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Independent
Particle

Collective
Phonon

We can see Nuclei organize as a many-body system
using Two Degrees of Freedom

Hartree-Fock mean Field Random Phase Approximation



120Sn excitation spectrum

experiment

HF (SLy4)
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120Sn excitation spectrum



Superfluidity

Different behaviour from 

even to odd nuclei!

Fermions pair together in 
bound states (Cooper pairs): 
(quasi)bosons

Odd-Even Staggering

Δ 𝐴 =
𝐵𝐸 𝐴−1 +𝐵𝐸 𝐴+1 −2𝐵𝐸(𝐴)
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3-point formula



120Sn excitation spectrum

experiment

HFB (v14)



Correlated Particle-Hole excitations give 

Collective Excitations.

(Quasi) Random Phase 
Approximation

120Sn

Scattering Vertex

𝑓 𝑗1, 𝑗2, 𝜆𝜈
𝜋 = 𝑗2 𝑘𝜆𝜋 𝑗1 𝜆 𝛼𝜆 0

𝑔 𝑗1, 𝑗2, 𝜆𝜈
𝜋𝐿 =  𝑗1𝑚1| 𝐺0 𝑟 + 𝐺0

′ 𝑟′ 𝜏 ⋅ 𝜏′

× 𝜎 ⋅ 𝜎′𝛿(𝑟−𝑟′)|  𝑗2 ⊗ 𝜆𝜈
𝜋𝐿 𝑗1𝑚1

QRPA



The Two Degrees of Freedom
Talk between each other…

j2

j1

λπ
ν

Scattering Vertex
(QRPA)
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…and the correlations renormalize the 
properties of the system.

This Self-Energy process change the 
particle wavefunction, thus:

Change Energy

Fragment Single Particle Strength

Open other reaction channels

Challenge the shortcomings of Mean Field!

λπ



= + + + +…

Green’s function can consistently propagate perturbation 
processes to the infinite order:

+

Ist order IInd order

Nuclear Field Theory Approach
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iG HF

iG HF

ii GG += 
 11 HF

ii GG

Dyson Equation

+

Nuclear Field Theory Approach




 11 HF

ii GG



Lehmann Representation of Green’s Functions


 11 HF

ii GG



Energy dependent Vertices

Strength Function



120Sn excitation spectrum

experiment

HFB



HFBexp

NFT

Quasiparticle strength can now be compared with 
experiment

120Sn d5/2



HFBexp

NFT

Quasiparticle strength can now be compared with 
experiment

120Sn d5/2

120Sn(p,d) 119Sn

DWBA calculations
G. Potel



HFBexp

NFT

Quasiparticle strength can now be compared with 
experiment

120Sn d5/2

120Sn(p,d) 119Sn

DWBA calculations
G. Potel



Odd-Even Staggering

Δ 𝐴



Bare
Nucleon-Nucleon

Interaction

Induced
Interaction



We start from a bare
v14 pairing interaction…

Δ𝑒𝑥𝑝

Bare - BCS



…that get renormalized
by Self Energy processes…

Δ𝑒𝑥𝑝

Bare - BCS
Bare – renorm.



…but a novel contribution arises: 
induced interaction (correlations)…

Δ𝑒𝑥𝑝

Bare - BCS
Bare – renorm.
Induced



…getting the total value close 
to the experiment!

Δ𝑒𝑥𝑝

Bare - BCS
Bare – renorm.
Induced
Total = Bare + Induced

+



We have a then consistent picture 
that explains

Spectroscopic Factors

Pairing Gap

 𝐸𝑗

 𝑢𝑗  𝑣𝑗

Independent particle excitation energies

These are inputs for…



Two particle transfer cross section
IInd order DWBA

2250 ± 352 𝜇𝑏 3024 ± 907 𝜇𝑏Experimental

1375 𝜇𝑏 1847 𝜇𝑏Only Bare
2190 𝜇𝑏 3224 𝜇𝑏Total Pairing

Ep =21 MeV Ep =40 MeV



Electromagnetic Spectrum



Reaction Channel: Multiplet

quasiparticle state 
coupled

to the core vibrations

ℎ11/2 ⊗ 2
7/2−15/2



Theory Experiment

Reaction Channel: Multiplet
ℎ11/2 ⊗ 2

7/2−15/2



Considering correlations between valence and 
the core by the means of NFT we have:

 Increased Hartree-Fock excitation spectrum density. 
 Introduced fragmentation of quasiparticle strength 

and compared with experimental 1 particle transfer 
cross sections.

 Increased the pairing correlations and pairing gap 
energy of realistic bare interaction closer to the 
experimental value, and reproduced the 2-particle 
transfer cross sections.

