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Ĥ  =  -t ĉ!rσ
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The half-filled Hubbard model 
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Fermionic atoms loaded in optical lattices 
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Antiferromagnetic order 

The half-filled Hubbard model 
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Tunnel coupling 

No tunnelling 
(Pauli principle) 

 

!̂
S!0 ⋅
!̂
S!r ∝ −1( )x+y = cos π x +π y( )

 
S !q( ) = exp i!q.!r( )

!̂
S!0 ⋅
!̂
S!r

!r
∑  peaked at !q = π ,π( )
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The hole-doped Hubbard model 

 
Antiferromagnetism : 

!̂
S!r ∝ −1( )x+y !uz Spiral magnetism : 

and many others …. 

 
Stripes : 

!̂
S!r ∝ cos !qSDW ⋅ !r( ) !uz , n̂!r ∝ cos !qCDW ⋅ !r( )

 
d-wave superconductivity : ĉ!r ĉ!r+ !ux

= − ĉ!r ĉ!r+ !uy
≠ 0

 
Spin density waves : 

!̂
S!r ∝ cos !qSDW ⋅ !r( ) !uz

 

!̂
S!r ∝ cos !qSpiral ⋅

!r( ) !ux + sin !qSpiral ⋅
!r( ) !uy



Conventional variational approaches to the Hubbard model 
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FIG. 16: (Color online) Illustration of the pairing scheme
for d-SDW order. The left panel shows n(p) and the right
panel ∆n(p), the difference from the non-interacting solution.
The momentum distribution is actual numerical data from a
system of 36 × 36 with doping of 1/6 at U = 5.0. Electrons
are excited from the FS across the (−π,π)-direction to the
FS across the other direction (π,π), such that the FS along
the latter reaches the half-filling FS. This enables two groups
of pairings to maintain interference, with ∆q = ∆q′, to lower
the energy.

reach half-filling FS. The number of pairs that could par-
ticipate in the “interference” of the l-SDW is decreased,
because FS is no longer of the shape of a diamond. Even-
tually it becomes energetically more favorable to have the
FS be longer in one diagonal direction than the other, i.e.,
to break the four-fold rotational symmetry. As illustrated
in Fig. 16, it is then possible to create two different types
of pairing states along the two diagonal directions, such
that they share a common modulating wave-vector along
one diagonal direction: ∆q = ∆q′. The two groups of
pairs will achieve interference, similar to the case of l-
SDW. As in Sec. IV, the pairing vector is determined by
h, giving ∆q = (hπ, hπ). which gives rise to a SDW with
modulating wave along [11]-direction, and of wavelength
λd−SDW =

√
2/h. The corresponding wavelength for d-

CDW is 1/
√
2h. This is consistent with the numerical

results in Sec. III B.

V. DISCUSSION

We can now place our 2D results in the context of an
HF phase diagram for the Hubbard model. Our numer-
ical calculations have focused on small and intermediate
doping (h from 0 to ∼ 0.3), and small to moderate in-
teractions (U from 0 to ∼ 10), because of possible con-
nections with the many-body ground state at moderate
interacting strengths. The analytic calculations are for
small h and low U , where our pairing model captures the
physics in the HF framework. Our numerical results are
sufficiently detailed such that we could determine phase
boundaries by fitting the data.
At half-filling, the UHF solution is an AFM state.

Upon doping, there is a phase boundary Uc(h), shown
as the blue line in Fig. 17, below which is the PM phase.
Above Uc(h) is an AFM region where a rich set of sub-
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FIG. 17: (Color online) Phase diagram of the ground state of
the 2D Hubbard model from UHF. The phase boundaries are
determined by fitting our numerical results, and are meant
only as rough guidelines. Solid lines separate the antiferro-
magnetic (AFM) phase from the paramagnetic (PM) phase
and the ferromagnetic (FM) phase. Within the AFM phase,
the different regions include: l-SDW (SDW state with a lin-
ear modulation along [10]-direction); l-stripes (density satura-
tion to 1, with linear modulation along [10]-direction); d-SDW
(SDW state with a modulating along diagonal [11]-direction);
d-stripes (density saturation to 1, with diagonal modulation).
The black dotted line gives the theoretical estimate (Stoner
criterion) for the transition from the RHF solution (PM) to
FM.

regions exhibit different characters, including the l-SDW
states we have focused on in this work; we describe this
region in further detail below. Above the AFM phase
is an FM phase. Our numerical UHF calculations show
that the FM state has lower energy above the green solid
line. The RHF approach, naturally, predicts an earlier
transition to FM. This is the theoretical phase boundary
from Stoner criterion, and is shown as the black dotted
line. Recall that we have excluded spiral SDWs. As we
discussed, this is not the ground state at low U (see also
Refs. 14,18). But at large U , spiral orders can become
more favorable deep in the d-stripes region.
Between the PM and FM phases is the AFM phase. In

this region, at low and intermediate U , we see an l-SDW
state with a long wavelength modulation along the [10]-
direction; a weaker CDW accompanies the SDW. Near
half-filling, as U is increased the l-SDW state evolves
into a l-stripes state which shares the same characteristic
wave-vector as the l-SDW, but whose CD saturates to 1
in regions separated by “stripes” anchored by the nodal
positions defined by the SDW. The holes are localized
in these stripes. This is consistent with the observation
in Ref. 17 of SDW deforming into domain walls with in-
creasing U . The transition from delocalized holes (such
as the l-SDW state) to localized holes is denoted by the
red dashed line in Fig. 17. As we move further away from
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FIG. 9: (Color online) CD (top) and SD (bottom) along y-
direction vs. U . The system being studied is an 8x64 supercell
with doping of 1/32 at U = 1.0, 1.3, 1.5, 2.0, 4.0. Each curve
is a 1-D cut in which the linear wave propagates. Beyond
Uc, the l-CDW and l-SDW amplitudes increase with U and
the ground state ends up in linear stripes state. The CDW
amplitude is much weaker than that of the SDW.
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FIG. 10: (Color online) Maximum and minimum of CD and
SDW amplitude for 8× 64 supercell with doping of 1/16.

