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* Introduction

« Superconducting metallic grains (nanoparticles):
BCS (bulk) regime and fluctuation-dominated regime.

(I) Nanoparticles without spin-orbit scattering
Competition between pairing (superconductivity) and spin exchange
correlations (ferromagnetism).

« Quantum phase diagram
 Transport
 Thermodynamics.

(Il) Nanoparticles with spin-orbit scattering
Response to an external magnetic field: g-factor and level curvature

« Effects of pairing correlations on the g-factor and level curvature statistics.

« (Conclusion



Introduction: ultra-small metallic grains (nanoparticles)

» Discrete energy levels extracted from non-linear
conductance measurements (Ralph et al).

« Experiments on Al, Co, Au, Cu, and Ag grains. f c
Aluminum
mmrlnlatlng (V)
« Ultra-small (nano-scale) grains: %, @
. Aluminum
probe the quantum regime 7 << o Aluminum /  oxide
(O = single-particle level spacing) G nanopamcle
(3-10 nm)

Superconducting grains

Consider materials that are superconductors in the bulk and
characterized by a pairing gap A.



(i) Large Al grains (~ 10 nm) A> 0
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« The Bardeen-Cooper-Schrieffer (BCS) theory is valid (BCS regime)

(i) Small Al grains (~1 nm) A<¢o

« BCS theory breaks down.
“Superconductivity would no longer be possible” (Anderson)

A mesoscopic regime dominated by large fluctuations of the pairing gap
(fluctuation-dominated regime).

Do signatures of pairing correlations survive the large fluctuations ?

For a review, see J. von Delft and D.C. Ralph, Phys. Rep 345, 61 (2001).



(I) Superconducting nanoparticles without spin-orbit scattering

An isolated chaotic grain with a large number of electrons is described by
the universal Hamiltonian [Kurland, Aleiner, Altshuler, PRB 62, 14886 (2000) ]
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* Discrete single-particle levels Ei (spin degenerate) and wave functions follow
random matrix theory (RMT).

« Attractive BCS-like pairing interaction ( P = Za Ta is the pair
operator ) with coupling G >0.

* Ferromagnetic exchange interaction ( S is the total spin of the grain)
with exchange constantJ >0 .

» Corrections ~0O(1/g) are small for large Thouless conductance g.

Competition between pairing and exchange correlations: pairing favors
minimal ground-state spin, while exchange favors maximal spin polarization.



A derivation from symmetry principles
[Y. A., HA. Weidemuller, A. Wobst, PRB 72, 045318 (2005)]
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where v is the (screened) Coulomb interaction

« The randomness of the single-particle wave functions induces
randomness in the two-body interaction matrix elements.

« Cumulants of the interaction matrix elements are determined by requiring
invariance under a change of the single-particle basis (single-particle
dynamics are chaotic).

Averages: There are three (two) invariants in the orthogonal (unitary)
symmetry:

o V:%(VO—JS/z)NZ—(VO/z—JS)N—JSSZ—Gﬁ*ﬁ



Eigenstates of the universal Hamiltonian:
The eigenstates |U¢; B ¥ SM > factorizes into two parts:

U is a subset of doubly occupied and empty levels.
B is a subset of singly occupied levels

(i) |Uc¢ > are zero-spin eigenstates of the reduced BCS Hamiltonian
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(i) | BySM > are eigenstates of S? , obtained by coupling spin-1/2
singly-occupied levels in B to total spin S and spin projection M .
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Exact solution: Richardson’s solution for the reduced BCS plus spin algebra.

For a review, see J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. 76, 643 (2004)




Quantum phase diagram

Z.Ying et al, Phys. Rev. B 74, 012503 (2006)
S. Schmidt, Y.A., K. van Houcke, Europhys. Lett.,80, 47004 (2007)

Exact solution: coexistence of superconductivity and ferromagnetism
in the fluctuation-dominated regime.
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Superconducting (SC)
Reviewed in Y.A., K. Nesterov and S. Schmidt,

Phys. Scr. T 151, 014047 (2012) 0 5=0

AS Bulk limit
(BCS)
« Mean-field approximation (S-dependent BCS) fails to reproduce coexistence.



Transport: Coulomb blockade conductance
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A conductance peak is observed for each electron that tunnels into the dot

» Single-particle energies and wave
______ functions are described by RMT

Peak height G, U

Mesoscopic fluctuations of G
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Conductance in a metallic grain
[S. Schmidt and Y.A, PRL 101, 207003 (2008)]

In sequential tunneling, there are two classes of transport processes:
(i) The electron tunnels into an empty level 4 and blocks it

Before tunneling:
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After tunneling:

S=3/2



(i) The electron tunnels into a singly occupied level A and unblocks it

Before tunneling:

S=1



After tunneling:
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Mesoscopic fluctuations of the conductance peaks

Single-particle energies and wave functions described by random matrix
statistics (GOE).

Peak-spacing statistics (T =0.10)

Peak-spacing distributions
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« Exchange suppresses bimodality while pairing enhances it.
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Peak-height statistics (T =0.10)
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« Exchange interaction suppresses the peak-height fluctuations.
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Mesoscopic signatures of coexistence of pairing and exchange correlations
for A/o0=0.5 and J /0 =0.6:bimodality of peak spacing distribution
(pairing) and suppression of peak height fluctuations (exchange).



Thermodynamics
K. Nesterovand Y.A., PRB 87, 014515 (2013)

Richardson’s solution becomes impractical at higher temperatures.

