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Subtitle: “Les trois longueurs de la supra-
conductivité - Vingt ans aprè”

? Work done with F. Palestini [PRB 89, 224508 (2014)]

• The lengths relevant to superconductivity are:
- the intra-pair coherence length ξpair
- the inter-pair coherence length ξphase
- the inter-particle distance k−1

F

• ξpair at T = 0 was calculated throughout the
BCS-BEC crossover by F. Pistolesi and GCS

[PRB 49, 6356 (1994)]
• Soon after, also ξphase at T = 0 was calculated

throughout the BCS-BEC crossover by FP-GCS

[PRB 53, 15168 (1996)]



ξpair and ξphase at T = 0 vs the coupling:

Here are the results that go twenty years back:

two xi’s vs coupling.pdf
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“Twenty years later” we have extended
the results at finite T (also above Tc):

Three Musketeers.pdf
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Realization of the BCS-BEC crossover:

(kFaF )−1 >∼ +1 (kFaF )−1 <∼ −1

(kF = Fermi wave vector)



... that is, dimers vs Cooper pairs:

<———— ◦ ———— ◦ ———— ◦ ————

+1.0 0.0 −1.0
(kF aF)−1

unitarity point (kF aF)−1 = 0 ⇐⇒ universality !



Extension to finite T → the t-matrix:

Pairing fluctuations beyond mean field are required
at finite T (definitely above Tc) ⇒ the t-matrix Γ0
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How is ξpair defined ?

• ξpair is obtained from the pair correlation function

for opposite-spin fermions:

g↑↓(ρ) =
〈
ψ†↑

(
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ρ

2

)
ψ†↓

(
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ψ↓

(
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ψ↑
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ρ
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ρ = r − r′ relative coordinate

R = (r + r′)/2 center-of-mass coordinate, such that

ξ2
pair =

∫
dρρ2 g↑↓(ρ)∫
dρ g↑↓(ρ)

.



How is ξphase defined ?

• ξphase is obtained from the (static) correlation

function of the order parameter :

F‖(R− R′) =

∫ β

0

dτ 〈Tτ
[
ϕ‖(R, τ)ϕ‖(R

′, τ = 0)
]
〉 − β |∆|2

β = (kB T )−1 and ϕ‖(R) = 1
2|∆|

[
∆∗ϕ(R) + ∆ϕ†(R)

]
where ϕ(R) = v0ψ↓(R)ψ↑(R) such that 〈ϕ(R)〉 = ∆

(v0 = strength of the attractive inter-particle interaction).



Obtaining these two correlations functions for ξpair and ξphase

in terms of a diagrammatic structure :

Above Tc , the two correlation
functions can be obtained in
terms of the same diagram-
matic structure :

(a) ←→ ξpair

(b) ←→ ξphase

⇐= the minimal ingredient
is the series of “maximally
crossed diagrams” X (c).

Note that only the external

variables are different in the

two cases !
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Main results (mostly above Tc) :

• At short distances, g↑↓(ρ) is given by:

g↑↓(ρ) −−−−→
(ρ→0)

(m

4π

)2
∫
dq e iΩνη Γ0(q)

(
1

ρ2
− 2

aFρ

)

where m2
∫
dq e iΩνη Γ0(q) is identified with

the Tan’s contact C =⇒ universality !

That is to say, the same result for C should be
obtained, e.g., also from the tail of the wave-
vector distribution n(k) (here, results at T = 0):
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• from the tail of n(k)

And what about the “nuclear” contact?



(from arXiv:1407.8175v1 [nucl-ex] 30 July 2014)





• Through its spatial oscil-
lations, g↑↓(ρ) provides also
information about the under-
lying Fermi surface (if any).

The numerical results for
ρ2 g↑↓(ρ) at Tc are fitted by:

f (ρ) = A cos(φ0 +
√

2ρkc)

× e−
√

2ρ/`0

for different couplings =⇒
Obtain kc vs (kF aF )−1 •

Compare it with a similar

wave vector kL obtained

from momentum-resolved

radio-frequency spectra �
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N.B. In PRL 106, 060402

(2011) the (Luttinger)

wave vector kL was

extracted from the exper-

imental (with fermionic
40K ultra-cold atoms) and

theoretical energy dis-

tribution curves (EDCs)

obtained at Tc for several

couplings. The wave

vector kL marks the place

where the “backbending”

occurs in the EDCs.