When U is further increased the solution changes orien-
tation, turning into a stripes state with modulation along
the [11]-direction, a diagonal stripes (d-stripes) state.
At somewhat larger doping (0.1 ! h ! 0.3), the

evolution of the l-SDW state with U is different. The
SDW state changes its modulation direction from the
[10]-direction to diagonal. (d-SDW has been discussed
in Ref. 17, for example.) Figure 11 shows an example
for doping of h = 1/6. We see that the modulating wave
changes direction from [10] at U = 4.0 to [11] at U = 5.0,
and the d-SDW saturates to become a d-stripes state at
U = 9.0.
We have scanned different parameter combinations to

y
U=4.0

12

24

36

x

y

12 24 36

12

24

36

U=5.0

x
12 24 36

U=9.0

 

 

0.5
0.6
0.7
0.8
0.9
1

x

 

 

12 24 36
−0.8
−0.4
0
0.4
0.8

FIG. 11: (Color online) Contour plots of CD (top) and SD
(bottom) vs. interacting strengths. The system being studied
is a 36× 36 supercell with doping of h = 1/6 at U = 4.0, 5.0
and 9.0 (from left to right), representing l-SDW, d-SDW and
d-stripes state respectively.

map out the sequence of the evolution of the UHF ground
state. In Sec. V, a phase diagram is sketched to summa-
rize the properties of the UHF ground state in the part
of the phase space on which we have focused. The differ-
ence in the pairing mechanism of the d-SDW state from
that of the l-SDW state is briefly discussed in Sec. IVD.

IV. ANALYTIC CALCULATIONS

In this section we present a phenomenological model
of the l-SDW state at low U and small h. The model
will help explain the numerical findings and provide a
simple physical picture that captures the basic features
of the exact UHF solutions in this parameter regime.
The numerical studies are independent of the analysis
here, but together they will give a more complete de-
scription of the UHF states. Below we first discuss the
basic pairing model11,24, then carry out calculations in
detail in the limit of small U and h for the l-SDW state,
which is the focus of the present work. Some quantita-
tive comparisons and validations of the pairing analysis
are then presented, using the numerical data from calcu-
lations presented in Sec. III A. We then briefly discuss
the mechanism for d-SDW and d-stripes orders at higher
U .

A. Pairing model

At low U , the region of interest in momentum space
is the immediate vicinity of the FS, where pairing effects
of electrons determine the nature of the UHF solution.
(Often the effect has been discussed in the context of
nesting. We refer to the mechanism as pairing since, al-
though nesting greatly facilitates pairing in the Hubbard
model, it is not required for the pairing mechanism to be

 ΦHF = ĉφ1

+ …ĉφN

+

ΦHF = Φ ↑ Φ ↓

U t

 
S!r

z( )

 n̂!r

J. Xu, C-C. Chang, E. J. Walter  
& S. Zhang, J. Phys. Cond. Matter  (2011) 

remain the same. For this reason, the magnetic phases are shown
as being the same as those of the usual 2D model.

The mean-field energy dispersion relation of the usual 2D
Hubbard model displays two bands. Electrons occupy the lowest
band until half-filling (n¼1) and then proceed to occupying the
higher band. As can be seen in Fig. 2h, the fermionic density
increases with the chemical potential until the phase separation
region is reached. In this region, the chemical potential is constant
despite any increase in the number of particles, up to half-filling.
At this point, any increase in n induces a jump in the value of μ,
equal to the energy separation between the two energy bands
(called the energy gap). As the plot in Fig. 2h only goes up to half-
filling, we see μ increasing smoothly until it reaches the phase
separation region, followed by a plateau and a jump at n¼1. In
both cases studied in this work, with the lattice divided into two
sublattices, the energy bands open a gap at quarter filling (n¼0.5),

as shown in Fig. 3f. Another gap appears at three quarter filling
(n¼0.75), but only the phases with nr1 are shown in Fig. 3b.
The plot in Fig. 3b is again the same as Fig. 3a, but using μ as the
basic variable. In this diagram, the green region corresponds to
n¼0.5, therefore only configuration (i) for the spiral and non-
spiral ferrimagnetic phases is present in the phase diagram. The
dashed line separates the ferrimagnetic region from the spiral
ferrimagnetic one and the thick solid lines denote again disconti-
nuities in n.

4. Conclusion

Having addressed the possibility of a spiral ferrimagnetic phase
in the mean-field phase diagram of the 2D Hubbard model, we
conclude that, for intermediate values of the interaction U and
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Fig. 2. (Color online) (a) Mean-field phase diagram for the usual 2D Hubbard model: The system displays antiferromagnetism (AF), ferromagnetism (F), paramagnetism (P) or
spiral phases (qa0; π). The antiferromagnetic state q!¼ ðπ; πÞ only occurs for n¼1 (half-filling). (b) (n,U) and (c) ðU; μÞ mean-field phase diagrams for the 2D Hubbard model,
allowing for phase separation (yellow region). (d) m, (e) qx, (f) qy, (g) EMF and (h) μ as functions of the doping n and Coulomb interaction U, for the 100$100 2D Hubbard model.
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 ΦHF = ĉφ1

+ …ĉφN

+

ΦHF = Φ ↑ Φ ↓

Full N-body 
 Hilbert space 

Two-body correlator to  
reduce double occupancy 

 P̂
Gutz.( )  ΦHF

 
exp η

2
n̂!r↑n̂!r↓!r

∑⎡
⎣⎢

⎤
⎦⎥

conducting energy calculated in the optimal doping on the
same system size.24)

This state is described by two sets of Q; the spin density is
spatially modulated as

mi ¼ mDfcos½Qs
1 # ðri % rBC0 Þ' þ cos½Qs

2 # ðri % rBC0 Þ'g

þ mVfcos½Qs
3 # ðri % rBC0 Þ' þ cos½Qs

4 # ðri % rBC0 Þ'g; ð7Þ

where mD and mV are the magnetizations of the spin-DC and
spin-VC states, respectively. The first and second terms on
the right-hand side of eq. (7) are characterized by the fQs

1 ¼
ð!) !=2;!) !=2Þ; Qs

2 ¼ ð!) !=2;!* !=2Þg and fQs
3 ¼

ð!) !=2;!Þ; Qs
4 ¼ ð!;!) !=2Þg sets, respectively. The

measured expectation value of the spin density hmii is
shown in Fig. 1(b). The four-period spin structure appears
along both x- and y-directions. It can be seen as the
checkerboard pattern consisting of 2+2 antiferromagnetic
(AF) plaquettes, where magnetic moments of each spin in
plaquettes are ,0:5, 0.3, and 0.1. These values are smaller
than the maximum local spin moment (,0:8) of the vertical
stripe state with t0 ¼ %0:12 and t00 ¼ 0:08 suitable for
LSCO.

