Nuclear Shell Structure, Nuclear Forces and Nuclear Weak Processes

Toshio Suzuki
Nihon University, Tokyo

NORDITA 2014
Sept. 23, 2014
1. New shell-model Hamiltonians with proper tensor forces

- SFO: p-shell, p-sd shell
- GXPF1: pf-shell
- VMU (monopole-based universal interaction): sd-pf, p-sd

Spin modes - GT strengths - are well described.
Applications to nuclear weak processes - ν-nucleus and e-capture reactions - at stellar environments, and nucleosynthesis in supernova explosions

2. Three-nucleon forces and repulsive corrections in $T=1$ monopoles

Structure of neutron-rich isotopes: C, O, Ca
Ca isotopes: pf vs $pf_{9/2}$
New shell-model Hamiltonians and successful description of Gamow-Teller (GT) strengths and M1 transitions & moments

SFO (p-shell, p-sd shell): GT in 12C, 14C, M1 moments

GXPF1J (fp-shell): GT in Fe and Ni isotopes, M1 strengths
Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)
Suzuki, Honma et al., PR C79, (2009)

VMU (monopole-based universal interaction)
Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501

* important roles of tensor force

Monopole terms of V_{NN}

$$V_T^{M} (j_1 j_2) = \frac{\sum (2J+1) <j_1,j_2;JT | V | j_1,j_2;JT>}{\sum_j (2J+1)}$$

- $j_>- j_- :$ attractive
- $j_>- j_>, j_- - j_- :$ repulsive

G-matrix vs phenom. interactions

Tensor force \rightarrow characteristic orbit dependence: kink

More repulsion than G in $T=1$
More attraction than G in $T=0$
Monopole terms: p-sd shell

$p_{1/2}$-$p_{3/2}$ (T=0) monopole and spe gap $\varepsilon(p_{1/2})$-$\varepsilon(p_{3/2})$ enhanced

Proper shell evolutions toward drip-lines: Change of magic numbers

$N=8$
Energy levels of p-shell nuclei

Fig. 1. Comparison of calculated and experimental energy levels for $^{10-13}\text{B}$ isotopes. Calculated energy levels are obtained for the PSDMK2, and the present and the PSDWBp Hamiltonians.

Fig. 2. Comparison of calculated and experimental energy levels for $^{12-15}\text{C}$ isotopes. Calculated energy levels are obtained for the PSDMK2, and present and the PSDWBp Hamiltonians.
B(GT) values for $^{12}\text{C} \rightarrow ^{12}\text{N}$

<table>
<thead>
<tr>
<th>PSZMK2</th>
<th>OFU*</th>
<th>PSDWBP</th>
</tr>
</thead>
</table>

Magnetic moments of p-shell nuclei

B(GT) values for $^{14}\text{N} \rightarrow ^{14}\text{C}$

SFO: $g_A^{\text{eff}}/g_A = 0.95$

Space: up to 2-3 hw

Negret et al., PRL 97 (2006)

SFO*: $g_A^{\text{eff}}/g_A = 0.95$

B(GT: ^{12}C)_{cal} = experiment

FIG. 3: Experimental B(GT) distributions, compared to the theoretical result of Aroua et al. [14], where the B(GT) to the 2^+ state was scaled down by a factor of 3.
Systematic improvements in the magnetic moments and GT transitions in p-shell nuclei (12C, 14C).

SFO*: $g_A^{\text{eff}}/g_A = 0.95 (0 - 2, 3\text{hw})$

$B(\text{GT: } 12\text{C})_{\text{cal}} = \text{experiment}$

$^{12}\text{C} (\nu_e, e^-) ^{12}\text{N} \text{ g.s.}$

Nucleosynthesis processes of light elements

Enhancement of ^{11}B and ^7Li abundances in supernova explosions
Normal hierarchy

\(\nu_\mu, \nu_\tau \to \nu_e \)

Increase in the rates of charged-current reactions

\(^4\text{He}(\nu_e,e^-p)^3\text{He} \)

\(^{12}\text{C}(\nu_e,e^-p)^{11}\text{C} \)

in the He layer
"Inverted Mass Hierarchy" is statistically more preferred!

