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Outline

• Finite-temperature auxiliary-field quantum Monte Carlo (AFMC) for 
the canonical ensemble	



• Stabilizing canonical-ensemble calculations in AFMC	



• Odd particle-number systems in AFMC: Circumventing a sign problem	



• Vibrational and rotational collectivity in heavy nuclei	



• Nuclear deformation in the spherical shell model approach



Auxiliary-field quantum Monte Carlo (AFMC)

• A method for studying highly-correlated systems which is free of 
systematic errors	



• Advantages:	



• Permits finite-temperature calculations	



• No fixed-node approximations (for good sign interactions)	



• Useful in a variety of systems (electronic structure, nuclear 
physics, atomic physics, chemistry)	



• Allows calculation of any one- or two-body observable	



• Challenges:	



• Sign problem for “repulsive” interactions and certain projections	



• Scaling is               or                , depending on the application	



• Numerical stability at low temperatures / large model spaces  
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• Given hamiltonian     with one-body and two-body parts, apply the 
Hubbard-Stratonovich (HS) transformation to obtain	



!

!

!

• A path-integral of a non-interacting propagator with respect to 
fluctuating time-dependent fields.	



• Observables with respect to          can be determined using matrix 
algebra in the single-particle space (typical dimension 50-100’s)	



• The integral is discretized and observables are sampled stochastically: 	



!

•        one- or two-body observable; traces can include projections.
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Canonical ensemble: exact particle-number projection

• For fixed particle number, we utilize a discrete Fourier Transform  
 
 
 
 

!

• Important for finite-size systems such as nuclei, metallic nanoparticles, …
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[W. E. Ormand, et al., Phys. Rev. C 49, 1422 (1994)]
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Shell-Model Monte Carlo (SMMC)

• The application of AFMC to atomic nuclei in the configuration-
interaction (CI) shell model approach.	



• Have studied nuclei in model spaces as large as ~1030	



• Successful for calculating statistical and collective properties of nuclei 
(e.g., level densities, pairing gaps, deformation)



Stabilizing canonical-ensemble calculations in AFMC

• Low-temperature AFMC calculations 
require long chains of matrix products 
to compute the propagator    ,  	
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• For large     , the matrix U becomes ill-  
conditioned (ratio of largest to smallest 
eigenvalues is very large). Small and 
intermediate scales are lost among large 
numbers, leading to inaccurate results.	



• Known solution: Compute a decomposed form of U,  
 
 
 
such as singular value decomposition (SVD) or modified Gram-Schmidt 
(MGS), which explicitly displays scales along the diagonal.
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where the size of the symbols X indicate the magnitude of the numerical scales, and
the script symbols x indicate numbers of order unity or smaller. After multiplying
the product in Eq. (5.3), U is essentially an outer product of the leftmost column of
S and top row of V . All information about the smaller scales in U is represented only
implicitly as differences between numbers of the largest scale, and therefore quickly
becomes unrecoverable with finite-precision arithmetic.

The solution to this problem is to store a decomposed form of U , such as its
SVD, which keeps track of the divergent numerical scales separately. This involves
updating the decomposition carefully when computing the product (5.2). Given the
partial product SDV = Un · · ·U1, one computes

Un+1(SDV ) = (Un+1SD)V

= (S ′D′V ′)V

= S ′D′V ′′ = Un+1 · · ·U1 ,
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and can be decomposed stably [129]. As the full product (5.2) is computed, a long
chain of unitary matrices V = VNt · · ·V2V1 is accumulated. Because these are unitary,
this product remains numerically stable.

In practice we do not use the SVD, but rather a “QDR” decomposition, as it is
much faster1. The QDR decomposition is based on the well-known QR decomposition

1Modern Jacobi methods [130, 131] may make the SVD competitive in speed with QDR, but at
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for 20 cold atoms in the unitary limit.

C. N. Gilbreth and Y. Alhassid, Computer Physics Communications (2014) (in press)
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• Canonical trace:	



• Usual implementation: decompose                 for every determinant in 
the Fourier sum. Each decomposition takes           operations, so the 
sum requires           operations. 	



