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Subtitle: “Les trois longueurs de la supra-
conductivité - Vingt ans apre”

* Work done with F. Palestini [PRB 89, 224508 (2014)]

e The lengths relevant to superconductivity are:
- the intra-pair coherence length &
- the inter-pair coherence length & pase
- the inter-particle distance k;l

® &pair at T = 0 was calculated throughout the
BCS-BEC crossover by F. Pistolesi and GCS
[PRB 49, 6356 (1994)]

e Soon after, also {ppase at T = 0 was calculated
throughout the BCS-BEC crossover by FP-GCS
[PRB 53, 15168 (1996)]



Epair aNd Epnase at T = 0 vs the coupling:

Here are the results that go twenty years back:
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“Twenty years later” we have extended
the results at finite T (also above T.):
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Realization of the BCS-BEC crossover:
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. that is, dimers vs Cooper pairs:
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unitarity point (kpag) ! =0 <= universality !



Extension to finite T — the t-matrix;

Pairing fluctuations beyond mean field are required
at finite T (definitely above T.) = the t-matrix [y

q-k



How is &pair defined 7

® &oair is obtained from the pair correlation function

for opposite-spin fermions:

e = (5 (5 )l (&~ o (-5 ()
2
- ()
p = r — ' relative coordinate

R = (r +r')/2 center-of-mass coordinate, such that
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How is §ppase defined 7

® &phase is Obtained from the (static) correlation

function of the order parameter :
g 2
AR=R) = [ (T [a(R)o(R.7 = 0)) - 54|

B=(ks T)™' and ¢(R) = 55 [A"0(R) + Ayf(R)]
where ¢(R) = w1 (R)¥+(R) such that (¢(R)) = A

(vo = strength of the attractive inter-particle interaction).



Obtaining these two correlations functions for &, and &pnase
in terms of a diagrammatic structure :

Above T, the two correlation
functions can be obtained in

. (R ! ! @20

terms of the same diagram- (a) ) ]

matic structure : R P

(a) — gpair & 4 t &0
(b) ‘

(b) —— fphase (®0) ®0)

<= the minimal ingredient

is the series of “maximally *‘+ = s T
crossed diagrams” X (c). : '

Note that only the external

variables are different in the

two cases !



Main results (mostly above T¢) :

e At short distances, g (p) is given by:

&.(P) 5 <%)2/dq %1 To(q) (% B ﬁp)

where m? [dq e’ To(q) is identified with
the Tan's contact C = universality !
That is to say, the same result for C should be

obtained, e.g., also from the tail of the wave-
vector distribution n(k) (here, results at T = 0):
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---- BCS mean field - Cgcs = (mApcs)?
—— plus pairing fluctuations

e from the tail of n(k)

And what about the “nuclear” contact?



The Nuclear Contact Exists
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Many-body systems of strongly interacting Fermions are ubiquitous in nature, ranging from High-
Tc superconductors and ultra-cold atomic gases to atomic nuclei and neutron stars. Theoretical
predictions, recently verified by measurements on ultra-cold atomic gases, show that under certain
conditions the universal behavior of systems composed of two kinds of fermions can be described
using a single parameter, simply called the contact, which is a measure of the number of different-
fermion pairs in close proximity. This paper discusses the relevance of the contact for very different
systems: atomic nuclei, made of strongly-interacting neutrons and protons. Here we show that the
high-momentum distributions of protons and neutrons in nuclei, domi d by correlated
neutron pairs mainly in a spin-triplet state, have the same momentum dependence as those of cold
atoms, with a strength described by the contact. We use high-energy electron scattering data to
extract a value for the lear contact X with that observed for atomic gases. This means
that, when the scaled interaction strength of the atomic system is chosen to be equal to that in nuclei,
the probabilities of finding a correlated high- um different-fermion pair in both systems is
about 20%. Atomic nuclei are self-bound, strongly-interacting with a density that is about
25 orders of magnitude larger than of trapped cold atomic gases, so the ability to describe the
correlations in both systems by the same parameter is remarkable and unexpected.

