▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Development of new Monte Carlo methods for reactor physics applications

# NORDITA

#### Jan Dufek

#### Nuclear Reactor Technology Division Department of Physics, School of Engineering Sciences, KTH

October 7, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Outline

# 1 STORM in MC criticality calculations

2 Governing equations for MC burnup simulations

## 3 Numerical instability of some MC burnup codes

- Explicit Euler
- Predictor-Corrector
- Mid-point method

## 4 SIE-based MC burnup coupling scheme

・ロト ・聞ト ・ヨト ・ヨト

#### STORM in MC criticality calculations



# STORM in MC reactor physics calculations

#### The goal

Improving the efficiency of MC criticality calculations.

#### Problem

- The neutron batch size (the number of neutrons per cycle) affects the efficiency, due to two effects:
  - presence of bias (large bias when batch size is small)
  - speed of convergence (faster convergence when batch size is small)
- To achieve the best efficiency, the batch size must be optimised to balance the two effects.

SIE scheme

# STORM in MC reactor physics calculations



# STORM in MC reactor physics calculations

#### Example of source convergence



# STORM in MC reactor physics calculations

Origin of errors in the cumulative fission source

- Statistical errors
- Bias
- Error coming from initial fiss. source (from the first cycle)

Two new methods of estimating the error in the cumulative fission source

- Estimation via evaluating the difference between the fission source and the fundamental-mode eigenvector of the fission matrix (published in ANE).
- Simplified model suggested (next slide).

SIE scheme

# STORM in MC reactor physics calculations

Simplified model of the error in the cumulative fission source

$$\hat{\varepsilon} = \frac{m\varepsilon_0}{h} \left( 1 - \frac{k_1}{k_0} \right)^{-1} + \frac{1}{m} + \frac{1}{\sqrt{h}}$$
(1)

where

- *m* is the batch size
- $\varepsilon_0$  is the error in the initial source
- $\bullet$  h is the total number of neutrons to be simulated
- $\frac{k_1}{k_0}$  is the dominance ratio

SIE scheme

# STORM in MC reactor physics calculations

# The computing efficiency (figure of merit) ${\rm FOM} = \frac{1}{\hat{\varepsilon}^2 h}$

Optimising the batch size for best computing efficiency

$$\frac{\partial(\hat{\varepsilon}^2 h)}{\partial m} = 0.$$
 (2)

$$\implies m_{opt} = \sqrt{\frac{h}{\varepsilon_0} \left(1 - \frac{k_1}{k_0}\right)} \tag{3}$$

SIE scheme

# STORM in MC reactor physics calculations

#### Numerical test results



 $) \land \bigcirc$ 

#### Governing equations for MC burnup simulations



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

# Governing equations

#### Quantities of interest

- $\vec{N}(\vec{r},t)$  ... nuclide field
- $\phi(\vec{r},E,t)$  ... neutron flux

The purpose of the Monte Carlo burnup calculations is to determine as to how these fields change during the fuel cycle.

#### Governing equations

This problem can be described by two **coupled** equations:

- burnup equation ... determines the nuclide field changes,
- criticality equation ... gives the neutron flux.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Governing equations

#### Burnup equation

The concentration of the fuel isotopes is described by the burnup equation

$$\frac{d\vec{N}(\vec{r},t)}{dt} = \mathbb{M}(\phi,T)\vec{N}(\vec{r},t),\tag{4}$$

where

$$\mathbb{M}[\phi(\vec{r}, E, t), T(\vec{r}, t)] = \int_0^\infty \phi(\vec{r}, E, t) \mathbb{X}(T) \mathrm{d}E + \mathbb{D}, \qquad (5)$$

where  $\mathbb{X}(T)$  is a temperature dependant cross-section and yield matrix, and  $\mathbb D$  is a decay matrix.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

## Governing equations

#### Formal solution of the burnup equation

The burnup equation has a formal solution

$$\vec{N}(\vec{r},t) = \exp[\mathbb{M}(\phi,T)(t-t_0)]\vec{N}|_{t_0}(\vec{r})$$
 (6)

for  $\phi$  fixed in time.

# Governing equations

#### Criticality equation

$$B(\vec{N},T)\phi \equiv [L(\vec{N},T) - \frac{1}{k}F(\vec{N},T)]\phi = 0,$$
(7)

#### where

- $L\phi$  represents the migration and loss of neutrons from  $(\vec{r},\vec{\Omega},E)$ ,
- $F\phi$  accounts for neutron production in  $(\vec{r},\vec{\Omega},E)$  due to fission

#### Formal solution

The criticality equation has many solutions. Let's denote the fundamental solution computed by the MC criticality code as  $\phi_B$ 

#### Numerical stability of existing MC burnup codes



# Common coupling schemes in MC burnup codes

#### Common coupling schemes

As the burnup equation is an ODE, the coupling schemes are derived from ODE numerical methods, such as:

- Explicit Euler (Beginning-of-step constant flux approximation)
- Predictor-Corrector
- Mid-point method

# Explicit Euler

# The beginning-of-step constant flux approximation coupling scheme (MCB, SERPENT)

- 1: input:  $\vec{N}_0$
- 2: for  $i \leftarrow 0, 1, \dots$  do

3: 
$$\phi_i \leftarrow \phi_B(\vec{N}_i)$$

4: 
$$\vec{N}_{i+1} \leftarrow \exp[\mathbb{M}(\phi_i)\Delta t_i]\vec{N}_i$$

5: end for

# Explicit Euler





# Explicit Euler



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Predictor-Corrector

## The predictor-corrector scheme (MCODE, SERPENT)

input: 
$$\vec{N_0}$$
  
for  $i \leftarrow 0, 1, \dots$  do  
 $\phi_i \leftarrow \phi_B(\vec{N_i})$   
 $\vec{N_{i+1}^{(P)}} \leftarrow \exp[\mathbb{M}(\phi_i)\Delta t_i]\vec{N_i}$   
 $\phi_{i+1}^{(P)} \leftarrow \phi_B(\vec{N_{i+1}^{(P)}})$   
 $\bar{\phi}_i^{(C)} \leftarrow (\phi_i + \phi_{i+1}^{(P)})/2$   
 $\vec{N_{i+1}} \leftarrow \exp[\mathbb{M}(\bar{\phi}_i^{(C)})\Delta t_i]\vec{N}$   
end for