• Improved method:  Consider                          :  
 
 
 
which is “row-stratified” and similar to    .  Diagonalize once; then each 
determinant costs            operations.  The sum now requires only            
operations.
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Application: cold atoms

• This new stabilization method allows us to study larger systems that 
would otherwise not be possible in the canonical ensemble.	
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• Cold atoms: 10+10 particles,                 (1038  
many-particle states) to reach convergence,  
in the unitary limit of infinite scattering length.	



• First ab initio calculation of the heat capacity  
across the superfluid phase transition.	



• Clear signatures of the superfluid phase transition 
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Odd-particle systems in AFMC: circumventing a sign problem

• Particle-number projection introduces a sign problem which has 
hampered application of SMMC to odd-even and odd-odd nuclei.	



• Breakthrough method: utilize the imaginary-time Green’s function,	



!
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• The slope of              determines  
the energy difference between  
the g.s. of the   -particle system  
and the lowest energy of the  
          system with angular 
momentum j	



• Minimize                 to determine  
the g.s. energy and j 

A. Mukherjee and Y. Alhassid, Phys. Rev. Lett. 109, 032503 (2012)
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calculations are consistent with each other, providing an
independent validation of our method. Unless otherwise
noted, the results we report here are the average of both of
these calculations.

To test the validity and accuracy of our method, we
performed calculations in the sd shell using a schematic
good-sign Hamiltonian. In all cases, our results deviated no
more than 0.1% from the exact ground-state energies,
obtained by diagonalizing the Hamiltonian with the
OXBASH code [13]. For example, for 29Si we found a
ground-state energy of !133:98" 0:04 MeV compared
with the exact result of !133:95 MeV. Our method also
reproduced correctly the ground-state spin in all cases.

We applied our method to nuclei in the (pfþ g9=2)
shell, using the isospin-conserving Hamiltonian of
Ref. [5]. Typical results are demonstrated in Fig. 1, in
which the absolute value of the logarithm of the Green’s
functions for the neutron orbital ! ¼ 1p3=2 in

56Fe ("> 0)
and in 58Fe (" % 0) are plotted versus j"j for # ¼
4 MeV!1. The linear fits (solid lines) were used in the
calculation of the ground-state energy of 57Fe. The devia-
tions from the linear fits are shown in the insets of Fig. 1.

A direct application of the SMMC method to the odd-
particle systems suffers from a sign problem which leads to
very large statistical errors at low temperatures. In contrast,
the method presented here for the ground-state energy does
not have such a problem. This is illustrated in Fig. 2 where
we compare the energy and its statistical error for the 57Fe
nucleus in the present method (using the neutron Green’s
functions of 56Fe) with the results obtained from the direct
method. The errors in the present method remain roughly
constant with #. At # ¼ 3 MeV!1 the statistical error in

the direct method is about 5 times larger than that in the
present method while at # ¼ 4 MeV!1 it is about 20 times
larger. The inset shows the statistical errors on a logarith-
mic scale. For comparison we have also included the
statistical error in the energy of the even-even nucleus
56Fe using the same Hamiltonian. We note that the total
computational time for a given value of # increases by less
than a few percent when the Green’s function calculations
are included.
We applied our Green’s function method for families of

odd-neutron isotopes: 47–49Ti, 51–57Cr, 53–61Fe, 59–65Ni,
63–67Zn, and 71–73Ge. The ground-state spins we determine
are in agreement with experimental values in all cases
except for 47Ti, 57Fe, and 63Ni. The anomalous ground-
state spin of 57Fe from the shell model perspective is well
documented in the literature [14].
In our method we extract directly the odd-even ground-

state energy differences, and therefore this method is par-
ticularly suitable for accurate calculations of pairing gaps
(i.e., odd-even staggering of masses).
When extracting an odd-even ground-state energy dif-