Furthermore, charge amplitudes "l are considered in order
to exhibit the appropriate charge distribution in the four-
period spin-DC–VC background. However, optimized "l
become almost zero among some inhomogeneous charge
textures. When the expectation value of the charge density
hnii is measured under the condition of "l ¼ 0, charge stripes
passing through the 2+2 AF plaquette with small magnetic
moments appear. However, the slight difference observed
among variational parameters leads to a type of inhomoge-
neous charge texture (e.g., horizontal or longitudinal charge
stripe or charge checkerboard). In addition, the charge
amplitude is very small: the deviation from the mean charge
value is ,2%, compared with the VS case of t0 ¼ %0:12 and
t00 ¼ 0:08, where the charge density varies in the range of
0.80–0.93. Therefore, it seems that the charge order state is
energetically unstable because excess charges cannot gain
the kinetic energy so as to overcome Coulomb repulsion at
around small AF plaquettes.

To investigate the instability towards the four-period spin-
DC–VC state, the susceptibility #0ðQÞ with U ¼ 0 is
calculated in the case of t0 ¼ %0:32, t00 ¼ 0:22, and " ¼
0:875. As shown in Fig. 2(b), the peak at ð0:45!; 0:45!Þ and
ridges linking ð!;!=2Þ and ð!=2;!Þ are observed. These
features can be understood by the nesting between parts of
the Fermi surface; the peak at ð0:45!; 0:45!Þ corresponds to
Q1 and Q2, and peaks at ð!=2;!Þ and ð!;!=2Þ correspond
to Q3 and Q4, respectively. [Fig. 2(d)]. This indicates that
the four-period spin-DC and four-period spin-VC states are
enhanced by nesting with the fQ1;Q2g and fQ3;Q4g sets,
respectively. On the other hand, as a reference, we show the
susceptibility in the case of t0 ¼ %0:12 and t00 ¼ 0:08 in
Fig. 2(a). It was already discussed in the mean field study14)

that the VS structure is driven by Fermi surface nesting, such
as that shown in Fig. 2(c). The wave vector QVS ¼ ð!;!)
!=4Þ or ð!) !=4;!Þ of the eight-period spin-VS state is
considered to come from peaks in the ridges in #0ðQÞ, as
shown in Fig. 2(a). Although the highest point is at ð!;!Þ in
#0ðQÞ, the eight-period striped ISDW state is markedly more
stable than the commensurate SDW state in our VMC
calculation.

Figure 3 shows the t0 and t00 dependences of the
condensation energies of the most stable inhomogeneous
state at " ¼ 0:875. The radius of circles represents the
magnitude of the calculated condensation energy. The four-
period spin-DC–VC state appears in the large jt0j–t00 region
suitable for Bi-2212, where the peak around ð!=2;!=2Þ is
predominant in #0ðQÞ, as mentioned above. For example, the
radius for the case of t0 ¼ %0:38 and t00 ¼ 0:19 corresponds
to 0.010. The VS state with single-Q is fairly stable in the
small jt0j–t00 region, and the condensation energy of the VS
state for t0 ¼ %0:12 and t00 ¼ 0:08 is ,0:043. These results
can be explained from the significant enhancement of #0ðQÞ
at incommensurate positions around ð!;!Þ. As jt0j and t00

increase, the incommensurate peak intensities of #0ðQÞ and
the condensation energy of the VS state decrease. If we

Fig. 2. Non interacting susceptibility #0ðQÞ with " ¼ 0:875 for the cases
of (a) t0 ¼ %0:12 and t00 ¼ 0:08, and (b) t0 ¼ %0:32 and t00 ¼ 0:22. Non
interacting Fermi surface with " ¼ 0:875 for the cases of (c) t0 ¼ %0:12
and t00 ¼ 0:08, and (d) t0 ¼ %0:32, t00 ¼ 0:22. The nesting wave vectors
QVS , ð!; 0:875!Þ and fQ1 , ð!=2;!=2Þ, Q2 , ð!=2; 3!=2Þ, Q3 ¼
ð!=2;!Þ, Q4 ¼ ð!;!=2Þg are illustrated in (c) and (d), respectively.

Fig. 3. Phase diagram on the plane of t0 and t00 obtained from the
condensation energies on the 16+16 lattices for the case of U ¼ 8 and
" ¼ 0:875. The radius of circles is proportional to the values of the
condensation energy.
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range from 0 to unity, which controls the on-site electron
correlation. P̂PJ is the Jastrow-type projection operator P̂PJ ¼Q

hiji h
n̂nin̂nj , which allows the occupancy of the nearest-

neighbor sites to be modified by adjusting h in the
neighborhood of 1. j!HFi is a Hartree–Fock wave function
for an inhomogeneous state. The Hartree–Fock Hamiltonian
for ISDW with ICDW, which gives the Hartree–Fock
solution j!HFi, is represented by

ĤHHF ¼
X

ij"

ð#tij # #Þĉcyi" ĉcj"

þ
U

2

X

i"

½$i þ sgnð"Þmi'n̂ni" ; ð4Þ

where tij is defined as that in eq. (1) and # is the chemical
potential. The charge density $i and spin density mi are
spatially modulated as

$i ¼
X

l

$l cos½Qc
l ( ðri # r0Þ'; ð5Þ

mi ¼
X

l

ml cos½Qs
l ( ðri # r0Þ'; ð6Þ

where $l and ml are variational parameters.
The striped ISDW state is defined by a single-Q set; the

wave vector Qs ¼ ð%;%) 2%&Þ [or ð%) 2%&;%Þ] produces
the spin vertical stripe (spin-VS) state in which magnetic
domains run along the x-direction (y-direction). & is an
incommensurability defined by the inverse of the stripe
period in the y-direction. r0 represents the position of a
magnetic domain wall. The site-centered (bond-centered)
domain boundary is located on site (between sites); rSC0 ¼
ð0; 0Þ [rBC0 ¼ ð1=2; 1=2Þ]. Note that the hole density is
maximal on the domain wall. The charge-VS period is
one-half the spin-VS period, i.e., Qc ¼ 2Qs ¼ ð2%; 2%)
4%&Þ. The diagonal stripe (DS) state with the diagonal wave
vector Qs [¼ ð%) 2%&;%) 2%&Þ] and Qc (¼ 2Qs) can be
treated in the same manner.