(from arXiv:1407.8175v1 [nucl-ex] 30 July 2014)
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FIG. 3: The contact plotted versus (kra) ', the inverse
of the product of the scattering length and Fermi momen-
tum, as extracted from measurements of ultra-cold two-spin
state atomic systems [5| (6] and atomic nuclei (see Table|I).
The dashed and solid lines are the theoretical predictions of
Refs. [32] and [33| respectively.



e Through its spatial oscil- ;
lations, g, (p) provides also
information about the under-
lying Fermi surface (if any). 0.

The numerical results for
p* gr.(p) at T, are fitted by:

P° 9ru(p)/KE

f(p) = Acos(do+ V2pke)
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N.B. In PRL 106, 060402
(2011) the (Luttinger)
wave vector k; was
extracted from the exper-
imental (with fermionic
*0K ultra-cold atoms) and
theoretical energy dis-
tribution curves (EDCs)
obtained at T, for several
couplings. The wave
vector k; marks the place
where the “backbending”
occurs in the EDCGs.
When this backbending

disappears, k; vanishes.

EDC left peak position / Ep
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e At any coupling, &yair has a finite value at T,

and is a decreasing function of temperature.

e At high temperatures, &pair \/#T — \;‘4%

where \7 is the thermal wavelength.

e Close to T, &pnase diverges like (T — T.)7%/2,

while at high temperatures

3 Epai
gphase = - a2
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At any coupling, there
exists a characteristic
temperature T* at
which & (T)  and
Eonase(T)  cross  each
other.

Here are some examples:
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Physical meaning of T :

T represents a
crossover  temperature
below  which inde-

pendent pairs (whose
partners are correlated
over the length &)
begin to build up mutual
correlations over the
|ength fphase —

precursor pairing phe-
nomena occur below T*
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About a curiosity :

Temperature dependence of
Ephase at the mean-field level
below T, as obtained from:

- the present approach

- the calculation of the profile
of an isolated vortex in terms
of the BdG equations ()

[Simonucci et. al, PRB 87,
214507 (2013)].
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Are we forgetting something 7  Ou est
d’'Artagnan 7




Where do &pair and pnase appear in the experimental data ?

o

T=(0.1,0.1,0.2) T¢

»> o+
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(keap) !
From RF spectra of ultra-cold Fermi gases (T < T,):

exp. data (Ketterle) ™ — & pair
T = 0 mean field A

+ pairing fluct.s °
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(a) Temperature dependence of the length scale over which
superconducting correlations survive in the normal phase
[theory by Kogan, PRB 26, 88 (1982) in the “extreme” BCS limit].

(b) Comparison with the data (e) by E. Polturak et. al., PRL 67, 3038
(1991) - proximity effect in an SS'S superconducting Josephson junction.
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More recent data by Kirzhner & Koren (arXiv:1311.2250v1):

- for an optimally-doped (LSCO-0.18, W ) material
- for an under-doped (LSCO-0.10, e ) material
- our calculation for (kg af)™t = -3.0

and for (kpap)™t=-0.4



And what about Cardinal Richelieu ?




Bell's equality [PRB 129, 1896 (1963)]:




. or interpreting a “sum rule” for g/ (p):

Quite generally, from the definition of gy (p) one gets:

[ dpite) = 1 (NaN) = (N (w,)

where V = volume and N, = [dr ¢! ()¢, (r) (o =1,]).
On the other hand, for the “partial” compressibility one gets:

1

Om) VET (M) — (N (W)

o,

Comparison between the two expressions yields:

T,V

3n¢

/ dpg(p) =ksT ——

APy,

where the limit ny — n; — n/2 is understood.



The contradiction pointed out by Bell is here apparent —
the above identity would imply [dpg; (p) =0 for T — 0.

It would also imply that (NyNj) — (Ny)(N)) =0 <—
signifying a complete suppression of particle fluctuations.