When this backbending

disappears, kL vanishes.
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• At any coupling, ξpair has a finite value at Tc

and is a decreasing function of temperature.

• At high temperatures, ξpair ' 1√
2mkB T

= λT√
4π

where λT is the thermal wavelength.

• Close to Tc , ξphase diverges like (T − Tc)−1/2,

while at high temperatures

ξphase '
3

4

ξpair√
ln
[

6π2

(kF λT )3

] .



=⇒

At any coupling, there
exists a characteristic
temperature T ∗ at
which ξpair(T ) and
ξphase(T ) cross each
other.

Here are some examples:
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Physical meaning of T ∗ :

T ∗ represents a
crossover temperature
below which inde-
pendent pairs (whose
partners are correlated
over the length ξpair)
begin to build up mutual
correlations over the
length ξphase =⇒

precursor pairing phe-
nomena occur below T ∗
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About a curiosity :

Temperature dependence of
ξphase at the mean-field level
below Tc , as obtained from:

- the present approach ——–

- the calculation of the profile
of an isolated vortex in terms
of the BdG equations (•)

[Simonucci et. al., PRB 87,
214507 (2013)].
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Are we forgetting something ? Où est
d’Artagnan ?



Where do ξpair and ξphase appear in the experimental data ?
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From RF spectra of ultra-cold Fermi gases (T � Tc):

exp. data (Ketterle) � =⇒ ξpair

T = 0 mean field N

+ pairing fluct.s •
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(a) Temperature dependence of the length scale over which
superconducting correlations survive in the normal phase
[theory by Kogan, PRB 26, 88 (1982) in the “extreme” BCS limit].

(b) Comparison with the data (•) by E. Polturak et. al., PRL 67, 3038

(1991) - proximity effect in an SS’S superconducting Josephson junction.
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More recent data by Kirzhner & Koren (arXiv:1311.2250v1):

- for an optimally-doped (LSCO-0.18, � ) material

- for an under-doped (LSCO-0.10, • ) material

- our calculation for (kF aF )−1 = −3.0 ———–

and for (kF aF )−1 = −0.4 - - - - - -



And what about Cardinal Richelieu ?



Bell’s equality [PRB 129, 1896 (1963)]:



.. or interpreting a “sum rule” for g↑↓(ρ):
Quite generally, from the definition of g↑↓(ρ) one gets:∫

dρ g↑↓(ρ) =
1

V
(〈N↑N↓〉 − 〈N↑〉〈N↓〉)

where V = volume and Nσ =
∫
drψ†σ(r)ψσ(r) (σ =↑, ↓).

On the other hand, for the “partial” compressibility one gets:

∂n↑
∂µ↓

∣∣∣∣
T ,V

=
1

V kBT
(〈N↑N↓〉 − 〈N↑〉〈N↓〉) .

Comparison between the two expressions yields:

∫
dρ g↑↓(ρ) = kBT

∂n↑
∂µ↓

∣∣∣∣
T ,V

where the limit n↑ → n↓ → n/2 is understood.



The contradiction pointed out by Bell is here apparent =⇒
the above identity would imply

∫
dρ g↑↓(ρ) = 0 for T → 0.

It would also imply that 〈N↑N↓〉 − 〈N↑〉〈N↓〉 = 0 ⇐⇒
signifying a complete suppression of particle fluctuations.

Way out =⇒ this “sum rule” is obeyed by a “conserving”
diagrammatic approximation in the sense of Baym-Kadanoff,

provided this approximation is made directly on the integral of
g↑↓(ρ) and not on g↑↓(ρ) before performing the integration.

Non commutativity of the results ⇐⇒ fluctuations of par-
ticle number evaluated in grand canonical ensemble (“before”)

or canonical ensemble (“after”) =⇒ the issue becomes

irrelevant at high temperatures when classical physics holds !



Bell’s equality vs Baym & Kadanoff:

The pair correlation function g↑↓(ρ) is not a response function
=⇒ it is not bound to satisfy conservation criteria a la

Baym & Kadanoff.

