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Extreme Light Infrastructure (ELI):

the future laser facility @ Bucharest-Măgurele

ELI will afford new investigations in particle physics, nuclear physics, 

gravitational physics, nonlinear field theory, ultrahigh-pressure physics, 

astrophysics and cosmology (generating intensities exceeding 10²³ W/cm²).
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Heavy nuclei were created in

supernovae explosions



Most of nuclei are unstable

by decaying through various nodes

induced by strong interaction:

proton emission

two-proton emission

neutron emission

α-decay

cluster decay (C,O, Ne, Mg, Si)

binary & ternary fission



I. Basic laws in alpha-decay

� H. Geiger and J.M. Nuttall "The ranges of the α particles from 

various radioactive substances and a relation between range and period 

of transformation," Philosophical Magazine, Series 6, vol. 22, no. 130, 

613-621 (1911). 

� H. Geiger and J.M. Nuttall "The ranges of α particles from 

uranium," Philosophical Magazine, Series 6, vol. 23, no. 135, 439-445 

(1912).
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A. Geiger-Nuttall law for half lives



George Gamow in 1909,

two years before

the discovery of the G-N law

. and in 1930,

two years after 

his explanation



G. Gamow "Zur Quantentheorie des Atomkernes" (On the quantum theory of 

the atomic nucleus), Zeitschrift für Physik, vol. 51, 204-212 (1928).

The first probabilistic interpretation

of the wave function
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External  wave function describes

a decaying state
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External radial wave function

is called Gamow state
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Its radial part is an outgoing

spherical Coulomb wave



Internal radial wave function

is a narrow resonace
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It is “almost bound” by the external

Coulomb potential and it can be 

normalized to unity

in the internal region
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Scattering amplitude

is given by 

the matching condition:



Decay width is the flux

of outgoing particles
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because both functions satisfy 

the same Schrödinger equation
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Decay width

can be rewritten
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Geiger-Nuttall law

is given by the penetrability
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Geiger-Nuttal law supposes

a constant reduced width



Geiger-Nuttall law for α-decay

gives several parallel lines corresponding

to various isotope chains
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Viola-Seaborg graph

reduces parallel lines to a single linear dependence
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Geiger-Nuttall law can be generalized

for cluster-decays
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B. The law for reduced widths

D.S. Delion

Universal decay rule for reduced widths

Physical Review C80 (2009) 024310



Evidences for surface alpha-clustering
I. Two-center shell model

predicts a pocket-like potential

Double folding potential

Two-center potential



II. Phase diagram for deuteron

and α-particle

G. Ropke, A. Schnell,

P. Schuck, P. Nozieres

Four-particle condensate

in strongly coupled

fermion systems

Phys. Rev. Lett. 80,

3177 (1998).

Pairing survives at the

equilibrium density ρ0

and α-quarteting collapses

at about 10% ρ0 , i.e.

an α-particle can exist only

beyond the nuclear surface
|

ρ0



Conclusion: cluster-daughter interaction

should be pocket-like on the nuclear surface:

α-particle is hindered inside by the Pauli principle
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Conditions for an α-particle moving

in a shifted harmonic oscillator potential
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where the oscillator parameter is

1) The first eigenstate

energy is the Q-value

2) Its wave function is given by



Consequence:

Harmonic oscillator parameter

depends linearly on the fragmentation potential

QRVV

VRR

BCoulfrag

fragB

−=

+=−

)(

1
2

)( 2

0 ω
β

h

where the fragmentation potential is defined as



Reduced width depends linearly

on the fragmentation potential
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Reduced width  for α-decay

from even-even nuclei
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The law for reduced width is valid

for all transitions between ground states
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The law for reduced width 

remains valid for cluster decays
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II. Microscopic approach
How the emitted cluster is formed from protons and 

neutrons lying in different major shells ?

?

?

??

?

?

?

?

?



The first microscopic estimates of the α-particle

formation amplitude were performed in:

H. J. Mang, Phys. Rev. 119, 1069 (1960).

A. Sandulescu, Nucl. Phys. A 37, 332 (1962).

Microscopic estimate of the formation amplitude

αψ+Ψ→Ψ DP



Woods-Saxon mean field plus pairing approach

predicts an α-formation amplitude peaked on surface
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Decay width versus cm radius

for N=12 major shells in the diagonalization basis

underestimates the exp. value by two orders of magnitude

Penetrability

Decay width
underestimates

exp. value by 

two orders of

magnitude

Reduced width 2



How to increase the tail of

the α-particle formation  amplitude?

