ij} (\langle n_1' - 2 n_2' n_3' | n_1 - 2 n_2 n_3 \rangle - \langle n_1' - 2 n_2' n_3' | N_{i,1} | n_1 - 2 n_2 n_3 \rangle)] \\ & + \frac{1}{2} n_3' (n_3' - 1) n_1 (n_1 - 1) \langle n_1' n_2' n_3' - 2 | P_{j,1}^+ P_{i,-1} | n_1 - 2 n_2 n_3 \rangle \\ & + \delta_{ij} (\langle n_1' n_2 n_3 - 2 | T_{i,1} | n_1' - 1 n_2' n_3' - 1 \rangle] \\ & + \frac{1}{2} n_1' (n_3' - 1) n_3 (n_3 - 1) \langle n_1 n_2 n_3 - 2 | P_{i,1}^+ P_{i,-1} | n_1' - 2 n_2' n_3' \rangle \\ & + \frac{1}{4} n_3' (n_3' - 1) n_3 (n_3 - 1) [\langle n_1' n_2' n_3' - 2 | P_{i,-1}^+ P_{i,-1} | n_1 n_2 n_3 - 2 \rangle \\ & + \delta_{ij} (\langle n_1' n_2' n_3' - 2 | n_1 n_2 n_3 - 2 \rangle - \langle n_1' n_2' n_3' - 2 | N_{i,-1} | n_1 n_2 n_3 - 2 \rangle)]]. \end{split}$$

Accuracy of quartet condensation model

$$H = \sum_{i} \varepsilon_{i} N_{i} + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{t} P_{it}^{+} P_{jt}$$

pairing forces extracted from SM interactions

 $|QCM\rangle = (Q^+)^{n_q}| - >$

 $|PBCS1 > \propto (\Gamma_{vv}^{+} \Gamma_{\pi\pi}^{+})^{n_{q}}| - > |PBCS0 > \propto (\Gamma_{v\pi}^{+2})^{n_{q}}| - >$

	SM	QCM	PBCS1	PBCS0
²⁰ Ne	9.173	9.170 (0.033%)	8.385 (8.590%)	7.413 (19.187%)
²⁴ Mg	14.460	14.436 (0.166%)	13.250 (8.368%)	11.801 (18.389%)
28Si	15.787	15.728 (0.374%)	14.531 (7.956%)	13.102 (17.008%)
32S	15.844	15.795 (0.309%)	14.908 (5.908%)	13.881 (12.389%)
44Ti	5.973	5.964 (0.151%)	5.487 (8.134%)	4.912 (17.763%)
48Cr	9.593	9.569 (0.250%)	8.799 (8.277%)	7.885 (17.805%)
⁵² Fe	10.768	10.710 (0.539%)	9.815 (8.850%)	8.585 (20.273%)
104 Te	3.831	3.829 (0.052%)	3.607 (5.847%)	3.356 (12.399%)
¹⁰⁸ Xe	6.752	6.696 (0.829%)	6.311 (6.531%)	5.877 (12.959%)
112Ba	8.680	8.593 (1.002%)	8.101 (6.670%)	13.064 (13.064%)

N. S, Daniel Negrea, J. Dukelsky, C.W. Johnson, PRC85, 061303(R) (2012)

how important is the isospin restoration ?

Isospin restoration versus quartet correlations

$$H = \sum_{i} \varepsilon_{i} \left(N_{i}^{(\nu)} + N_{i}^{\pi} \right) - g \sum_{ij,\tau} P_{i,\tau}^{+} P_{j,\tau}$$

$$|QCM \rangle = (Q^{+})^{n_{q}} | - \rangle \qquad |PBCS(N,T)\rangle = \hat{P}_{T} \hat{P}_{N} |BCS\rangle$$

$$E_{corr} = E_{0} - E$$

$$5^{2} Fe$$
Exact value: 8.29 MeV
$$PBCS(N,T): 7.63 \text{ MeV} (8\%) \qquad \text{(Chen et al., Nucl. Phys.A 1978)}$$

$$QCM: \qquad 8.25 \text{ MeV} (0.5\%)$$

QCM state describes additional quartet-type correlations !