ference such as !EminðAþÞ, we use the Hamiltonian of
theAþ nucleus for both theAþ andA nuclei. Since the
fpþ g9=2-shell Hamiltonian we use is nucleus-dependent
[5], it is necessary to correct the ground-state energy of the
A nucleus. As the latter is an even-even nucleus, this
correction can be found in direct SMMC calculations for
the A nucleus. However, this correction can also be
estimated as follows. The dependence of the interaction
on the nucleus is rather weak; the strengths of the multi-
pole–multipole interactions depend weakly on the mass
number A (/ A!1=3), and the monopole pairing strength
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FIG. 1 (color online). Absolute value of logarithm of the
Green’s function (2) for the neutron orbital ! ¼ 1p3=2 in 56Fe
(lower curve, "> 0) and 58Fe (upper curve, " % 0) at # ¼
4 MeV!1. The solid blue lines are linear fits for 0:5 MeV!1 %
j"j % 2 MeV!1. The slope of the fitted line in the lower (upper)
curve provides the energy difference between the lowest
J ¼ 3=2 state in 57Fe and the ground state of 56Fe (58Fe). The
insets show the deviations from the linear fits.
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FIG. 2 (color online). Energies of the 57Fe nucleus calculated
from the present method and direct SMMC are shown by solid
and open squares, respectively. The error bars describe the
statistical errors. Inset: statistical errors for the energies of
57Fe in the present method (solid squares) and in direct
SMMC calculations (open squares) are shown on a logarithmic
scale. The statistical errors for the energies of 56Fe using the
same Hamiltonian are shown by open circles.
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• Statistical errors of ground-state energy	



!
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• Pairing gaps in mid-mass nuclei from even-odd mass differences 
(good agreement with experiments)
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Application to nickel isotopes: theory versus experiment

• The Green’s function method allows calculation of ground-state 
energies, and hence level densities, of odd-mass isotopes	
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• Excellent agreement with experimental data

M. Bonett-Matiz, A. Mukherjee and Y.  Alhassid, Phys. Rev. C 88, 011302 (2013) RAPID COMMUNICATIONS

M. BONETT-MATIZ, ABHISHEK MUKHERJEE, AND Y. ALHASSID PHYSICAL REVIEW C 88, 011302(R) (2013)
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FIG. 3. (Color online) Level densities for 59−64Ni isotopes: theory versus experiment. The SMMC level densities (solid circles) are compared
with level counting data (solid histograms) [7], with level densities extracted from proton evaporation spectra (open squares that merge into
quasicontinuous lines) [24], and (when available) with neutron resonance data (triangle) [7].

certain spins and parities contribute to D. Therefore, to convert
the neutron resonance data to a total level density it is necessary
to make certain assumptions regarding the distributions of spin
and parity. We make the usual assumptions that positive and
negative parity levels contribute equally, and that the spin dis-
tribution is described by the spin-cutoff model [28] with rigid-
body moment of inertia. The corresponding level densities at
the neutron binding energy are shown in Fig. 3 by triangles.

Overall, our SMMC results are in excellent agreement
with the experimental level densities over the complete
experimental energy range. The SMMC level densities slightly
underestimate the experimental densities in 59Ni and 60Ni. In
63Ni, our calculations are in close agreement with the level
density extracted from the proton evaporation data, but are
below the level density extracted from the neutron resonance
data. We note, however, that the latter also differs from
the proton evaporation results, as was already discussed in
Ref. [24]. In extracting the level density from the neutron
evaporation data, we have assumed parity equilibration at the
neutron separation energy. In 63Ni with a neutron separation
energy of 6.838 MeV, we find that this assumption is consistent
with the empirical global systematics of the parity ratio of
Ref. [32]. However, microscopic calculations in the iron region
indicate that parity equilibration is not always reached at the
neutron separation energy [13,33]. In such cases, we usually
expect the ratio of the unnatural to the natural parity level

densities to be smaller than 1 (for 63Ni this is the ratio of
positive-to-negative parity level densities), but this will only
increase the discrepancy between the level density extracted
from the neutron resonance data and the level density extracted
from the proton evaporation data.

Conclusion. We have presented accurate microscopic cal-
culations of the total level densities of nickel isotopes 59−64Ni
using the SMMC approach. These calculations were enabled
by two recently developed techniques in SMMC. The ground-
state energies of the odd-mass isotopes were calculated using
the Green’s function method of Ref. [26], while the level
densities were calculated directly using the spin-projection
technique described in Ref. [25].

Our results are in close agreement with experimental level
densities obtained from level counting and neutron resonance
data, as well as the more recent level densities extracted from
proton evaporation spectra. It will be interesting to apply the
formalism developed in this work to other mass and energy
regimes that are relevant in stellar nucleosynthesis and are not
yet accessible in experiments.
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Vibrational and rotational collectivity in heavy nuclei

• Heavy nuclei exhibit a crossover from vibrational to rotational 
collectivity as the number of neutrons increases from shell-closure 
toward midshell, which is reproduced by empirical models.	