A finite-temperature method:

H=%¢(ala,+a\a )-GP'P-JS*=H, -JS§

BCS
(i) Exact spin projection method \ ) o
BH BJ S(S+1) _BH Reduced pairing Hamiltonian
B — § BCS
Ire = Z € Tr.e
/

Trace over states with fixed spin S

TreX =2S+D)(Try s X —Trg g, X)

Trace with fixed spin component Sz (calculated by Fourier transform)

See Y.A., Liu and Nakada, PRL 99, 162504 (2007).



(i) Functional integral representation (Hubbard-Stratonovich) for the reduced

pairing Hamiltonian H . : B
- [dr(A@P /G+HIAD)A%(D))
e PHincs = j D[A(7),A*(7)]Te * Y

one-body Hamiltonian in pairing field A(7)
Expand A(T)=A,+ Y A, e“"
(w,, are Matsubara frequencies).

Integrate over A, exactly (static path approximation) and over Am by saddle
point [i.e., random phase approximation (RPA)] around each static A

(iii) Number-parity projection to capture odd-even effects.
Pn = (1+nei”N)/2

n=1(n=-1) describes a projection on even (odd) number of particles

See also R. Rossignoli, N. Canosa and P. Ring, Phys. Rev. Lett. 80, 1853 (1998):
G. Falci, A. Fubini, and A. Mastellone, Phys. Rev. B 65, 140507 (2002).



Comparison with exact results for particular realizations of the
single-particle spectrum

Heat capacity Spin susceptibilty
T I T [ T [ T [ .
Static path (even)
Static path +RPA
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* The static path + RPA+number-parity projection is an accurate method
yet very efficient.



Heat capacity
in nuclei

| Experiment (Oslo)
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Heat capacity
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Fluctuation-dominated regime: exchange correlations suppress the odd-
even signatures of pairing correlations.

BCS regime: exchange correlations enhance the S-shoulder in the even case.



Spin susceptibility
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 Fluctuation-dominated regime: exchange correlations enhance
the fluctuations of the susceptibility.
* BCS regime: exchange correlations enhance re-entrant effect.



(IT) Superconducting nanoparticles with spin-orbit scattering
K. Nesterov and Y.A. (2014)

Spin-orbit scattering breaks spin symmetry but preserves time-reversal.

The exchange interaction is suppressed but the pairing interaction remains
unaffected.

We studied the response of energy levels in the nanoparticle to external
magnetic field B: linear (g factor) and quadratic (level curvature) terms.

In the absence of pairing correlations, the single-particle levels are given by

g, i%g‘uBB+%KBz +o
« Without spin orbit scattering, spin is a good quantum number and g=2.

« With spin-orbit scattering, spin is no longer conserved. The g factor is
suppressed (g<2) and exhibits level-to-level fluctuations.
In general, g has a tensor structure.

The statistical distribution of the g factor was studied using random matrix
theory.

[Brouwer, Waintal and Halperin (2000); Matveev, Glazman and Larkin (2000)]



* Recent advances (use of organic substrates) are providing much better
control over the size and shape the metallic grain.

* Level and g-factor statistics in a gold grain are in agreement with the
symplectic ensemble of RMT (Ralph et al, 2008).
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g factor and level curvature in the presence of interactions

dl/dV curves in tunneling spectroscopy experiments measure the energy
differences AE, between many-particle states with N+1 and N electrons

We assume a one-bottleneck geometry: decay into the ground
state before another electron is added.

For tunneling into the even ground state AE, =E." —E

Many-body levels of the odd nanoparticle are doubly degenerate (Kramers’
degeneracy), and they split in a magnetic field

1 1
AE = AE(O)iEg‘LLBB-FEKBz + ...

g and K reduce to the single-particle level quantities in the
constant-interaction model.



Universal Hamiltonian with strong spin-orbit scattering

1710

H=X¢ea a,-GP'P-BM,

where a =1,2 is the Kramers doublet with energy €, and P’ = zajlajz
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g-factor (linear correction)
For the even ground state:

0IM_10)=0 by time-reversal symmetry
01M.

(M, is odd under time reversal)
For the odd state:

(QIM QY= M:

koot koo

+M?

m2.m?2

since M?®

ml,ml

= (0 by time-reversal symmetry

The many-particle g factor reduces to the single-particle g factor of
the odd-particle blocked orbital k.

g-factor distributions are not affected by pairing correlations.



Level curvature k (quadratic correction)

In second-order perturbation theory (even ground state to odd ground state)

K=2'<Q"MZ'O>N+I |2_2|<®'|MZ|0>N 2

N+l N+1 N N
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In the non-interacting case, k reduces to the single-level curvature

P (r/(l%])*]

0.4
The single-level curvature distribution 0.3:—
is symmetric around K =0. 02}

0.1




Results for the many-particle level curvature distributions

« Single-particle levels follow the Gaussian symplectic ensemble (GSE).

« Exact ClI calculation versus a generalized BCS approach.
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Can be used as a tool to probe pairing correlations in the single-electron
tunneling spectroscopy experiments.



Conclusion
* A superconducting nano-scale metallic grain is characterize by two regimes:
BCS regime A/é& >>1 and fluctuation-dominated regime A/0 <1.
(I) In the absence of spin-orbit scattering:
« Competition between pairing and spin exchange correlations

» Coexistence of superconductivity and ferromagnetism in the fluctuation-
dominated regime

« Effects of exchange correlations on the odd-even signatures of pairing
correlations are qualitatively different in the BCS and fluctuation-dominated
regimes.

(I1) In the presence of spin-orbit scattering:
« Spin exchange correlations are suppressed.
« g-factor statistics are unaffected by pairing correlations.

« Level curvature statistic is highly sensitive to pairing correlations