 Opened other reaction channels, like coupling of 
core excitations and quasiparticles.



Nuclide Chart

Z

N

r-process
relevant



J. Mendoza-Temis, PhD Thesis, 2014

r-process is Mass Model sensitive

A



r-process is Pairing sensitive



Like a feather on 
an unstable Rock





S. Gandolfi et al.

K. Kucharek et al. ZPA334 (1989)



Nuclide Chart

Z

N

Not everything is r-process



Nuclide Chart

Z

N

The Only Thing
That’s important





𝑀𝐶 = 1.4 × 2𝑌𝑒 𝑀𝑆



Urca Cooling Heating

20𝑁𝑒 (𝑄𝑒𝑐 = −7.5 MeV )

24𝑀𝑔(𝑄𝑒𝑐 = −3.4MeV )

𝑒− conserving 𝑒− decreasing



Competition Between

Temperature and

Forbideness



𝜆𝑒𝑐 =
𝑙𝑛2

𝐾
 
|𝑄|

+∞

𝐸𝜈
2 𝐶 𝐸 𝐸𝑝 𝑓 𝐸, 𝑘𝑇, 𝜇 𝐹 𝑍, 𝐸 𝑑𝐸

Shape Factor
(Nuclear Physics)

Fermi Distribution
(Statistical Description)

Kinematic

𝐶 𝐸 ∝ 𝑓 𝐻𝛽 𝑖
2

Fermi Function

𝐶 = 𝑐𝑜𝑛𝑠𝑡 (allowed)

𝐶(𝐸) (forbidden)

(2° forbidden)𝐶 ~ 𝐸4



(1989)

𝐶 = 1.23 × 10−6

(exp. upper limit)

Martinez-Pinedo et al. (2014)

PRC 89:045806

Estimate needed!
(possibly experiment)

𝑇 = 0.4 × 109 K

𝑇 = 1.0 × 109 K



𝜆𝛽−
=

𝑙𝑛2

𝐾
 
1

𝑄

𝐸𝜈
2 𝐸𝑝 𝐶 𝐸 𝐹 𝑍, 𝐸 𝑑𝐸

β-spectrum20𝐹(𝑔𝑠 2+ ) → 20𝑁𝑒(𝑔𝑠 0+ )

𝐵𝑅 = 1.3 × 10−6

[𝑠
−
1
𝑀

𝑒
𝑉

−
1

]

8

16



𝑔𝑠 0+ → 𝑔𝑠(2+)

forbidden

Electron Capture Decay Rate



𝑇 = 0.4 × 109 K

𝑇 = 1.0 × 109 K

𝑒𝑐



𝑇 = 0.4 × 109 K

𝑇 = 1.0 × 109 K

𝛽−

0+ → 2+

dominant until
𝑇~0.7 × 109 K



Electron Screening effect



𝑇 = 0.4 × 109 K





Thank you











courtesy of Alex Brown
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A smarter approach: Physics

sd- shell

20𝑁𝑒

20𝐹

Shell Model



Neutrino EC-Spectrum
𝑇 = 0.4 × 109 K

𝑇 = 1.0 × 109 K

𝜌𝑌𝑒 = 109.5𝑔/𝑐𝑚3



DWBA

projectile

Target

Entrance Channel

ejectile

Residue

Exit Channel
𝑑𝜎

𝑑Ω
~ ϕ𝛼(ξ𝛼) χ𝛼(𝑟𝛼) 𝑉𝑖𝑛𝑡 ϕ𝛽(ξ𝛽)χ𝛽(𝑟𝛽)

2

Internal Structure 
Wavefunction

Relative Motion: 
Distorted Wave

DWBA approximate the entrance channel as a factorization of 
internal and relative coordinates, consider relative motion as 
Distorted Plain Wave, and calculate matrix element between this 
approximated <intial| and |final> state.



DWBA



2-particle transfer DWBA

tritium

A
Entrance Channel

proton

A+2
Exit Channel

tritium

A
Entrance Channel

deuton

A+1
Intermediate Channel

proton

A+2
Exit Channel

Ist order DWBA: 

Simultaneus transfer

(𝐴, 𝑡) 𝑉𝑖𝑛𝑡 (𝐴 + 2, 𝑝)

IInd order DWBA: 

Successive transfer

We need the structure information to calculate the 
correlation between the two transferred neucleons, so 
the probability of 1 neutron in the target and 1 in the 
ejectile, in the intermediate state



















112𝑆𝑛(𝑝, 𝑡)110𝑆𝑛(𝑔𝑠)

𝐸𝑝 = 26 MeV

+ + + +

experiment

total

successive

simultaneous

non-orthogonal

sim+non-orth


