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STORM in MC criticality calculations
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STORM in MC reactor physics calculations

The goal

Improving the efficiency of MC criticality calculations.

Problem

The neutron batch size (the number of neutrons per cycle)
affects the efficiency, due to two effects:

presence of bias (large bias when batch size is small)
speed of convergence (faster convergence when batch size is
small)

To achieve the best efficiency, the batch size must be
optimised to balance the two effects.
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STORM in MC reactor physics calculations

Example of bias in the cumulative fission source
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STORM in MC reactor physics calculations

Example of source convergence
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STORM in MC reactor physics calculations

Origin of errors in the cumulative fission source

Statistical errors

Bias

Error coming from initial fiss. source (from the first cycle)

Two new methods of estimating the error in the cumulative fission
source

Estimation via evaluating the difference between the fission
source and the fundamental-mode eigenvector of the fission
matrix (published in ANE).

Simplified model suggested (next slide).
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STORM in MC reactor physics calculations

Simplified model of the error in the cumulative fission source

ε̂ =
mε0
h

(
1− k1

k0

)−1
+

1

m
+

1√
h

(1)

where

m is the batch size

ε0 is the error in the initial source

h is the total number of neutrons to be simulated
k1
k0

is the dominance ratio
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STORM in MC reactor physics calculations

The computing efficiency (figure of merit)

FOM =
1

ε̂2h

Optimising the batch size for best computing efficiency

∂(ε̂2h)

∂m
= 0 . (2)

=⇒ mopt =

√
h

ε0

(
1− k1

k0

)
(3)
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STORM in MC reactor physics calculations

Numerical test results
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Governing equations for MC burnup simulations
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Governing equations

Quantities of interest

~N(~r, t) ... nuclide field

φ(~r,E, t) ... neutron flux

The purpose of the Monte Carlo burnup calculations is to
determine as to how these fields change during the fuel cycle.

Governing equations

This problem can be described by two coupled equations:

burnup equation ... determines the nuclide field changes,

criticality equation ... gives the neutron flux.
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Governing equations

Burnup equation

The concentration of the fuel isotopes is described by the burnup
equation

d ~N(~r, t)

dt
= M(φ, T ) ~N(~r, t), (4)

where

M[φ(~r,E, t), T (~r, t)] =

∫ ∞
0

φ(~r,E, t)X(T )dE + D, (5)

where X(T ) is a temperature dependant cross-section and yield
matrix, and D is a decay matrix.
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Governing equations

Formal solution of the burnup equation

The burnup equation has a formal solution

~N(~r, t) = exp[M(φ, T )(t− t0)] ~N |t0(~r) (6)

for φ fixed in time.
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Governing equations

Criticality equation

B( ~N, T )φ ≡ [L( ~N, T )− 1

k
F ( ~N, T )]φ = 0, (7)

where

Lφ represents the migration and loss of neutrons from
(~r, ~Ω, E),

Fφ accounts for neutron production in (~r, ~Ω, E) due to fission

Formal solution

The criticality equation has many solutions. Let’s denote the
fundamental solution computed by the MC criticality code as φB
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Numerical stability of existing MC burnup codes
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Common coupling schemes in MC burnup codes

Common coupling schemes

As the burnup equation is an ODE, the coupling schemes are
derived from ODE numerical methods, such as:

Explicit Euler (Beginning-of-step constant flux approximation)

Predictor-Corrector

Mid-point method
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Explicit Euler

The beginning-of-step constant flux approximation coupling
scheme (MCB, SERPENT)

1: input: ~N0

2: for i← 0, 1, . . . do
3: φi ← φB( ~Ni)
4: ~Ni+1 ← exp[M(φi)∆ti] ~Ni

5: end for
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Explicit Euler

Results: stability test using a slab model (∆t = 7d)
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Explicit Euler

MCB calculation of fuel rod (with axial reflectors) (∆t = 3d)
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Predictor-Corrector

The predictor-corrector scheme (MCODE, SERPENT)

input: ~N0

for i← 0, 1, . . . do
φi ← φB( ~Ni)
~N
(P)
i+1 ← exp[M(φi)∆ti] ~Ni

φ
(P)
i+1 ← φB( ~N

(P)
i+1)