First Detection of $^7\text{Li}/^{11}\text{B}$ in SN-grains

- T2K, MINOS (2011)
- Double CHOOZ, Daya Bay, RENO (2012)

$\sin^2 2\theta_{13} = 0.1$
- New $\nu^{-13}\text{C}$ cross sections with SFO

^{13}C is a good target for low-energy ν detection; $E<10$ MeV
Suzuki, Balantekin and Kajino, PR C86, 015502 (2012)

$E_{th}(^{12}\text{C}) = 13$ MeV

^{13}C: 1% natural abundance in C isotopes

- New $\nu^{-16}\text{O}$ cross sections with SFO-tls

Full inclusion of tensor force in p-sd cross shells:

- tensor $\rightarrow \pi+\rho$
- LS $\rightarrow \sigma+\rho+\omega$

\[
\frac{\sigma(^{16}\text{O}(\nu, \nu'\alpha)p^{11}\text{B}))}{\sigma(^{12}\text{C}(\nu, \nu'p)^{11}\text{B})} \approx 20\%
\]

^{11}B is produced from ^{16}O also
- ν-40Ar reactions

Liquid argon = powerful target for SNν detection

VMU= Monopole-based universal interaction

tensor force: bare\approxrenormalized

O sd-pf shell: 40Ar (ν, e^{-}) 40K
SDPF-VMU-LS
sd: SDPF-M (Utsuno et al.)
fp: GXPF1 (Honma et al.)
sd-pf: VMU + 2-body LS
$(sd)^{-2}$ $(fp)^{2}$: 2hw

B(GT) & ν-40Ar cross sections
Solar ν cross sections folded over 8B ν spectrum

Important roles of tensor force

Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen
PRL 104 (2010) 012501

Suzuki and Honma, PR C87, 014607 (2013)
$^40\text{Ar} \rightarrow ^{40}\text{K}$

p,n Bhattacharya et al., PR C80 (2009)

$^40\text{Ar} (\nu, e^-)^{40}\text{K}$
GT+IAS
$E_e > 5\text{ MeV} : \text{ICARUS}$

SDPF-VMU-LS
WBT

EXP.

$\Sigma B(\text{GT})$

$E_x (\text{MeV})$

$B(\text{GT})$

$E_x (\text{MeV})$

$\sigma (10^{-42}\text{cm}^2)$

GT+IAS
GT
SDPF-VMU-LS

$E_x (\text{MeV})$
Solar ν cross sections folded over $^8B\nu$ spectrum

$^40\text{Ar} (\nu, e^-)^{40}\text{K}$

\begin{align*}
\text{SDPF-VMU} & \quad \text{Ormand} \\
\begin{array}{c}
\sigma (10^{-43} \text{ cm}^2) \\
18 \quad 14 \quad 12 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \quad 0
\end{array}
\end{align*}

IAS: $C_0 + L_0 \approx [(q^2 - \omega^2)/q^2]^2 \times C_0$; \hspace{1cm} + C_0 only

GT: $E_{1^5} + M_1 + C_{1^5} + L_{1^5}$; \hspace{1cm} + E_{1^5} only

p: SFO, sd: SDPF-M (Utsuno)

p-sd: VMU tensor = $\pi + \rho$,
2-body LS = $\sigma + \rho + \omega$ (M3Y)
central = renormalized VMU
- \(\nu - ^{56}\text{Fe}, \nu - ^{56}\text{Ni} \) and \(^{56}\text{Ni} \) (e\(^{-}\), \(\nu \)) \(^{56}\text{Co} \) Reactions

New shell-model Hamiltonians in pf-shell

GXP F1: Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

KB3: Caurier et al, Rev. Mod. Phys. 77, 427 (2005)

- KB3G \(A = 47-52 \) KB + monopole corrections
- GXP F1 \(A = 47-66 \)

- Spin properties of fp-shell nuclei are well described

\[
B(\text{GT}) \text{ for } ^{58}\text{Ni} \quad g_A^{\text{eff}}/g_A^{\text{free}} = 0.74 \quad ^{56}\text{Fe} \rightarrow ^{56}\text{Co}
\]

Fujita et al.

- \(B(\text{GT}) = 9.5 \)
- \(B(\text{GT})_{\text{exp}} = 9.9 \pm 2.4 \)
- \(B(\text{GT})_{\text{KB3G}} = 9.0 \)

SD + \ldots : RPA (SGII)

\[
\text{SM(GXP F1J)+RPA(SGII)} \quad 259 \times 10^{-42} \text{cm}^2
\]

RHB+RQRPA(DD-ME2) \(263 \)

RPA(Landau-Migdal force) \(240 \)

\[
\langle \sigma \rangle_{\text{exp}} = (256 \pm 108 \pm 43) \times 10^{-42} \text{ cm}^2
\]

\[
\langle \sigma \rangle_{\text{th}} = (258 \pm 57) \times 10^{-42} \text{ cm}^2
\]
e-capture rates on 56Ni in stellar environments: $\rho Y_e = 10^7 \rightarrow 10^{10}$ g/cm3

Sasano et al., PRL 107, 202501 (2011)

Type-Ia supernova explosion

Accretion of matter to white-dwarf from binary star
→ supernova explosion when white-dwarf mass $>$ Chandrasekhar limit
→ 56Ni (N=Z)
→ 56Ni (e^-, ν) 56Co $Y_e = 0.5 \rightarrow Y_e < 0.5$ (neutron-rich)
→ production of neutron-rich isotopes; more 58Ni
Decrease of e^--capture rate on 56Ni
→ less production of 58Ni.