On the other hand, the checkerboarded ISDW state is
described by the double-Q set.21,23) For example, vertical
wave vectors Qs

1 ¼ ð%;%) 2%&Þ and Qs
2 ¼ ð%) 2%&;%Þ

describes a spin vertical checkerboard (spin-VC) state,
where two diagonal domain walls are orthogonal, as
discussed in ref. 23. While, diagonal wave vectors Qs

1 ¼
ð%) 2%&;%) 2%&Þ and Qs

2 ¼ ð%) 2%&;%* 2%&Þ lead to
a spin diagonal checkerboard (spin-DC) state with a 1=&-
period. The magnetic domain walls run parallel to both x-
and y-directions. Then, the hole density forms the charge
vertical checkerboard (charge-VC) pattern with vertical
wave vectors Qc

1 ¼ ð0;)4%&Þ and Qc
2 ¼ ð2%) 4%&; 2%Þ in

which the hole density is maximal on the crossing point of
magnetic domain walls in the spin-DC state. If & ¼ 1=8 is
assumed as suggested in previous studies,21,22) the charge
modulation pattern is consistent with the 4a+4a charge
structure observed in STM experiments. In the following, we
examine the energy gain of the eight-period spin-DC state
with the four-period charge-VC pattern and compare it with
other states.

The energy expectation values, eq. (2), are optimized with
a total Monte Carlo step number greater than 3+ 107. In this
study, we fix the on-site Coulomb energy U ¼ 8 and adopt
the square lattices L+ L (L ¼ 8{20); the commensurability
with & is required to guarantee the spin-periodicity along

both x- and y-direction in the 1=&-period spin-checkerboard-
ed ISDW state. The periodic boundary conditions in both
directions are applied.

In Fig. 1(a), we show the condensation energies of some
heterogeneous states, ðEnormal # EheteroÞ=Nsite, fixing the
transfer energies t0 ¼ #0:32 and t00 ¼ 0:22 suitable for Bi-
2212. The energy of the normal state Enormal is calculated
by assuming ml ¼ $l ¼ 0 in eq. (4). The system used is a
16+16 lattice with the electron-filling $ ¼ Ne=Nsite ¼ 0:875.
In our calculation, the condensation energies of both bond-
centered stripe and checkerboard states are always larger
than those of site-centered stripe and checkerboard states.
The VS state is not stable in this parameter set, which is only
stabilized with the LSCO-type band, as shown later. The
four-period spin-DC state is significantly more stable than
the eight-period spin-DC state, or 6-, 10-, 12-, and 16-period
spin-DC states [these are not shown in Fig. 1(a)]. Moreover,
the trial wave function is improved on the basis of the
consideration stated later. We found that the coexistent state
of the bond-centered four-period spin-DC and four-period
spin-VC with the assumed $l ¼ 0 is the most stable, as
shown in Fig. 1(a). Note that the condensation energy of
the coexistent state is several times larger than the super-

Fig. 1. (a) Condensation energies of inhomogeneous states with the bond-
centered magnetic domain wall. The system is a 16+16 lattice in the
Hubbard model with t0 ¼ #0:32, t00 ¼ 0:22, and U ¼ 8 for the case of
$ ¼ 0:875. The static error bars are smaller than the size of symbols.
(b) Expectation value of hmii measured in the four-period spin-DC–VC
solution. The length of arrows is proportional to the spin density.
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Fig. 5. Magnetization m of the best spiral state as a function of 
U for several values of the doping 6 

in the (Q, n)-region on the right. The absolute minimum 
changes with doping: For small & the energy of the 
(Q, Q)-type spiral state is lower whereas for larger doping 
the (Q, n) spiral is favourable. The doping 5~ where 
the transition from one state to the other takes place 
can be determined by interpolating the energy of both 
states as a function of & This is shown in Fig. 3 for 
U/t=8, 12, 16, 20. Since the differences in energy be- 
tween the two types of spiral states are quite small, the 
accuracy of the resulting value of 5r is rather limited. 

In order to investigate the large U behaviour of the 
energy, one has to extrapolate the results from the direct- 
ly accessible region U < 20t to larger values of the inter- 
action strength. This is done by plotting the energy of 
the spiral state as a function of t/U for different values 
of & as shown in Fig. 4. The curves are linearly extrapo- 
lated until the point, where the energy reaches the value 
of the saturated ferromagnet (Nagaoka state), EF~ o 

1 
= ~  ~, sk, indicating the transition from the spiral to 

k e o c c .  

the ferromagnetic phase. Although the available energy 
data show nearly perfectly linear behavior in the region 
t/U<O.1 it can not be ruled out that there might be 
deviations for even smaller values of t/U than the ones 
we could reach in our simulations. At least for & =0  
this seems not to be the case, since the linearly extrapo- 
lated curve reaches the correct value E = 0  for t/U=O 
with remarkable precision. It should be noted that the 
statistical error of the data is much smaller than the 
size of the symbols used to display them; it is rather 
of the order of the line thickness. 

In the small U region, the transition from the para- 
magnetic to the spiral phase takes place where the mag- 
netization changes from zero to a finite value. Figure 5 
shows the magnetization m of the spiral state as a func- 
tion of U for several values of &. The dotted lines con- 
necting the points, are meant as a guide for the eye, 
only. The value of rn drops to zero at some finite value 
of U indicating the transition to the paramagnetic state 
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Fig. 6. a Gutzwiller phase diagram, b Slave boson phase diagram, 
as extracted from [25]. The dotted lines connecting the data points 
are meant as a guide for the eye, only 

for all doping with the exception of 5 = 0, where antifer- 
romagnetic order is present for all values of U. 