# Predictor-Corrector



# Predictor-Corrector



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Mid-point method

# The middle-of-step constant flux approximation (MONTEBURNS, MCNPX)

1: input: 
$$\vec{N_0}$$
  
2: for  $i \leftarrow 0, 1, ...$  do  
3:  $\phi_i \leftarrow \phi_B(\vec{N_i})$   
4:  $\vec{N_{i+1/2}} \leftarrow \exp[\mathbb{M}(\phi_i)\Delta t_i/2]\vec{N_i}$   
5:  $\phi_{i+1/2} \leftarrow \phi_B(\vec{N_{i+1/2}})$   
6:  $\vec{N_{i+1}} \leftarrow \exp[\mathbb{M}(\phi_{i+1/2})\Delta t_i]\vec{N_i}$   
7: end for

# Mid-point method





# Mid-point method



<ロ> <部> < き> < き> < き> こま のの

) < (~

(日) (同) (日) (日)

# Stochastic Implicit Euler (SIE) based coupling scheme for MC burnup calculations



# Derivation of the SIE-based coupling scheme

#### Notes

- All previously shown schemes are based on so-called conditionally stable ODE methods.
- We choose to employ a stable method the simplest one is the implicit Euler.
- In terms of MC burnup calculations, the implicit Euler method depletes the fuel with the end-of-step neutron flux over the whole time step.
- The problem now is to get the end-of-step flux.

# Derivation of the SIE-based coupling scheme

#### Getting the end-of-step flux

Let  $\vec{N_i}$  and  $\phi_i$  denote the nuclide field and neutron flux at the end of  $i^{\mathrm{th}}$  time step, respectively. When  $\vec{N_{i-1}}$  is depleted with the end-of-step flux  $\phi_i$  over the  $i^{\mathrm{th}}$  time step then  $\vec{N_i}$  equals

$$\vec{N}_i = \exp[\mathbb{M}(\phi_i, T)(t_i - t_{i-1})]\vec{N}_{i-1},$$
(8)

while  $\phi_i$  is given by

$$\phi_i = \phi_B(\vec{N}_i). \tag{9}$$

Substituting  $N_i$  from Eq. (8) into Eq. (9) forms a non-linear equation for  $\phi_i$ ,

$$\boldsymbol{\phi_i} = \phi_B \left( \vec{N}_{i-1} \exp[\mathbb{M}(\boldsymbol{\phi_i}, T)(t_i - t_{i-1})] \right)$$
(10)

that can be efficiently solved by the relaxation scheme with the Robbins–Monro algorithm.

# SIE-based coupling scheme for MC burnup calculations

SIE-based coupling scheme (with relaxation of flux)

1: input:  $\dot{N}_0$ 2:  $\phi_0 \leftarrow \text{fundamental mode of } B(\vec{N}_0)$ 3: for  $i \leftarrow 0, 1, ...$  do 4:  $\vec{N}_{i+1}^{(0)} \leftarrow \exp[\mathbb{M}(\phi_i)\Delta t]\vec{N}_i$ 5: for  $n \leftarrow 1, 2, \ldots, c$  do  $\phi_{i+1}^{(n)} \leftarrow \phi_B(\vec{N}_{i+1}^{(n-1)})$ 6:  $\bar{\phi}_{i+1}^{(n)} \leftarrow \sum_{j=1}^{n} \phi_{i+1}^{(j)} / n$ 7:  $\vec{N}_{i+1}^{(n)} \leftarrow \exp[\mathbb{M}(\bar{\phi}_{i+1}^{(n)})\Delta t]\vec{N}_i$ 8: end for 9:  $\vec{N}_{i+1} \leftarrow \vec{N}_{i+1}^{(c)}$ 10:  $\phi_{i+1} \leftarrow \bar{\phi}_{i+1}^{(c)}$ 11: 12: end for

# SIE-based coupling scheme for MC burnup calculations

#### SIE-based coupling scheme (with relaxation of nuclide field)

1: input:  $\vec{N}_0$ 2:  $\phi_0 \leftarrow \phi_B(\vec{N}_0)$ 3: for  $i \leftarrow 0, 1, \ldots$  do 4:  $\vec{N}_{i+1}^{(0)} \leftarrow \vec{N}_i \exp[\mathbb{M}(\phi_i)\Delta t]$ 5: for  $n \leftarrow 1, 2, \ldots, c$  do  $\phi_{i+1}^{(n)} \leftarrow \phi_B\left(\bar{\vec{N}}_{i+1}^{(n-1)}\right)$ 6:  $\vec{N}_{i+1}^{(n)} \leftarrow \exp[\mathbb{M}(\phi_{i+1}^{(n)})\Delta t]\vec{N}_i$ 7:  $\bar{\vec{N}}_{i+1}^{(n)} \leftarrow \sum_{i=1}^{n} \vec{N}_{i+1}^{(j)} / n$ 8: 9: end for 10:  $\vec{N}_{i+1} \leftarrow \bar{\vec{N}}_{i+1}^{(c)}$  $\phi_{i+1} \leftarrow \sum_{i=1}^{c} \phi_{i+1}^{(j)} / c$ 11: 12: end for