A. By keeping single particle (sp) mean field and

changing the diagonalization sp basis.

D.S. Delion, A. Insolia, R.J. Liotta,

New single particle basis for microscopic description of decay processes,

Physical Review C54, 292 (1996).

D.S. Delion and R.J. Liotta,

Shell-model representation to describe alpha emission

Physical Review C87, 041302(R) (2013).

B. By keeping the diagonalization sp basis and

increasing p-n correlations.



A. Woods-Saxon mean field diagonalized

within the two-harmonic oscillator basis
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Last major shells with smaller ho parameter β2

have the most important contribution

N=6 major shells, f=1

N=9 major shells, f=1

N=6 major shells, f=1

+3 major shells, f=0.2



Important observation:

matching condition between logarithmic derivatives 

of the Coulomb wave  and formation amplitude

where Coulomb wave is

and formation amplitude is

approximated by a Gaussian

centered on nuclear surface



leads to a linear dependence between the α-particle

harmonic oscillator parameter and fragmentation potential
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Thus, sp parameter β2=β/4

should depend linearly upon

the fragmentation potential

and therefore the standard

sp mean field cannot describe

the α-decay phenomenon



B. Woods-Saxon mean field

plus a Gaussian surface component simulating

p-n clustering correlations



Proton and neutron formation probabilities

with cluster component (a)

and without cluster component (b)

Cluster component

increases the p-n overlap

by creating p & n orbitals

with the same principal

quantum number.

Thus, the effective p-n

correlation increases.



Decay width with cluster component (a)

and without cluster component (b)





III. α-decay spectroscopy

0+
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4+

2+

0+

Parent Daughter +    α

Transitions to the ground band

in even-even nuclei



Viola-Seaborg graph for α-decays

to excited states in even-even nuclei
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Favored transitions in odd-mass nuclei:

sp state does not change during transition
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Viola-Seaborg graph for favored α-decays

to excited states in odd-mass nuclei
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Unfavored transitions in odd-mass nuclei:

sp state changes during transition



Viola-Seaborg graph for unfavored α-decays

to excited states in odd-mass nuclei
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Observables
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Universal law for hindrance factors
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Ratio P0/PJ weakly depends upon energy

and therefore the universal rule for intensities 

is similar to the rule for HF’s
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Universal law for intensities

in even-even nuclei
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Universal law for intensities

in odd-mass nuclei for unfavored transitions
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IV. Coupled channels description

of α-transitions

Schrodinger equation describing α-decay

has a Hamiltonian containing the sum of

kinetic, daughter and α-daughter terms:

R is the distance between α-particle and daughter nucleus

b2 is the quadrupole coordinate describing core excitations



α-transitions in even-even nuclei



α-daughter potential

Spherical term is given by the double folding attraction

plus quadratic repulsion (simulating Pauli principle) terms

Quadrupole term is given by QQ interaction

between daughter nucleus and α-particle



Double folding plus repulsion

(simulating Pauli principle) potentials

Repulsive strength c

is related to the depth

of the potential v0.

The radial parameters

Rm and Rmin are fixed 

by matching repulsion 

to the double-folding 

potential.

By fixing the repulsive

strength we use the 

depth of the potential 

to adjust the resonant

energy to the Q-value.



Wave function for even-even nuclei

has the total angular momentum = 0

which is conserved during transition

and it is given by superposition of terms

with different angular momenta

where the first factor in the wave function

of the daughter wave function (“ground band” for most cases)

and the second one the α-particle angular wave function.

b2 is the quadrupole coordinate describing core excitations



α-transitions in odd-mass nuclei



Wave function of an odd mass nucleus

has the angular momentum I

which is conserved during transition
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The diagonalisation basis is much larger

than in the case of even-even nuclei!