The results of the preceding figures can be summa- 
rized in the phase diagram shown in Fig. 6 a in compari- 
son with the phase diagram as obtained in slave boson 
meanfield theory displayed in Fig. 6b. Magnetically or- 
dered phases exist only for doping less than & ~ 0.38 in 
contrast to the Hartree-Fock results [9], where the mag- 
netic phases are extended over the whole region of densi- 
ties. The gross features of the Gutzwiller phase diagram 
are in agreement with the ones obtained in a slave boson 
saddle-point calculation [-11], confirming the close rela- 
tionship between both approaches, but there exist also 
significant differences. The transition from the (Q, Q)- 
type to the (Q,~z)-spiral takes place at 5~0.1 whereas 
in slave boson theory this transition appears at some- 
what larger values of the doping. The ferromagnetic do- 
main is characterized by Umin ~ 27 t and &max ~ 0.38, while 
in the slave boson approach this domain is shifted to 
larger values of the interaction (Um~n=66t) and smaller 
doping (&m,x = 0.32) [25]. 



Conventional variational approaches to the Hubbard model 

P̂ Gutz.( ) ΦBCS

ΦBCS ∝ uα + vα ĉα
+ĉα

+( )
α
∏

P̂ Gutz.( ) ΦHF

 ΦHF = ĉφ1

+ …ĉφN

+

ΦHF = Φ ↑ Φ ↓

T. Misawa, M. Imada, 
 arxiv/cond-mat (2013) 
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FIG. 1: (color online). (a) Doping (δ) dependence of aver-
aged dx2−y2 -wave superconducting correlations P̄x2−y2 and
peak values of spin structure factors S(qpeak) for U/t = 10
and V = J = 0. Doping rate δ is defined as δ = 1 −Ne/Ns,
where Ne (Ns) represents number of electrons (system size).
We note that the incommensurate spin orders or stripe phases
are not found in the relevant doping region δ ! 0.2 even when
we employ large sublattice structures. We also note that the
charge structure factors have no significant peak at q ̸= 0.
(b) Doping dependence of condensation energy ∆E. The con-
densation energy is defined as ∆E = (ESC − ENormal)/Ns,
where ESC (ENormal) is the total energy of the superconduct-
ing phase (normal phase). The calculations are performed for
sizes of Ns = 12× 12, 14 × 14, 16 × 16 on the square lattice,
and we confirm that the finite-size effects are negligibly small.
The shaded region denotes the PS region and the black dashed
line represents the spinodal point. Details of PS are shown in
the main text and Fig. 2. The superconducting phase with-
out PS remains only in the yellow region. In the present plots
and the plots in the later figures, the error bars indicate the
estimated statistical errors of the Monte Carlo sampling (See
[4], S.1).

with previous studies[5–7, 9, 11, 12, 15]. For instance,
at U/t = 10, the d-wave superconductivity emerges for
δ ! 0.2 as shown in Fig. 1. Both ∆E and P̄dx2−y2

have
dome structures around δ ∼ 0.1. The antiferromagnetic
quantum critical point (AFQCP) where the antiferro-
magnetic spin fluctuations diverge, appears at δ ∼ 0.18.
The d-wave superconductivity coexists with the antifer-
romagnetism in the ground state for δ ! 0.18. The co-
existence has been theoretically studied before in several
different contexts [9, 11, 29, 30]. The coexistence is ba-
sically consistent with the multilayer cuprates [2], where
the PS may be suppressed by the interlayer self-doping.

To examine the effects of charge fluctuations, the dop-

QMC,U/t=4
U/t=4
U/t=6
U/t=8
U/t=10 U/t=10

PP
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μ
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 0  0.1  0.2  0.3  0.4
δ

δ1st
δs

FIG. 2: (color online). Doping dependence of chemical po-
tential for U/t = 4, 8, 6, 10, V = J = 0, and system sizes
L = 6, 8, 10, 12, 14, 16, where Ns = L×L. We note that differ-
ent size results are essentially on the same curve. For U/t = 4,
our mVMC successfully reproduces the results of quantum
Monte Carlo (QMC) represented by black crosses [5]. By fit-
ting the chemical potential with the second-order polynomi-
als, we estimate the spinodal point, where (dn/dµ)−1 = 0.
We also estimate the PS region (δ < δ1st) by performing
Maxwell’s construction using the fitted second-order poly-
nomials. Maxwell’s construction for U/t = 10 is shown by
(black) dotted line. For U/t = 10, we estimate that the
PS occurs for δ < δ1st ∼ 0.195. We also estimate that the
spinodal point, in which the charge compressibility diverges
(χ−1

c = 0), is located at δs ∼ 0.178 for U/t = 10.

ing dependence of the chemical potential µ (see [4], S.1
for the definition of µ and S.6 for the charge structure fac-
tor in PS region) is shown in Fig. 2, where the uniform
charge susceptibility χc ≡ dn/dµ monitors the charge
fluctuation. The spinodal point of doping (δs), where
charge fluctuations diverge (χ−1

c = 0) is found to in-
crease at larger U . Accordingly, the PS region becomes
wider by increasing U/t. If we enforce the charge uni-
formity, superconducting correlation has the maximum
around δs ∼ 0.14 (the spinodal point depicted by dashed
black line in Fig. 1), for U/t = 10. This indicates that
the enhanced charge fluctuations stabilize the supercon-
ducting phase around half filling.

However, if the long-range Coulomb interaction is sup-
pressed as in the Hubbard model, the present result in-
dicates that in a wide region of the nominal doping con-
centration, the system undergoes a real-space PS into
the antiferromagnetic Mott insulator and the supercon-
ducting region with the pinned Tc. This prediction is in
striking agreement with the recent interfacial supercon-
ductivity [3].