Quite generally, to make connections with response functions
one needs to introduce a “time variable” into the game.

This can be readily achieved by integrating g↑↓(ρ) over ρ:∫
dρ g↑↓(ρ) + V n↑n↓ =

1

V
〈N↑N↓〉 (with β = (kBT )−1)

=
1

V β

∫ β

0
dτ 〈Tτ

[(
eKτN↑e

−Kτ
)
N↓

]
〉 (here is the crucial step !!)

= −
1

β

∫ β

0
dτ

∫
dρ 〈Tτ

[
Ψ1(ρ, τ)Ψ2(0, 0+)Ψ†2(0, 0)Ψ†1(ρ, τ+)

]
〉

= −
1

β

∫ β

0
dτ

∫
dρ G2(ρτ1, 00+2;ρτ+1, 002)

since Nσ commutes with the grand-canonical Hamiltonian K

= H − µ↑N↑ − µ↓N↓ while the density ψ†σ(r)ψσ(r) does not !



Here, the two-particle Green’s function (in the Nambu’s representation)
G2(1, 2; 1′, 2′) =

〈
Tτ [Ψ(1)Ψ(2)Ψ†(2′)Ψ†(1′)]

〉
can be expressed in terms

of the Bethe-Salpeter equation:

G2(1, 2; 1′, 2′) = G(1, 1′)G(2, 2′)− G(1, 2′)G(2, 1′)

−
∫
d3456G(1, 3)G(6, 1′)T (3, 5; 6, 4)G(4, 2′)G(2, 5)

to which criteria of “conserving” approximations apply.

As an example, let’s consider the
series of ladder diagrams for the
many-particle T-matrix ⇐⇒
the “extended” BCS (or RPA) ap-
proximation, which is familiar in
the context of gauge invariance for
the response of a BCS supercon-
ductor to an external electromag-
netic field (P. Anderson):



After a (long but) straightforward calculation, one obtains:

β

∫
dρ g↑↓(ρ)

=

∫
dk G12(k)2 −

∫
dkG11(k)G12(k)

∫
dk ′G22(k ′)G21(k ′)

1[∫
dk ′′G12(k ′′)2

]2
where G11and G11are normal and anomalous single-particle BCS Green’s
functions, and ∫

dk =

∫
dk

(2π)3
kBT

∑
n

On the other hand, at the level of BCS mean field (with a slight imbal-

ance of spin populations) one obtains for
∂n↑
∂µ↓

∣∣∣
T ,V

:

∂n↑
∂µ↓

=
∂n↑
∂µ↓

∣∣∣∣
∆

+
∂n↑
∂∆

∣∣∣∣
µ↑,µ↓

∂∆

∂µ↓

=

∫
dk G12(k)2 −

∫
dk G11(k)G12(k)

∫
dk ′ G22(k ′)G21(k ′)∫

dk ′′ G12(k ′′)2

=⇒ comparison between these two expressions shows that the Bell’s

equality is satisfied at this level of a (conserving) approximation.



With the opposite procedure, of
first approximating (the Bethe-
Salpeter equation for) g↑↓(ρ) by
the extended BCS (or RPA) ap-
proximation and then integrating
it over ρ, marked deviations re-

sult from the values of 1
β

∂n↑
∂µ↓

∣∣∣
T ,V

.

Here are some examples of their
different temperature dependence
for various couplings below Tc :∫
dρ g↑↓(ρ) —————–

1
β

∂n↑
∂µ↓

∣∣∣
T ,V

- - - - - - - - -
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The inset in the central panel shows a corresponding comparison made at

unitarity in the high-temperature regime, where the (non-self consistent)

t-matrix approximation becomes exact and classical physics takes over.



Conclusions :

♣ We have implemented the concept of the wave
function of a Cooper pair at any temperature
and coupling, distinguishing the “internal” from
the “center-of-mass” wave function.

♣ We have presented a description in terms of a
minimal diagrammatic structure which englobes
these concepts in a unified way above Tc .

♣ We have given a well-defined physical meaning
to the crossover temperature T ∗, below which
precursor pairing phenomena begin to show.

♣ Twenty years have not passed in vain !
Thank you for your attention !