Isospin pairing with distinct quartets

$$H = \sum_i \varepsilon_i (N_i^{(\nu)} + N_i^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^* P_{j,\tau}$$

non-collective quartets

 $A_{ij}^{+} = \left[P_{i\tau}^{+}P_{j\tau'}^{+}\right]^{T=0} \propto P_{\nu\nu,i}^{+}P_{\pi\pi,j}^{+} + P_{\pi\pi,i}^{+}P_{\nu\nu,j}^{+} - P_{\nu\pi,i}^{+}P_{\nu\pi,j}^{+}$

collective quartet

collective quartets

$$Q^+ = \sum_{ij} x_{ij} Q^+_{ij}$$

$$Q_{v}^{+} = \sum_{ij} q_{ij}^{(v)} Q_{ij}^{+}$$

quartet condensate

$$QCM \ge Q^{+n_q} |->$$

$$|QM\rangle = Q_1^+ Q_2^+ ... Q_{n_q}^+ |-\rangle$$

M. Sambataro and N.S, PRC88 (2013)

N=Z

analogy with Richardson solution for like-particle pairing !

Isovector pairing with distinct quartets: accuracy

$$H = \sum_{i} \varepsilon_{i} (N_{i}^{(v)} + N_{i}^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^{+} P_{j,\tau}$$

 $|QM\rangle = Q_1^+ Q_2^+ ... Q_{n_q}^+ |-\rangle |QCM\rangle = Q^{+n_q} |-\rangle$

Spherical single-particle basis V_{ij} extracted from standard shell model interactions

	exact	QM	QCM
²⁰ Ne	-9.174	-9.174 (-)	-9.170 (0.04%)
^{24}Mg	-14.461	-14.458 (0.02%)	-14.436 (0.17%)
²⁸ Si	-15.787	-15.780 (0.04%)	-15.728 (0.37%)
³² S	-15.844	-15.844 (-)	-15.795 (0.31%)
⁴⁴ Ti	-5.965	-5.965 (-)	-5.964 (0.02%)
⁴⁸ Cr	-9.579	-9.573 (0.06%)	-9.569 (0.10%)
52 Fe	-10.750	-10.725 (0.23%)	-10.710 (0.37%)
104 Te	-3.832	-3.832 (-)	-3.829 (0.08%)
¹⁰⁸ Xe	-6.752	-6.752 (-)	-6.696 (0.83%)
112 Ba	-8.680	-8.678 (0.02%)	-8.593 (1.00%)

M. Sambataro and N.S., PRC88 (2013) 061303(R)

Isovector pairing with distinct quartets: accuracy

$$H = \sum_{i} \varepsilon_{i} \left(N_{i}^{(\nu)} + N_{i}^{\pi} \right) - g \sum_{ij,\tau} P_{i,\tau}^{+} P_{j,\tau}$$
$$|QM\rangle = Q_{1}^{+}Q_{2}^{+}...Q_{n_{q}}^{+}| - \rangle \qquad |QCM\rangle = Q^{+n_{q}}| - \rangle$$

Deformed single-particle basis (HF + Skyrme force SLy4) V_{ij} =-24/A

	exact	QM	QCM
²⁰ Ne	-6.5505	-6.5505	-6.539 (0.18%)
^{24}Mg	-8.4227	-8.4227	-8.388 (0.41%)
²⁸ Si	-9.6610	-9.6610	-9.634 (0.28%)
³² S	-10.2629	-10.2629	-10.251 (0.12%)
⁴⁴ Ti	-3.1466	-3.1466	-3.142 (0.15%)
⁴⁸ Cr	-4.2484	-4.2484	-4.227 (0.50%)
⁵² Fe	-5.4532	-5.4531	-5.426 (0.50%)
104 Te	-1.0837	-1.0837	-1.082 (0.16%)
¹⁰⁸ Xe	-1.8696	-1.8696	-1.863 (0.35%)
¹¹² Ba	-2.7035	-2.7034	-2.688 (0.57%)

QM gives the exact solution for isovector pairing !?

Conclusions for isovector pairing in N=Z nuclei

- *T*=1 pairing is accurately described by quartets, not by pairs
- there is not a pure condensate of isovector pn pairs in N=Z nuclei

Pairing and quarteting in N>Z systems

Imbalanced fermionic systems

gapless/breached pair superfludity

LOFF phase (non-zero CM momentum)

Proton-neutron pairing and quartets for N>Z nuclei

nuclei with N-Z=2n_N

all protons are correlated in alpha-like quartets

• neutrons in excess form a pair condensate

$$|\Psi \rangle = (\tilde{\Gamma}_{\nu\nu}^{+})^{n_{N}} (Q^{+})^{n_{q}} |-\rangle$$