Way out = this “sum rule” is obeyed by a “conserving”
diagrammatic approximation in the sense of Baym-Kadanoff,
provided this approximation is made directly on the integral of
gr1(p) and not on gy (p) before performing the integration.

Non commutativity of the results <= fluctuations of par-
ticle number evaluated in grand canonical ensemble (“before”)

or canonical ensemble (“after’) = the issue becomes
irrelevant at high temperatures when classical physics holds !



Bell's equality vs Baym & Kadanoff:

The pair correlation function g, (p) is not a response function
= it is not bound to satisfy conservation criteria a /a
Baym & Kadanoff.

Quite generally, to make connections with response functions
one needs to introduce a “time variable” into the game.

This can be readily achieved by integrating g+, (p) over p:

1
[dperile)+ Vnn, = 3 (winy) (with 6 = (ks T)~?)

1 8
= / dr <TT[<8KTNT67KT) N¢]> (here is the crucial step !!)
VB .Jo

B
,%/Od‘r/dp<Tr[\U1(p,‘r)‘U2(0, 0+)W§(0,0)Wi(p, T+)]>
B
= 7%/ dT/dP Ga(p71,0012; prT1,002)
0

since N, commutes with the grand-canonical Hamiltonian K
= H — uyNy — 11 Ny while the density ¥ (r)i,(r) does not !



Here, the two-particle Green's function (in the Nambu's representation)
G2(1,2;17,2") = (T [W(1)W(2)WT(2')WT(1")]) can be expressed in terms
of the Bethe-Salpeter equation:

Go(1,2;1,2') = G(1,1)G(2,2') — 6(1.2') G(2,1')
_ /d3456g(1,3)g(671’) T(3,5:6,4) G(4,2) G(2,5)

to which criteria of “conserving” approximations apply.

As an example, let's consider the

series of ladder diagrams for the *+d I lR'“q k+q I le"q

many-particle T-matrix = T(q) = i

the i‘exte.nded” ECS -(or RPA) ap- L v w L LI o

proximation, which is familiar in

the context of gauge invariance for kea | K" k'sq l K'+q
—~ L < R <

the response of a BCS supercon- + N

ductor to an external electromag- - s

netic field (P. Anderson): AT e

+ s



After a (long but) straightforward calculation, one obtains:

B/Qp&dm

_ / dk Gua (k)2 — / kG (K)Gra(K) / Ak Goa (K )Gos (K') =

[fdk//glz(k//)z] 2

where Gii1and Giiare normal and anomalous single-particle BCS Green's

functions, and dk
dk = | —= kg T
/ / (2m)® Z

On the other hand, at the level of BCS mean field (with a slight imbal-

ance of spin populations) one obtains for %

om _ Om| | Om) 94
8;@ 8,[14, A oA [t gty 8/@

dk Gr1(k) Gra(k) [dk' Gao (k") Gor(K')
dk szf
/ g12( ) fdk”gu(k“)

== comparison between these two expressions shows that the Bell’s

TV

equality is satisfied at this level of a (conserving) approximation.



0.4

With the opposite procedure, of (@) (kpap) "= -1

: o 03

first approximating (the Bethe-

Salpeter equation for) gy,(p) by 0.2

the extended BCS (or RPA) ap- 0.1

proximation and then integrating

it over p, marked deviations re-
ony
Ol v

o

sult from the values of %

Here are some examples of their
different temperature dependence
for various couplings below T,:

_[dp gnlp) ﬁ“dm/dm

[dper(p)
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The inset in the central panel shows a corresponding comparison made at

unitarity in the high-temperature regime, where the (non-self consistent)

t-matrix approximation becomes exact and classical physics takes over.



Conclusions :

& We have implemented the concept of the wave
function of a Cooper pair at any temperature
and coupling, distinguishing the “internal” from
the “center-of-mass” wave function.

& We have presented a description in terms of a
minimal diagrammatic structure which englobes
these concepts in a unified way above T..

& We have given a well-defined physical meaning
to the crossover temperature T*, below which
precursor pairing phenomena begin to show.

& Twenty years have not passed in vain !
Thank you for your attention !