• Can the crossover be reproduced microscopically using a truncated 
spherical shell model approach?	



• Technical challenges for microscopic nuclear physics calculations:	


• Large model spaces	


• Small excitation energies (large    required)	


• Numerical stabilization	



• Need to identify a signature of collective behavior in nuclei using 
SMMC, where spectroscopic information is not readily available.

�

C. Özen, Y. Alhassid, and H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)



• The low-temperature behavior of         is sensitive to the type of 
collectivity.	



!
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• Clear crossover from vibrational to rotational behavior for samarium 
isotopes.  Values of        agree well with experiment.	



• State densities in samarium isotopes:

SMMC describes well the crossover from vibrational to rotational 
collectivity in good agreement with the experimental data at low  T

< J
!"2

>=
J (J +1)(2J +1)e−Eα J /T
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•  Experimental values are found from  
where         are the experimentally known levels. JEα

versus       in samarium isotopes < J
!"2

> T

•  Combine with experimental backshifted Bethe formula (BBF) for the 
level density to get an experimental description at higher T. 

Crossover from vibrational to rotational collectivity in heavy nuclei 
C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013) 
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• Mean-field [e.g., Hartree-Fock-Bogoliubov (HFB)] level densities do not 
include important contributions from collective states.	



• Collective enhancement factors are one of the least understood 
aspects of nuclear level densities.	



• We define the collective enhancement factor K as the ratio between 
the SMMC and the HFB level densities.	



!
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• The damping of the vibrational and rotational enhancement with 
excitation energy is correlated with the pairing and shape transitions, 
respectively.

Collective enhancement factor 

•  The damping of vibrational enhancement is correlated with the pairing transition 
  
•  A regime of rotational enhancement up to the shape transition. 
 
•  The damping of rotational enhancement is correlated with the shape transition.  

Collective enhancement factors K are one of the least understood topics 
in level densities and are usually treated empirically. 

We define K as the ratio of the state density to the HFB  (intrinsic) density. 

Collective enhancement factors



Nuclear deformations in AFMC

• Mean-field theory is a convenient framework for the study of the 
intrinsic structure of deformed nuclei, but breaks rotational invariance.	



• It also predicts sharp phase transitions, which are washed out in finite 
systems.	



• The challenge is to study nuclear deformation in a framework which 
preserves rotational invariance and captures finite-size effects.
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Nuclear shapes

• The most important nuclear deformation is 
the quadrupole (         ), characterized by  
the mass quadrupole operator

� = 2
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Y. Alhassid,  C. N. Gilbreth and G. F. Bertsch, arXiv:1408.0081 [nucl-th]
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• We study the distribution of        by discretizing the Fourier transform	



!

• Since        is a one-body operator, we can compute its distribution.	



•                  , unlike in other projections (e.g., particle number, spin):  
 

• The distribution          is slow to equilibrate (long decorrelation times).  
To resolve this problem, we average          over carefully chosen 
rotations of         (equivalent to rotating the auxiliary fields).
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FIG. 1: The ground-state distribution Pg.s.(q) vs q/q0 for a
prolate rotor with intrinsic quadrupole moment q0.

moment q0 in its ground state. The distribution of
its spectroscopic quadrupole operator in the laboratory
frame Q20 = q0(3 cos2 θ−1)/2 can be calculated in closed
form. For a prolate rotor (q0 > 0)

Pg.s.(q) =

{ (√
3q0
√
1 + 2 q

q0

)
for − q0

2 ≤ q ≤ q0

0 otherwise
. (5)

This distribution is shown in Fig. 1. The oblate rotor
(q0 < 0) distribution is obtained from (5) by replacing
q with −q and q0 with |q0|. The moments of the dis-
tribution (5) can be calculated from a simple recursion
relation; their values for 2 ≤ n ≤ 5 are given in Table I.