N>Z

$$\Psi >= (\widetilde{\Gamma}_{vv}^{+})^{n_{N}} (2\Gamma_{vv}^{+}\Gamma_{\pi\pi}^{+} - \Gamma_{v\pi}^{+}\Gamma_{v\pi}^{+})^{n_{q}} | - >$$
$$\widetilde{\Gamma}_{vv}^{+} = \sum_{i} \widetilde{x}_{i} v_{i}^{+} v_{\bar{i}}^{+} \qquad \Gamma_{vv}^{+} = \sum_{i} x_{i} v_{i}^{+} v_{\bar{i}}^{+}$$

no quarteting: $|PBCS1 >= (\widetilde{\Gamma}_{vv}^{+})^{N/2} (\Gamma_{\pi\pi}^{+})^{Z/2} | ->$

Alpha-like condensation for N>Z nuclei: results

$$H = \sum_{i} \varepsilon_{i} N_{i} + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{i} P_{ii}^{+} P_{ji}$$

pairing forces extracted from SM interactions

 $|QCM \rangle = (\tilde{\Gamma}^{+}_{vv})^{n_{N}} (Q^{+})^{n_{q}} |0\rangle$

$$|PBCS1 \rangle = (\widetilde{\Gamma}_{vv}^{+})^{N/2} (\Gamma_{\pi\pi}^{+})^{Z/2}$$

	Exact	QCM	PBCS1		Exact	QCM	PBCS1
²⁰ Ne	6.550	6.539 (0.17%)	5.752 (12.18%)	²⁴ Mg	8.423	8.388 (0.41%)	7.668 (8.96%)
²² Ne	6.997	6.969 (0.40%)	6.600 (5.67%)	²⁶ Mg	8.680	8.654 (0.30%)	8.258 (4.86%)
²⁴ Ne	7.467	7.426 (0.55%)	7.226 (3.23%)	²⁸ Mg	8.772	8.746 (0.30%)	8.531 (2.75%)
²⁶ Ne	7.626	7.592 (0.45%)	7.486 (1.84%)	³⁰ Mg	8.672	8.656 (0.18%)	8.551 (1.39%)
²⁸ Ne	7.692	7.675 (0.22%)	7.622 (0.91%)	³² Mg	8.614	8.609 (0.06%)	8.567 (0.55%)
³⁰ Ne	7.997	7.994 (0.04%)	7.973 (0.30%)	²⁸ Si	9.661	9.634 (0.28%)	9.051 (6.31%)
³⁰ Si	9.310	9.296 (0.15%)	9.064 (2.64%)	³² Si	9.292	9.283 (0.10%)	9.196 (1.03%)

N. S, D. Negrea, C. W. Johnson, PRC86 (2012) 041302(R)

Proton-neutron pairing far from N=Z line

$$\Psi >= (\widetilde{\Gamma}_{\nu\nu}^{+})^{n_{N}} (2\Gamma_{\nu\nu}^{+}\Gamma_{\pi\pi}^{+} - \Gamma_{\nu\pi}^{+}\Gamma_{\nu\pi}^{+})^{n_{q}} | - >$$

pn pairing and alpha-like quartets persist far from N=Z line !

Isovector pairing in Skyrme-HF+QCM

$$H = \sum_{i} \left(\varepsilon_{i}^{(\nu)} N_{i}^{(\nu)} + \varepsilon_{i}^{(\pi)} N_{i}^{(\pi)} \right) + g \sum_{i,j,t} P_{it}^{+} P_{jt}$$

pairing is treated as a residual interaction relative to a HF mean field

single-particle energies: from Skyrme-HF

D. Negrea and N. S, Phys Rev C90,024322 (2014)

Wigner energy from HF+QCM

Symmetry energy from HF+QCM

$$E(N,Z) = E(N=Z) + \frac{T_z(T_z + X)}{2\Theta}$$

Isovector and isoscalar (J=1) pairing: quartet model

collective quartets

$$Q_{\nu}^{+(iv)} = \sum_{i,j} x_{ij}^{(\nu)} [P_i^+ P_j^+]^{T=0} \qquad \qquad Q_{\nu}^{+(is)} = \sum_{ij,kl} y_{ij,kl}^{(\nu)} [D_{ij}^+ D_{kl}^+]^{J=0}$$

generalised quartet

$$Q_{\nu}^{+} = Q_{\nu}^{+(iv)} + Q_{\nu}^{+(is)}$$

ground state

$$|QM\rangle = \prod_{\nu=1}^{N_Q} Q_{\nu}^{\dagger} |0\rangle.$$

superposition of T=0 and T=1 quartets

$$|is\rangle = \prod_{\nu=1}^{N_Q} Q_{\nu}^{\dagger(is)} |0\rangle$$
 $|iv\rangle = \prod_{\nu=1}^{N_Q} Q_{\nu}^{\dagger(iv)} |0\rangle$

