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» Finite-temperature auxiliary-field quantum Monte Carlo (AFMC) for
the canonical ensemble

- Stabilizing canonical-ensemble calculations in AFMC

» Odd particle-number systems in AFMC: Circumventing a sign problem

» Vibrational and rotational collectivity in heavy nuclei

* Nuclear deformation in the spherical shell model approach



Auxiliary-field quantum Monte Carlo (AFMC)

+ A method for studying highly-correlated systems which is free of
systematic errors

»+ Advantages:

Permits finite-temperature calculations
No fixed-node approximations (for good sign interactions)

Useful in a variety of systems (electronic structure, nuclear
physics, atomic physics, chemistry)

» Allows calculation of any one- or two-body observable

Challenges:
Sign problem for “repulsive” interactions and certain projections
Scaling is N2 x N, or N2 x N, depending on the application

Numerical stability at low temperatures / large model spaces



Given hamiltonian H with one-body and two-body parts, apply the
Hubbard-Stratonovich (HS) transformation to obtain
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Non-interacting propagator

[ Time-dependent auxiliary fields (many)

Integration measure —/
Gaussian weight

A path-integral of a non-interacting propagator with respect to
fluctuating time-dependent fields.
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Observables with respect to U (o) can be determined using matrix
algebra in the single-particle space (typical dimension 50-100’s)

The integral is discretized and observables are sampled stochastically:
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O = one- or two-body observable; traces can include projections.



Canonical ensemble: exact particle-number projection

» For fixed particle number, we utilize a discrete Fourier Transform

/ Number of single-particle states
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Canonical trace
N = number of particles ©m = 2mm /Ny  Grand-canonical trace

[W.E. Ormand, et al., Phys. Rev. C 49, 1422 (1994)]

» Important for finite-size systems such as nuclei, metallic nanoparticles, ...
Shell-Model Monte Carlo (SMMCQC)

+ The application of AFMC to atomic nuclei in the configuration-
interaction (Cl) shell model approach.

- Have studied nuclei in model spaces as large as ~103°

» Successful for calculating statistical and collective properties of nuclei
(e.g., level densities, pairing gaps, deformation)



Stabilizing canonical-ensemble calculations in AFMC
C. N. Gilbreth and Y. Alhassid, Computer Physics Communications (2014) (in press)

+ Low-temperature AFMC calculations 120 p——————— ,
require long chains of matrix products 100 | ”"CO"d‘t‘:"ed o4,
~ propagator
to compute the propagator U, o 80| N/
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conditioned (ratio of largest to smallest B
eigenvalues is very large). Small and Energy vs.inverse temperature

intermediate scales are lost among large
numbers, leading to inaccurate results.

for 20 cold atoms in the unitary limit.

+ Known solution: Compute a decomposed form of U,

[E.Y. Loh Jr and ]. E. Gubernatis, 1992]
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A, B well-conditioned,

D > 0 diagonal

such as singular value decomposition (SVD) or modified Gram-Schmidt

(MGS), which explicitly displays scales along the diagonal.
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+ Canonical trace: TryU = F > e N det(1+ Ue'¥™) (U = ADB)

+ Usual implementation: decompose 1 + Ue'?™ for every determinant in
the Fourier sum. Each decomposition takes O(NN?)operations, so the
sum requires O(N.}) operations.

+ Improved method: Consider A~'UA = DBA :

m=1

X r T X r T X X X X
DBA = X r T X r T X — X X X
X XL £T XL XL £T XL X X X

which is “row-stratified” and similar to U. Diagonalize once;then each
determinant costs O(N,) operations. The sum now requires only O(N?)
operations.
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significant speed-up



Application: cold atoms
C. N. Gilbreth and Y. Alhassid, Phys. Rev.A 88, 063643 (201 3)

» This new stabilization method allows us to study larger systems that
would otherwise not be possible in the canonical ensemble.
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of oscillator shells Nmax



Odd-particle systems in AFMC: circumventing a sign problem
A. Mukherjee and Y. Alhassid, Phys. Rev. Lett. 109, 032503 (2012)

Particle-number projection introduces a sign problem which has
hampered application of SMMC to odd-even and odd-odd nuclei.