The use of quadrupole boson coherent states 

to describe low-lying states in daughter nuclei

where the deformation parameter is proportional

to the standard quadrupole deformation

A coherent state describes an axially deformed

even-even nucleus in the intrinsic system of coordinates



Coherent State Model (CSM)

Ground state band in even-even nuclei is obtained

by projecting out the intrinsic coherent state

where

A.A. Raduta and R.M. Dreizler, Nucl. Phys. A258, 109 (1976)



Energy versus deformation parameter d

has a vibrational shape for small d 

and rotational behavior for large d



Deformation parameter fitting exp. energies versus

(a) standard quadrupole deformation

(b) Casten parameter



Energy ratios versus the CSM deformation 

parameter are universal functions



Effective charge versus the

CSM deformation parameter



Fundamental outgoing resonant states

for a deformed nucleus

In the internal region

asymptotics at small distances is regular:

In the external region 

asymptotics at large distances is given

by Gamow (Coulomb-Hankel) outgoing waves:



General solution is given by the superposition 

of fundamental outgoing resonances

Matching between internal and external solutions

at some radius R1

and their derivatives

leads to:



Resonant states are normalized in the internal region:

The secular equation for 

outgoing resonant states

because the regular waves are much smaller

than the regular ones  inside the barrier.



Channel decay widths

By using continuity equation one obtains 

total decay width as a sum of partial widths:

where channel velocity is given by:



Channel intensities

define the strength of α-transitions

to some excited state with spin J

The only free parameter is the α-daughter coupling strength

which can be determined by the I2 value for each transition



α-daughter coupling strength reproducing I2 versus

deformation parameter (a)

and mass number (b)

confirms the

CSM prediction:



α-daughter coupling strength

is proportional to the reduced width squared

Coupling strength

is proportional

to the α-clustering

probability (reduced

width squared)



α-daughter coupling strength versus 

the difference N-Nmagic

α-clustering is stronger above magic nuclei

Nmagic = 126, N>126

=  82, N<126

The largest α-clustering is

above the double magic 208Pb



α-transition intensities versus

decay label in the table of α-emitters



Hindrance factors



IV. Surface α-clustering in 212Po

Positive parity states 2+, 4+, 6+, 8+

are given by neutron broken pairs

Negative parity states 4-, 6-, 8-

are given by neutron broken pairs

coupled to an octupole state

D.S. Delion, R.J. Liotta, P. Schuck, A. Astier, and M.-G. Porquet

Phys. Rev. C85, 064306 (2012)



Single particle basis contains two components.

It is similar to the method B to compute α-decay widths

where the cluster component is given

by a Gaussian centered on the nuclear surface

containing components with larger 

principal quantum number N~8,9,10



Transition operator is proportional

to the principal quantum number

Surface clustering states

have large values

of the ang. momentum

and N > 8

Bound states

have low values

of the ang. momentum

and N < 8



Surface α-clustering term with the amplitude ≈ 0.3 

explains large electromagnetic transitions in 212Po

B(E2:J+2����J)-values

B(E1:I-����J+)-values



Surface α-clustering in 212Po

explains decay width between ground states

Formation probability

versus cm radius

(a): total

(b): cluster component

Log (width / exp. )

versus cm radius

The same cluster

amplitude ≈ 0.3 explains

B(Eλ) values and

absolute α-decay width



V. Probing shape coexistence

by α-decay to excited 02
+ states

J. Wauters et al., Phys. Rev. Lett. 72, 1329 (1994)



Pairing vibrations in Pb isotopes



02
+ states are described as 2p-2h excitations

across the magic shell Z=82

In addition we use a proton-neutron interaction



α-decay to excited 0+ states

in superfluid nuclei
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Spectroscopic factor versus the quadrupole deformation

in daughter nucleus for a realistic BCS overlap (solid line)

and BCS overlap=1 (dashed line)



Shape coexistence

Wave function is a superposition of BCS wave functions

corresponding the two minima

Normalisation condition:



α transition operator

Theoretical HF between BCS states

Experimental HF between superposed states



Results

The 0+ state are strongly mixed, 

giving a  large shape coexistence



VII. Conclusions

1) A pocket-like α-daughter interaction leads to

an universal law for reduced widths versus the fragmentation potential

and hindrance factors versus the excitation energy.

2) Absolute decay widths can be described by using a mixed ho basis,

or a mean field with an additional pocket-like interaction.

3) CSM describes α-transitions to excited states in even-even nuclei

predicting a linear dependence of the α-daughter QQ strengths

on the deformation parameter d.

4) The α-daughter strength is proportional to reduced width squared

and has the largest value in the region above 208Pb, where

the α-clustering explains large B(Eλ) values in 212Po.

5) HF for transitions to excited 0+ states strongly depends upon the

difference between deformations of parent and daughter nuclei.

6) Exp. HF’s predict a strong shape coexistence in Hg isotopes.
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