Here, to control the charge fluctuations, we
introduce nearest-neighbor Coulomb interactions V
(HV = V

∑

⟨i,j⟩ ninj), which indeed inevitably exit in
real materials (see also [4], S. 1 for details of interac-



The symmetry-projected Hartree-Fock/BCS wavefunction 
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The symmetry-projected Hartree-Fock/BCS wavefunction 
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Optimal single-particle states and BCS quasiparticles 

 

cHF L Γ ,HF ,HF( ) + cBCS L Γ ,HF ,BCS( ) = 0
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 one-body transition density matrix 
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The symmetry-projected Hartree-Fock/BCS wavefunction 

A. Leprévost, O. Juillet, R. Frésard, to be published (2014). 



Technical comments 

Energy minimization by the conjugate gradient method through Thouless 
parameterization of HF and BCS wavefunctions 

We use a 16x4 supercell with antiperiodic/periodic boundary conditions 

Translational invariance and lattice symmetries (C2v group) are restored 
+ Particle number projection for the BCS state 
+ Spin rotational invariance partially restored during the optimization : 
 

      and  spin-parity                  projections  

  ∼104 complex variables to be simultaneously determined

  

The variational N-body state corresponds to the superposition 
of ∼ 7.104  symmetry related wavefunctions

Sz ϖ S = −1( )S

Full spin projection after basis optimization 

   P̂
N ,
!
K ,ϖS ,Sz ,Γlatt .( )   cHF  ΦHF + cBCS  ΦBCS  ( )→ P̂ N ,

!
K ,S ,Sz ,Γlatt .( )   ′cHF  ΦHF + ′cBCS  ΦBCS  ( )

New amplitudes from eigenvalue equation  
with totally projected states 

Same unprojected basis states 



Signatures of spin-density wave and spiral orderings 
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Dependence of magnetic correlations on hole doping at U=8t 
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Signatures of stripe ordering 

U, ′t( )
λspin = 2λcharge

λcharge
ε = 2π

λspin

Related peaks in the Fourier transform of the  
spin-spin and density-density correlation functions 

 
C !q( ) = exp i!q ⋅ !r( )  δ n̂!0  δ n̂!r

!r
∑

 
S !q( ) = exp i!q ⋅ !r( )

!̂
S!0 ⋅
!̂
S!r

!r
∑

qy

qy

qy

qy

qy

qx qx

qy

qy

qy

qy

qy

N = 62

N = 54

 C
!q( )

 S
!q( )Dependence of magnetic 

and charge correlations 
on hole doping 

U = 12t

N = 56
N = 58

N = 60

2π ,0( )

π + ε ,π( )π − ε ,π( )

2ε ,0( )−2ε ,0( )−2π ,0( )

π ,π( )

qx

qy

N = 56
N = 60



Signature of d-wave superconductivity 

Long-ranged pair correlations :  
   
D
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2
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ĉ !R↑
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+ ĉ !R+!r↑

+( )  with  f !r( ) =Singlet d-wave   
pair field 

  
D
!
R( )   

D
!
R( )4≤R≤L 2

NR

Dependence of 
superconductivity 

on hole doping 

U = 12t

! ĉi
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+ĉkĉl → ĉi
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Phase diagram from symmetry-projected HF/BCS wavefunctions 
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Reliability of the symmetry projected HF/BCS scheme  

Comparison with exact results at half-filling 

4 × 4 −U = 4t − ′t = 0

S π ,π( ) C π ,π( )

6 × 6 −U = 4t − ′t = 0

Energy t

−13.6224 2.73 0.385

−30.87 2( )

−13.618

−30.724

2.743

4.365 3( )

4.562

0.386

0.418 2( )

0.411

Ex. Diag.

HF − BCS  S = 0( )

QMC

 P̂
Γ( )  ΦHF   is the exact ground-state at any coupling for the 2x2 cluster 

A. Leprévost, O. Juillet & R. Frésard, Ann. der Phys. (2014) 

HF − BCS  S = 0( )



Reliability of the symmetry projected HF/BCS scheme  

Comparison with exact results on doped small clusters 

-12.503! 0.724! 0.279!

-12.439! 0.727! 0.288!

S π ,π( ) C π ,π( )

4 × 4 − N = 14
U = 8t − ′t = −0.3t

Energy t

Ex. Diag.t

t

′t

HF − BCS  S = 0( )

11

Physical Properties mVMC(2× 2) ED
4× 4(PP),n = 1
Energy per site -0.43632(5) -0.43931
S(qpeak)/Ns 0.0860(3) 0.0835

qpeak (π,π) (π,π)
⟨� i · � j⟩ -0.3010(9) -0.3057

4× 4(PP),n = 0.625
Energy per site -1.0444(3) -1.0564
S(qpeak)/Ns 0.01505(7) 0.01508

qpeak (π/2,π) (π/2, π)
⟨� i · � j⟩ -0.0818(5) -0.0754

4× 4(AP),n = 1
Energy per site -0.4422(1) -0.4457
S(qpeak)/Ns 0.0852(2) 0.0819

qpeak (π,π) (π,π)
⟨� i · � j⟩ -0.2994(17) -0.3044

4× 4(AP),n = 0.75
Energy per site -0.9022(3) -0.9255
S(qpeak)/Ns 0.0261(3) 0.0216

qpeak (π,0) (π,π/2)
⟨� i · � j⟩ -0.1087(15) -0.1073

Table S III: [U/t = 10] Comparison of Energy, peak value
of spin structure S(qpeak)/Ns, its wavenumber qpeak, and
nearest-neighbor spin correlation ⟨� i · � j⟩. The method is
the same as Table II. The parentheses denote the error bars
in the last digit.

QMC GBMC mVMC
8× 8 (PP), n = 50/64

U/t = 4 -72.80(6) -72.51(5) -71.417(4)
U/t = 6 - -63.64(12) -62.553(9)

10× 10 (PP), n = 82/100
U/t = 4 -109.7(6) - -107.51(1)
U/t = 6 - -92.07(22) -91.91(1)

12× 12 (PP), n = 122/144
U/t = 4 -151.4(14) - -150.14(2)

Table S IV: Comparison of total energy between mVMC re-
sults and those of numerically well benchmarked accurate
methods. The parentheses denote the error bars in the last
digit.

gain ∆EU , which are defined as

Ekin = −t
∑

⟨i,j⟩

⟨c†iσcjσ + h.c.⟩, (S.3)

EU = U
∑

i

⟨ni↑ni↓⟩,

∆Ekin = (Ekin,SC − Ekin,Normal)/Ns,

∆EU = (EU ,SC − EU ,Normal)/Ns.
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wave symmetry as a function of distance r at n = 12/16 =
0.75 for 4× 4 lattice with AP boundary condition. For both
U/t = 4 and U/t = 10, mVMC well reproduces the exact
values (ED).