Isovector and isoscalar (J=1) pairing: accuracy of QM

$$H = \sum \varepsilon_i N_i + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{\tau} P_{i\tau}^{+} P_{j\tau} + \sum_{ij} V_{J=1}^{T=0}(i,j) \sum_{\sigma} D_{i\sigma}^{+} D_{j\sigma}$$

 $|QM\rangle == Q_1^+ Q_2^+ ... Q_{n_q}^+ |-\rangle \qquad |QM(lo)\rangle == Q^+ |QCM(n_q - 1)\rangle$

	N_Q	exact	QM	QM(l.o.)	I <qmiqm(i.o.)>I</qmiqm(i.o.)>
24 Mg	2	-28.694	-28.626 (0.24%)	-28.592 (0.35%)	0.9993
²⁸ Si	3	-35.600	-35.396 (0.57%)	-35.307 (0.82%)	0.9980
³² S	4	-38.965	-38.865 (0.25%)	-38.668 (0.76%)	0.9942
⁴⁸ Cr	2	-11.649	-11.624 (0.21%)	-11.614 (0.30%)	0.9996
52 Fe	3	-13.887	-13.823 (0.46%)	-13.804 (0.60%)	0.9994
¹⁰⁸ Xe	2	-5.505	-5.495 (0.18%)	-5.490 (0.27%)	0.9995
112 Ba	3	-7.059	-7.035 (0.34%)	-7.025 (0.48%)	0.9987

M. Sambataro, N.S. and C.W.Johnson, in preparation

Isovector versus isoscalar pairing correlations

$$\begin{split} H &= \sum \varepsilon_{i} N_{i} + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{\tau} P_{i\tau}^{+} P_{j\tau} + \sum_{ij} V_{J=1}^{T=0}(i,j) \sum_{\sigma} D_{i\sigma}^{+} D_{j\sigma} \\ &| QM \rangle = = Q_{1}^{+} Q_{2}^{+} \dots Q_{N_{q}}^{+} |-\rangle \qquad Q_{\nu}^{+} = Q_{\nu}^{+(iv)} + Q_{\nu}^{+(is)} \\ &| is \rangle = \prod_{\nu=1}^{N_{Q}} Q_{\nu}^{+(is)} |0\rangle \qquad |iv\rangle = \prod_{\nu=1}^{N_{Q}} Q_{\nu}^{\dagger(iv)} |0\rangle \end{split}$$

	QM	iv	is	< QM iv >	< QM is >	< iv is >
20 Ne	15.985	14.402 (9.9%)	15.130 (5.35%)	0.884	0.953	0.843
^{24}Mg	28.625	23.269 (18.71%)	26.925 (5.94%)	0.650	0.910	0.336
$^{28}\mathrm{Si}$	35.386	28.896 (18.34%)	33.377 (5.68%)	0.590	0.910	0.341
^{32}S	38.844	33.958 (12.58%)	37.881 (2.48%)	0.640	0.974	0.587
⁴⁴ Ti	7.02	6.27 (10.6%)	4.92 (30%)	0.90	0.68	0.3
⁴⁸ Cr	11.624	10.59~(8.9%)	7.38 (36.5%)	0.906	0.497	0.22
52 Fe	13.823	12.814 (7.3%)	9.98 (27.83%)	0.927	0.753	0.74
$^{104}\mathrm{Te}$	3.147	$3.041 \ (3.37\%)$	1.549~(50.78%)	0.978	0.489	0.314
¹⁰⁸ Xe	5.495	5.240~(4.64%)	2.627 (52.19%)	0.958	0.354	0.234
^{112}Ba	7.035	6.614 (5.98%)	4.466 (36.52%)	0.939	0.375	0.376

isoscalar and isovector pairing *always* coexist together

isoscalar pairing is suppresed by spin-orbit

Summary and Conclusions

Main message: isovector and isoscalar pairing are accurately described by alpha-like quartets, not by Cooper pairs

Isovector pairing in the quartet formalism

- isovector pairing gives a significant contribution to Wigner energy
- isovector proton-neutron pairing and the quartet structure persist far from N=Z line

Isoscalar-isovector pairing in the quartet formalism

- isoscalar and isovector pairing always coexist in the ground state of N=Z nuclei
- J=1 pairing has an important contribution in sd-shell nuclei and is strongly supressed in pf-shell nuclei