Breakthrough method: utilize the imaginary-time Green’s function,

Gy(7) =) (Taym(7)a},,(0)) v =(nlj), m=—j....]
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G, (1) ~ e BlE; (AE1)—Egs (A)]|7] (B> |7] > 0)

The slope of log G, (7) determines ¥
the energy difference between
the g.s. of the A-particle system
and the lowest energy of the 2
A £+ 1 system with angular 2
momentum | 10 -

Minimize E;(A + 1) to determine
the g.s. energy and o




+ Statistical errors of ground-state energy

Green’ s function method
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* Pairing gaps in mid-mass nuclei from even-odd mass differences
(good agreement with experiments)
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Application to nickel isotopes: theory versus experiment
M. Bonett-Matiz, A. Mukherjee and Y. Alhassid, Phys. Rev. C 88,011302 (2013)

+ The Green’s function method allows calculation of ground-state
energies, and hence level densities, of odd-mass isotopes
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Vibrational and rotational collectivity in heavy nuclei

C. Ozen,Y.Alhassid, and H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)

Heavy nuclei exhibit a crossover from vibrational to rotational
collectivity as the number of neutrons increases from shell-closure
toward midshell, which is reproduced by empirical models.

Can the crossover be reproduced microscopically using a truncated
spherical shell model approach!?

Technical challenges for microscopic nuclear physics calculations:
+ Large model spaces

+ Small excitation energies (large 3 required)

* Numerical stabilization

Need to identify a signature of collective behavior in nuclei using
SMMC, where spectroscopic information is not readily available.



»  The low-temperature behavior of (J=) is sensitive to the type of

collectivity.
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« Clear crossover from vibrational to rotational behavior for samarium
isotopes. Values of )5+ agree well with experiment.

- State densities in samarium isotopes:
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Collective enhancement factors

Mean-field [e.g., Hartree-Fock-Bogoliubov (HFB)] level densities do not
include important contributions from collective states.

Collective enhancement factors are one of the least understood

aspects of nuclear level densities.

We define the collective enhancement factor K as the ratio between

the SMMC and the HFB level densities.
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+ The damping of the vibrational and rotational enhancement with
excitation energy is correlated with the pairing and shape transitions,

respectively.



Nuclear deformations in AFMC
Y.Alhassid, C. N. Gilbreth and G. F. Bertsch, arXiv:1408.0081 [nucl-th]

+ Mean-field theory is a convenient framework for the study of the
intrinsic structure of deformed nuclei, but breaks rotational invariance.

» |t also predicts sharp phase transitions, which are washed out in finite
systems.

+ The challenge is to study nuclear deformation in a framework which
breserves rotational invariance and captures finite-size effects.

Nuclear shapes
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We study the distribution of QQ,O by discretizing the Fourier transform
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Since QQ,O is a one-body operator, we can compute its distribution.

[Q2.0, H] # 0, unlike in other projections (e.g., particle number, spin):
Ps(q) = 25(61 — qn) Z(q,nle, m>2e_5€m

The distribution Pz (q) is slow to equilibrate (long decorrelation times).
To resolve this problem, we average P3(q) over carefully chosen
rotations of ()2 ¢ (equivalent to rotating the auxiliary fields).
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Application to '**Sm and '*Sm

» At T = o0, P3(q) is the many-particle

eigenvalue distribution of Q, 0.0015
= 0.001
154 : C

Sm (deformed in HFB) = oos |

+ The many-particle eigenvalues ;
are closely spaced, giving effectively 00015
a continuous distribution. S 0001y
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» At high temperatures, a Gaussian. |
0.0015
At the mean-field shape transition S 0001 |
(T = 1.14 MeV), distribution is skewed. " o0.0005 |
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- At low temperatures, the distribution 21200 -600 0 600 1200

is similar to that of a prolate rigid rotor,
a clear signature of deformation.

148Sm (spherical in HFB)
0.0005

- P3(q) is close to a Gaussian even at .

|OW tempel‘atu res. -1200 -600 0 600 1200
q (fm?)

0.0015
0.001

P(q)




Intrinsic deformation

Information on the intrinsic deforma-
tion can be obtained from rotationally
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The intrinsic deformation parameters [,y can

be determined from the quadrupole invariants:

_ VBT e s _ \[<(Q x Q) - Q)
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}1/2 R

(A8/8)° = (@@ Q- Q72 /(@-Q)

Allows us to extract information about
intrinsic deformation in the rotationally
invariant framework of SMMC.




Conclusion

We have circumvented the long-standing odd-particle sign problem for
the calculation of ground-state energies in shell model calculations.

(J?) provides a signature of collective behavior in nuclei, allowing a
description of the transition from vibrational to rotational collectivity.

We have introduced a new method for stabilizing canonical-ensemble
AFMC calculations which scales as O(N?) instead of O(N?).

Nuclear deformation can be studied in a framework which preserves
rotational invariance and finite-size effects, and allows model-
independent extraction of intrinsic deformation parameters.

Prospects

» Level densities at fixed intrinsic deformation (input to fission models)

» Application to other mass regions