We also show the nearest-neighbor spin correlation ∆S,
which is defined as

Snn = ⟨Si · Sj⟩, (S.4)

∆S = (Snn,SC − Snn,Normal),

where i and j represent the nearest neighbor sites.
In Fig. S6, we show doping dependence of ∆Ekin and

∆EU for several choices of parameters. In the simple
Hubbard model, i.e., without V and J , the supercon-
ducting phase is stabilised by the energy gain of the po-
tential energy in the whole doping region. By introduc-
ing V and J , the energy gain of potential energy be-
comes large while the energy loss of kinetic energy also
becomes large. This is because stronger pairing disturbs
the single-particle motion and at the same time the d-
wave pairing strictly excludes the double occupation of
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Physical Properties mVMC(2× 2) ED
4× 4(PP),n = 1
Energy per site -0.43632(5) -0.43931
S(qpeak)/Ns 0.0860(3) 0.0835

qpeak (π,π) (π,π)
⟨� i · � j⟩ -0.3010(9) -0.3057

4× 4(PP),n = 0.625
Energy per site -1.0444(3) -1.0564
S(qpeak)/Ns 0.01505(7) 0.01508

qpeak (π/2,π) (π/2, π)
⟨� i · � j⟩ -0.0818(5) -0.0754

4× 4(AP),n = 1
Energy per site -0.4422(1) -0.4457
S(qpeak)/Ns 0.0852(2) 0.0819

qpeak (π,π) (π,π)
⟨� i · � j⟩ -0.2994(17) -0.3044

4× 4(AP),n = 0.75
Energy per site -0.9022(3) -0.9255
S(qpeak)/Ns 0.0261(3) 0.0216

qpeak (π,0) (π,π/2)
⟨� i · � j⟩ -0.1087(15) -0.1073

Table S III: [U/t = 10] Comparison of Energy, peak value
of spin structure S(qpeak)/Ns, its wavenumber qpeak, and
nearest-neighbor spin correlation ⟨� i · � j⟩. The method is
the same as Table II. The parentheses denote the error bars
in the last digit.

QMC GBMC mVMC
8× 8 (PP), n = 50/64

U/t = 4 -72.80(6) -72.51(5) -71.417(4)
U/t = 6 - -63.64(12) -62.553(9)

10× 10 (PP), n = 82/100
U/t = 4 -109.7(6) - -107.51(1)
U/t = 6 - -92.07(22) -91.91(1)

12× 12 (PP), n = 122/144
U/t = 4 -151.4(14) - -150.14(2)

Table S IV: Comparison of total energy between mVMC re-
sults and those of numerically well benchmarked accurate
methods. The parentheses denote the error bars in the last
digit.

gain ∆EU , which are defined as

Ekin = −t
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⟨i,j⟩

⟨c†iσcjσ + h.c.⟩, (S.3)
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We also show the nearest-neighbor spin correlation ∆S,
which is defined as

Snn = ⟨Si · Sj⟩, (S.4)

∆S = (Snn,SC − Snn,Normal),

where i and j represent the nearest neighbor sites.
In Fig. S6, we show doping dependence of ∆Ekin and

∆EU for several choices of parameters. In the simple
Hubbard model, i.e., without V and J , the supercon-
ducting phase is stabilised by the energy gain of the po-
tential energy in the whole doping region. By introduc-
ing V and J , the energy gain of potential energy be-
comes large while the energy loss of kinetic energy also
becomes large. This is because stronger pairing disturbs
the single-particle motion and at the same time the d-
wave pairing strictly excludes the double occupation of

4 × 4 − N = 10 −U = 10t − ′t = 0
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anti-ferromagnetic correlations. We see that the CP re-
sult using UHF trial wave function shows a larger anti-
ferromagnetic order, because the UHF state itself over-
estimates the order. The symmetry trial wave function
removes the bias and leads to results in agreement with
exact diagonalization.
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FIG. 9: (Color online) The structure factor S(k) of the spin-
spin correlation function for three interaction strengths. The
system is 4 × 4 with N↑ = N↓ = 7, and the horizontal axis
labels of K are in units of π/2. The symmetry trial wave
function has S2 = 0 and Kx = Ky = 0 and B1 symmetry.
CPMC has 10, 000 walkers, with back-propagation β = 1.

3. Trial Wave Function in RC Calculations

Formally the role of symmetry in the trial wave func-
tion in RC calculations is similar to that in FP. However
it is intimately connected to the discussion in the pre-
vious section on CP, since the initial state in RC is the
converged solution from CP. The symmetry trial wave
functions improves the CP approximation and the qual-
ity of the wave function sampled from CP, as indicated
by the improvement in the energy and in the calculated
observables. This means symmetry trial wave functions
also allow better RC calculations, by providing a better
initial state and by giving a better trial wave function in
the mixed estimate in Eq. (17). As discussed in Sec. III A,
we also impose symmetry with the HS transformation in
RC, by switching from the Ising spin form in the CP cal-
culation to the Gaussian form in the RC part. We find
this combination to improve the quality of the RC cal-
culations greatly in most cases. An example is shown
in Fig. 5. Results from RC/SYM calculations are also
shown in Table I for systematic comparisons with CP
and with exact diagonalization results.
Figure 10 illustrates the behavior of RC calculations

using two different trial wave functions, the UHF versus
a symmetry trial wave function. A small system size of
3 × 3 with 2 ↑ and 2 ↓ electrons is chosen such that the
RC calculation can also be carried out explicitly to al-
low direct comparison. (In the explicit calculation, we
propagate the CP population of {|φCP

i ⟩} directly by ap-

plying e−∆τĤ . The propagation is carried out by ex-
panding each walker in terms of exact eigenstates of Ĥ .)
We see that CPMC/UHF gives an energy closer to the
exact value (∼ 0.1% error) compared to CPMC/SYM
(∼ −0.3% error). The corresponding RC/UHF moves
further away from the exact answer and shows no in-
dication of convergence in the imaginary-time span in
which RC/SYM is well-converged. The explicit RC cal-
culation, as shown in the inset, reveals a highly non-
monotonic behavior. The projection does converge to the
correct ground-state energy, but requiring an imaginary
time of > 100. This would be impossible to reach in a
QMC RC calculation because of the sign problem. Thus
non-monotonic behaviors could be difficult to detect and
would yield misleading results. The improvement with
the symmetry trial wave function, which leads to rapid
and monotonic convergence, is then especially valuable.
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FIG. 10: (Color online) RC calculations with symmetry trial
wave functions and without. The system is 3 × 3 with
N↑ = N↓ = 2 and U = 4. The symmetry trial wave func-
tion has S2 = 2, Kx = 0,Ky = 0 while the UHF wave func-
tion breaks these symmetries. CP/UHF is very accurate, but
RC/UHF has non-monotonic behavior and slow convergence,
as shown by the explicit propagation. RC/SYM converges
rapidly and monotonically. The explicit propagation (EP)
result of RC/UHF is shown to large projection time in the
inset.