20Ne.— As a simple illustration in nuclear spec-
troscopy, we consider the light deformed nucleus 20Ne.
The orbital part of the single-particle wave functions are
taken to be the states of the N = 2 harmonic oscillator
shell, i.e., the sd-shell. The single-particle eigenvalues of
Q20 are -2, 1, and 4 (in units of b2 [16]) with degeneracies
of 6, 4 and 2, respectively. The many-particle eigenvalues
of Q̂20 for 20Ne in the valence sd-shell thus range from −8
to 16 with a uniform spacing of 3. The distribution Pβ(q)
at β = 0 is just the distribution of these eigenvalues.
We have used this nucleus as a simple test of the

AFMC. Here we take the single-particle energies accord-
ing to the USD interaction [17] and consider an attrac-
tive quadrupole-quadrupole interaction −χQ̃ · Q̃, with
Q̃2µ =

∑
i r

2
i Y2µ(r̂i) and χ = 8π

5
38.5
A5/3 MeV/b4 [18]. In

Fig. 2 we show the quadrupole distribution of the 20Ne
ground state. The discrete nature of the many-particle
eigenvalues of Q̂20 is evident; the distribution is a set δ
functions at integers −8,−5, . . . , 13, 16. The envelope of
the strengths has the skewed shape that looks qualita-
tively similar to the prolate rigid-rotor distribution.
SCMF.— It is instructive to compare our results with

those of the thermal SCMF, e.g., the finite-temperature
Hartree-Fock-Bogoliubov (HFB) approximation. The
HFB solution is characterized by temperature-dependent
one-body density matrix ρβ and pairing tensor κβ . In
general, two types of phase transitions can occur vs
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FIG. 2: The AFMC ground-state quadrupole distribution
Pg.s.(q) for 20Ne. The sharp δ-like peaks demonstrate the
discrete nature of the spectrum of Q̂20 and their envelope
resembles the prolate rigid-rotor distribution in Fig. 1.

temperature, a pairing transition and a deformed-to-
spherical shape transition [19–21]. A shape phase tran-
sition is also the generic result of a Landau theory in
which the order parameter is the quadrupole deforma-
tion tensor [22]. The vast majority of deformed HFB
ground states are axially symmetric [23], i.e., ⟨Q̂2µ⟩ = 0

for µ ̸= 0. The second-order invariant ⟨Q̂ · Q̂⟩ may be
calculated in HFB by using Wick’s theorem

⟨Q̂ · Q̂⟩ = Q2
0 +
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(−)µtr [Q2µ (1− ρβ)Q2−µ ρβ]

+
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, (6)

where Q0 ≡ tr(Q20ρβ) is the intrinsic axial quadrupole
moment. The remaining terms on the r.h.s. of (6) repre-
sent the contributions due to quantal and thermal fluc-
tuations. We shall compare our AFMC results for rare-
earth nuclei with the HFB theory in the next section.
Rare-earth nuclei.— Here we present results for rare-

earth nuclei. The single-particle orbitals are taken from a
Woods-Saxon potential plus spin-orbit interaction; they
span the 50− 82 shell plus 1f7/2 orbital for protons and
the 82−126 shell plus 0h11/2, 1g9/2 orbitals for neutrons.
We use the same interaction as in Refs. [24, 25]. The
quadrupole moments are scaled by a factor of 2 to ac-
count for the model space truncation.
We first examine 154Sm, a strongly deformed nucleus

with an intrinsic quadrupole moment of Q0 ∼ 1600
fm2, as determined experimentally from in-band electric
quadrupole transitions [26]. AFMC Pβ(q) distributions
are shown in Fig. 3 at three temperatures. The distribu-
tions appear continuous because the many-particle eigen-
values of Q̂20 are closely spaced. At the lowest temper-
ature of T = 0.1 MeV (bottom panel), e−βĤ effectively
projects out the ground-state band. We observe the char-
acteristic skewed distribution of the prolate rotor. The
dashed line is the rotor distribution (5) with q0 taken at
the HFB value of Q0. The middle panel is the distribu-
tion at the HFB shape transition temperature, T = 1.14

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1.5 -1 -0.5  0  0.5  1  1.5

P
g
.s

.(
q
)

q (units of q0)

FIG. 1: The ground-state distribution Pg.s.(q) vs q/q0 for a
prolate rotor with intrinsic quadrupole moment q0.