φ̄
(C)
i ← (φi + φ

(P)
i+1)/2

~Ni+1 ← exp[M(φ̄
(C)
i )∆ti] ~Ni

end for
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Predictor-Corrector

Stability test using a slab model (∆t = 7d)
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Predictor-Corrector

SERPENT calculation, fuel rod with axial reflectors (∆t = 30 day)
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Mid-point method

The middle-of-step constant flux approximation (MONTEBURNS,
MCNPX)

1: input: ~N0

2: for i← 0, 1, . . . do
3: φi ← φB( ~Ni)
4: ~Ni+1/2 ← exp[M(φi)∆ti/2] ~Ni

5: φi+1/2 ← φB( ~Ni+1/2)

6: ~Ni+1 ← exp[M(φi+1/2)∆ti] ~Ni

7: end for
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Mid-point method

Stability test using a slab model (∆t = 7d)
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Mid-point method

MCNPX calculation, fuel rod with axial reflectors (∆t = 4 d)
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Stochastic Implicit Euler (SIE) based coupling scheme
for MC burnup calculations



STORM Governing equations for MC burnup simulations Existing MC burnup codes SIE scheme

Derivation of the SIE-based coupling scheme

Notes

All previously shown schemes are based on so-called
conditionally stable ODE methods.

We choose to employ a stable method - the simplest one is
the implicit Euler.

In terms of MC burnup calculations, the implicit Euler method
depletes the fuel with the end-of-step neutron flux over the
whole time step.

The problem now is to get the end-of-step flux.
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Derivation of the SIE-based coupling scheme

Getting the end-of-step flux

Let ~Ni and φi denote the nuclide field and neutron flux at the end
of ith time step, respectively. When ~Ni−1 is depleted with the
end-of-step flux φi over the ith time step then ~Ni equals

~Ni = exp[M(φi, T )(ti − ti−1)] ~Ni−1, (8)

while φi is given by
φi = φB( ~Ni). (9)

Substituting Ni from Eq. (8) into Eq. (9) forms a non-linear
equation for φi,

φi = φB
(
~Ni−1 exp[M(φi, T )(ti − ti−1)]

)
(10)

that can be efficiently solved by the relaxation scheme with the
Robbins–Monro algorithm.
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SIE-based coupling scheme for MC burnup calculations

SIE-based coupling scheme (with relaxation of flux)

1: input: ~N0

2: φ0 ← fundamental mode of B( ~N0)
3: for i← 0, 1, . . . do

4: ~N
(0)
i+1 ← exp[M(φi)∆t] ~Ni

5: for n← 1, 2, . . . , c do

6: φ
(n)
i+1 ← φB( ~N

(n−1)
i+1 )

7: φ̄
(n)
i+1 ←

∑n
j=1 φ

(j)
i+1/n

8: ~N
(n)
i+1 ← exp[M(φ̄

(n)
i+1)∆t] ~Ni

9: end for
10: ~Ni+1 ← ~N

(c)
i+1

11: φi+1 ← φ̄
(c)
i+1

12: end for
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SIE-based coupling scheme for MC burnup calculations

SIE-based coupling scheme (with relaxation of nuclide field)

1: input: ~N0

2: φ0 ← φB( ~N0)
3: for i← 0, 1, . . . do

4: ~̄N
(0)
i+1 ← ~Ni exp[M(φi)∆t]

5: for n← 1, 2, . . . , c do

6: φ
(n)
i+1 ← φB

(
~̄N
(n−1)
i+1

)
7: ~N

(n)
i+1 ← exp[M(φ

(n)
i+1)∆t] ~Ni

8: ~̄N
(n)
i+1 ←

∑n
j=1

~N
(j)
i+1/n

9: end for
10: ~Ni+1 ← ~̄N

(c)
i+1

11: φi+1 ←
∑c

j=1 φ
(j)
i+1/c

12: end for
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SIE-based coupling scheme for MC burnup calculations

Stability test using a slab model (∆t = 7d, 10 inner steps)
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SIE-based coupling scheme for MC burnup calculations

Stability test using a slab model (∆t = 30d, 10 inner steps)
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SIE-based coupling scheme for MC burnup calculations

Stability test using a slab model (∆t = 90d, 10 inner steps)
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SIE-based coupling scheme for MC burnup calculations

Stability test using a slab MC model (∆t = 90d, 10 inner steps)
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