The use of proper symmetry can allow RC calculations
of excited states, similar to the discussion in Fig. 7. Since
CP allows one to start from an initial population much
closer to the exact exact state, RC can be more accurate.
An example is shown in Fig. 11, in which the many-body
ground state and first excited state energies are calcu-
lated as a function of crystal momentum. Both CP and
RC are done with the same trial wave function, in which
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and the average alternate magnetization (M) for the Heisen-
berg model in different recent works.

—1.0
IJJ

—2
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Trivedi and Ceperley
Our variational work
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FIG. 1. Energies in units of t for the optimal parameters
given in Tables I and II for a Hubbard model at U = 10 (cir-
cles) and a, t Jmodel -for J = 0.4 (triangles). The difference
in energy bE between a superconducting and a nonsuper-
conducting phase for the Hubbard model is also indicated
(squares) .

Reference 28.
Reference 29.

'Reference 30.

Vari ati onaI energy

and the potential energy, were measured over indepen-
dent samples of 8 x 10s MCS's. The order of magnitude
of the time needed to get one minimum is between 1 and
2 h on a Cray-2 computer. The different physical quan-
tities are much easier to compute, and a set of measures
takes around 1 h of Cray-2 computer time.

B. Results

The optimal parameters for an 8 x 8 system at U = 10
as a function of the band filling are indicated in Table I
for the Hubbard model and Table II for the t-J model,
and the results for the optimal variational energies are
reported in Fig. 1. By looking at Tables I and II one can
see that, in both models, close to half filling, the super-
conducting variational parameter and the antiferromag-
netic one are both nonzero suggesting a coexistence of
superconductivity and antiferromagnetism. Such a phase
diagram, which would be in good qualitative agreement
with a mean-field analytical result on the t-J model,
will be criticallly discussed in the following, but first we
would like to make some comments on the significance of
the variational results.

At half filling a detailed comparison with a large body
of existing results is possible. Energies and alternate
magnetization for the Heisenberg model (which is the
limit of the t'- J model at half filling) are given in Table III.
Inspection of these results shows that our wave function
is within 10 2t, from the best results [obtained by diago-
nalization on small samples or by quantuin Monte Carlo
(QMC) calculations]. For the Hubbard model, our re-
sult of 0.4011 is the same as the antiferromagnetic one of
Yokoyama and Shibaiz (see Sec. III B 3). Comparisons
done in Ref. 12 show that such an antiferromagnetic wave
function is extremely close in energy to QMC (at V = 8
&vMc = 0.493 and EqMc = 0.48). At V = 10 our re-
sult compares favorably with the QMC value of Sorella
e$ al. i (F = —0.42). For comparison we recall that for
U = 105 the Gutzwiller approximation for the paramag-
netic state has an energy of —0.095, and the Gutzwiller
paramagnetic state has an energy of —0.13$.

Away from half filling the results are scarce. There are
no "exact" (QMC or diagonalization) results for the en-
ergy of these models with such a large on-site repulsion
but only variational ones. To give some idea of the differ-
ences in energy we are encountering, let us consider as an
example the case of the Hubbard model for a 6 x 6 lattice
with four holes (b = 0.11). The energy per particle ob-
tained for the different wave functions are the following:

TABLE II. Same as Table I but for the t- J model. Here g = 0 (no doubly occupied sites).

64
60
52
44
36

0.0
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0.44
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0.00(l)
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0.00(1)
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—0.38(4)
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(r) for dx2−y2 -

wave symmetry as a function of distance r for δ = 1−50/64 ∼
0.22 and U/t = 4 at Ns = 8× 8 (PP boundary condition). It
is confirmed that mVMC well reproduces the essentially exact
results of GBMC.
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Fig. S 5: Doping dependence of spin structure factor S(qpeak)
for U/t = 4 and several different system sizes (PP boundary
condition). QMC results [10] are shown by black crosses.
Black solid line is guide for eyes.

the paired electron by symmetry, which contribute to the
gain in the interaction energy and the loss in the kinetic
energy. It was claimed that the kinetic energy gain exists
in the strong coupling region[19, 22]. However, this gain
was calculated in the superconducting state without the
antiferromagnetic order or correlations, while in reality
the superconducting phase is largely coexisting with the
antiferromagnetic order or at least with its well devel-
oped short-range correlations in the ground state. This
coexistence leads to a large gain in the interaction energy

and the loss in the kinetic energy in the superconducting
state in comparison to the state with the antiferromag-
netic correlations only. Because the energy gain arising
from the short-range singlet correlation exists for finite J ,
total condensation energy becomes large compared to the
simple Hubbard model. As shown in Fig. S7, short-range
singlet correlation does not largely depend on interaction
parameters.
In Fig. S8, we show the kinetic (potential) part of

chemical potential µkin (µU ) for U/t = 10, defined as

µkin(N̄) = {Ekin(N1)− Ekin(N2)}/{N1 −N2},
µU (N̄) = {EU (N1)− EU (N2)}/{N1 −N2},

where N̄ = {N1 + N2}/2. Kinetic part of chemical po-
tential shows the convex doping dependence, while µU is
nearly independent of the doping. This convex doping
dependence of µkin suggests that PS is mainly caused by
the kinetic energy.
A strong crossover from the states with the Mott prox-

imity in the underdoped region to the overdoped region
takes place in two-fold way: One is the charge instabil-
ity represented by divergence of charge compressibility
at δ = δs. The other is the magnetic instability repre-
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Present work 



Summary 

Spiral, SDW, stripes find their place in the phase diagram of the 2D 
Hubbard model. 

They successively appear for decreasing doping at fixed U and for 
increasing U at fixed doping.  

Coexistence with d-wave superconductivity has been evidenced for long-
ranged pairing correlations at strong coupling (U~10t) and up to a hole 
doping ~0.2, EXCEPT when the holes are totally trapped in stripes. 

These features are robust against extensions of the wavefunction. 
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