moment q0 in its ground state. The distribution of
its spectroscopic quadrupole operator in the laboratory
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eigenvalues of Q̂20 is evident; the distribution is a set δ
functions at integers −8,−5, . . . , 13, 16. The envelope of
the strengths has the skewed shape that looks qualita-
tively similar to the prolate rigid-rotor distribution.
SCMF.— It is instructive to compare our results with

those of the thermal SCMF, e.g., the finite-temperature
Hartree-Fock-Bogoliubov (HFB) approximation. The
HFB solution is characterized by temperature-dependent
one-body density matrix ρβ and pairing tensor κβ . In
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temperature, a pairing transition and a deformed-to-
spherical shape transition [19–21]. A shape phase tran-
sition is also the generic result of a Landau theory in
which the order parameter is the quadrupole deforma-
tion tensor [22]. The vast majority of deformed HFB
ground states are axially symmetric [23], i.e., ⟨Q̂2µ⟩ = 0

for µ ̸= 0. The second-order invariant ⟨Q̂ · Q̂⟩ may be
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where Q0 ≡ tr(Q20ρβ) is the intrinsic axial quadrupole
moment. The remaining terms on the r.h.s. of (6) repre-
sent the contributions due to quantal and thermal fluc-
tuations. We shall compare our AFMC results for rare-
earth nuclei with the HFB theory in the next section.
Rare-earth nuclei.— Here we present results for rare-

earth nuclei. The single-particle orbitals are taken from a
Woods-Saxon potential plus spin-orbit interaction; they
span the 50− 82 shell plus 1f7/2 orbital for protons and
the 82−126 shell plus 0h11/2, 1g9/2 orbitals for neutrons.
We use the same interaction as in Refs. [24, 25]. The
quadrupole moments are scaled by a factor of 2 to ac-
count for the model space truncation.
We first examine 154Sm, a strongly deformed nucleus

with an intrinsic quadrupole moment of Q0 ∼ 1600
fm2, as determined experimentally from in-band electric
quadrupole transitions [26]. AFMC Pβ(q) distributions
are shown in Fig. 3 at three temperatures. The distribu-
tions appear continuous because the many-particle eigen-
values of Q̂20 are closely spaced. At the lowest temper-
ature of T = 0.1 MeV (bottom panel), e−βĤ effectively
projects out the ground-state band. We observe the char-
acteristic skewed distribution of the prolate rotor. The
dashed line is the rotor distribution (5) with q0 taken at
the HFB value of Q0. The middle panel is the distribu-
tion at the HFB shape transition temperature, T = 1.14
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is similar to that of a prolate rigid rotor,  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FIG. 3: Probability distributions Pβ(q) for 154Sm at T =
0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants

β =

√
5π

3r20A
5/3

⟨Q̂ · Q̂⟩1/2 ; cos 3γ = −
√

7

2

⟨(Q̂× Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(7)
In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[
⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2

]1/2
/⟨Q̂ · Q̂⟩ . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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tion can be obtained from rotationally 
invariant combinations of        , which  
are related to the moments of        .	



• In the intrinsic frame                         
and	



• The intrinsic deformation parameters       can  
be determined from the quadrupole invariants:	
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• Allows us to extract information about  
intrinsic deformation in the rotationally  
invariant framework of SMMC.
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T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants
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In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[
⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2

]1/2
/⟨Q̂ · Q̂⟩ . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.

a2,2 = a2,�2 =
1p
2
� sin �a2,0 = � cos �,

0.1 0.2 0.3

β

γ

0°

20°

40°

60°

4

 0.0005

 0.001

 0.0015

P
(q

)

T=4.0 MeV

 0.0005

 0.001

 0.0015

P
(q

)

T=1.14 MeV

 0

 0.0005

 0.001

 0.0015

-1200 -600 0 600 1200

P
(q

)

q (fm
2
)

T=0.1 MeV

FIG. 3: Probability distributions Pβ(q) for 154Sm at T =
0.1 MeV, T = 1.14 MeV (shape transition temperature) and
T = 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.

MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
There is a small kink at T = 0.4 MeV associated with
the pairing transition, but by and large the curve is flat.
The same is true of the AFMC curve. In contrast, ⟨Q̂ ·Q̂⟩
in 154Sm is very different at low temperatures. In HFB,
the intrinsic quadrupole moment Q0 is large, and it per-
sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
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then be determined from the corresponding invariants
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In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[
⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2
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The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.
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MeV. The distribution is less skewed, but nevertheless it
retains some trace of a prolate character. The HFB exci-
tation energy at this temperature is about 25 MeV, much
higher than energies of interest for spectroscopy and for
the neutron-capture reaction. The top panel shows the
distribution at T = 4 MeV. At this high excitation the
distribution is featureless and close to a Gaussian.
We have also calculated Pβ(q) for 148Sm, which is

spherical in its HFB ground state. They are more sym-
metric and change less with temperature, consistent with
the absence of a coherent quadrupole moment.
Invariants.— Fig. 4 shows the second-order invariant

⟨Q̂ · Q̂⟩ vs temperature T for 148Sm and 154Sm. The
AFMC results (circles) are compared with the HFB re-
sults (dashed lines) of Eq. (6). In HFB, ⟨Q̂ · Q̂⟩ for 148Sm
can be entirely attributed to the fluctuation terms in (6).
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sists up to a temperature of the order of 1 MeV, close
to the spherical-to-deformed phase-transition tempera-
ture. The AFMC results are in semiquantitative agree-
ment at the lowest temperatures showing that the coher-
ent intrinsic quadrupole moment is not an artifact of the
HFB. The sharp kink characterizing the HFB shape tran-
sition [19, 20] is washed out, as is expected in a finite-size
system. Nevertheless a signature of this phase transition
remains in the rapid decrease of ⟨Q · Q⟩ with tempera-
ture. In AFMC deformation effects survive well above
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FIG. 4: ⟨Q·Q⟩ vs temperature T for the spherical 148Sm (left)
and the deformed 154Sm (right). The AFMC results (solid
circles) are compared with the HFB results (dashed lines).

the transition temperature, in that ⟨Q · Q⟩ continues to
be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used

to define effective values of the intrinsic shape pa-
rameters β, γ [27] of the collective Bohr model [28,
Sec. 6B-1a]. The model assumes an intrinsic frame
in which the quadrupole deformation parameters α2µ =√
5π⟨Q̂2µ⟩/3r20A5/3 are expressed as α20 = β cos γ, α22 =

α2−2 = 1√
2
β sin γ, and α2±1 = 0. Effective β and γ can

then be determined from the corresponding invariants

β =

√
5π

3r20A
5/3

⟨Q̂ · Q̂⟩1/2 ; cos 3γ = −
√

7

2

⟨(Q̂× Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(7)
In addition, we can extract a measure ∆β of the fluctu-
ations in β using the second- and fourth-order invariants

(∆β/β)2 =
[
⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2

]1/2
/⟨Q̂ · Q̂⟩ . (8)

The invariants themselves are calculated from the mo-
ments of Pβ(q) using the relations in Table I. As ex-
pected, the deformed 154Sm has a larger deformation
β than 148Sm (0.232 vs 0.137), but a smaller deforma-
tion angle γ (13.4◦ vs 21.6◦) that is closer to an axial
shape. The deformed nucleus is more rigid in that it has
a smaller ∆β/β, 0.51 for 154Sm vs 0.72 for 148Sm.
Summary.— We have demonstrated that the distribu-

tion of the axial quadrupole operator can be computed
in the AFMC method, and that it conveys important in-
formation about deformation and the intrinsic shapes of
nuclei at finite temperature. In particular, the expecta-
tion values of β2, β3 cos 3γ and the fluctuation in β2 can
be extracted as a function of temperature. With these
moments, it should be possible to construct models of the
joint level density distribution ρ(β, Ex) = ρ(Ex)PEx(β),
where ρ(Ex) is the total level density and PEx(β) is the
intrinsic shape distribution at excitation energy Ex. This
joint distribution is an important component in the the-
ory of fission and will be discussed in a future publication.

�, �
(oblate)

(prolate)



Conclusion

• We have circumvented the long-standing odd-particle sign problem for 
the calculation of ground-state energies in shell model calculations.	



•          provides a signature of collective behavior in nuclei, allowing a 
description of the transition from vibrational to rotational collectivity.	



• We have introduced a new method for stabilizing canonical-ensemble 
AFMC calculations which scales as             instead of           .	



• Nuclear deformation can be studied in a framework which preserves 
rotational invariance and finite-size effects, and allows model-
independent extraction of intrinsic deformation parameters.

hJ2iT

O(N3
s ) O(N4

s )

Prospects
• Level densities at fixed intrinsic deformation (input to fission models)	



• Application to other mass regions