Problem of over-production of 58Ni may be solved.

Suzuki, Honma, Mao, Otsuka, Kajino, PR C83, 044619 (2011)
Problem of over-production of ^{58}Ni

Nucleosynthesis in Chandrasekhar mass models for Type Ia supernovae and constraints on progenitor systems and burning-front propagation

Koichi Iwamoto,1,2,3 Franziska Brachwitz,4 Ken'ichi Nomoto,1,2,3 Noruhiro Kishimoto,1 Hideyuki Umeda,2,3 W. Raphael Hix,5,5 and Friedrich Karl Thielemann3,4,5

Received 1999 January 11; accepted 1999 July 29

The abundance of the Fe group, in particular of neutron-rich species like ^{48}Ca, ^{50}Ti, ^{54}Cr, $^{54,58}\text{Fe}$, and ^{58}Ni, is highly sensitive to the electron captures taking place in the central layers. The yields obtained from such a slow central and ignition densities to put new constraints on the above key quantities.

\[Y_{e} \]

\[\rho_{9} = 0.1, 0.3, 0.6 \]

\[\text{KGB3, GXPF1} \]

\[T_{9} = 4 \]

\[\text{Ratio between } ^{58}\text{Ni} / ^{56}\text{Ni} \]

\[\text{GXPF1} \rightarrow ^{58}\text{Ni} / ^{56}\text{Ni} \text{ decreases} \]
Evolution of $8-10M_\odot$ stars and nuclear URCA processes

- $M=0.5 \sim 8M_\odot$
 He burning \rightarrow C-O core \rightarrow C-O white dwarfs

- $M > 10M_\odot$
 \rightarrow Fe core \rightarrow core-collapse supernova explosion

- $M=8M_\odot \sim 10M_\odot$
 C burning \rightarrow O-Ne-Mg core
 \rightarrow (1) O-Ne-Mg white dwarf (WD)
 \rightarrow (2) e-capture supernova explosion (collapse of O-Ne-Mg core induced by e-capture) with neutron star (NS) remnant
 \rightarrow (3) core-collapse (iron-core collapse) supernova explosion with NS (neon burning shell propagates to the center)

Fate of the star is sensitive to its mass and nuclear e-capture and \(\beta\)-decay rates; Cooling of O-Ne-Mg core by nuclear URCA processes determines (2) or (3).

Detailed e-capture and beta-decay rates for URCA nuclear pairs in 8-10 solar-mass stars

Nuclear URCA process

\[^{23}Na + e^- \rightarrow ^{23}Ne + \nu \]
\[^{23}Ne \rightarrow ^{23}Na + e^- + \bar{\nu} \]
\[^{25}Mg + e^- \rightarrow ^{25}Na + \nu \]
\[^{25}Na \rightarrow ^{25}Mg + e^- + \bar{\nu} \]
\[^{27}Al + e^- \rightarrow ^{27}Mg + \nu \]
\[^{27}Mg \rightarrow ^{27}Al + e^- + \bar{\nu} \]

Cooling of O-Ne-Mg core of stars
→ ‘e-cap.SNe’ or ‘core-collapse SNe’

Richter, Mkhize, Brown, PR C78, 064302 (2008)
$^{23}\text{Ne}, \; ^{23}\text{Na}$

\begin{align*}
\Delta \log_{10}(\rho Y_e) &= 0.06 \\
\Delta \log_{10}(\rho Y_e) &= 0.2
\end{align*}

8.0 < $\log_{10}(\rho Y_e)$ < 9.2 in steps of 0.02

8.0 < $\log_{10} T$ < 9.2 in steps of 0.05

cf: Oda et al., At. Data and Nucl. Data Tables 56, 231 (1994): $\Delta \log_{10}(\rho Y_e) = 1.0$

URCA density at $\log_{10} \rho Y_e = 8.92$ for $A = 23$
$(^{25}\text{Na}, \ ^{25}\text{Mg})$

Cooling of O-Ne-Mg core by the nuclear URCA processes

URCA density at $\log_{10} \rho Y_e = 8.78$

$(^{27}\text{Mg}, \ ^{27}\text{Al})$

No clear URCA density for $A=27$

8.8M_{\odot} star collapses triggered by subsequent e-capture on ^{24}Mg and ^{20}Ne (e-capture supernova explosion)

Toki, Suzuki, Nomoto, Jones and Hirschi, PR C 88, 015806 (2013)
Table 1

Summary of Model Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>8.2 M_\odot</th>
<th>8.7 M_\odot</th>
<th>8.75 M_\odot</th>
<th>8.8 M_\odot</th>
<th>9.5 M_\odot</th>
<th>12.0 M_\odot</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{C}{\text{ign}}/M\odot$</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$M^{\text{Ne}}{\text{ign}}/M\odot$</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.93</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>$T^{\text{Ne}}_{\text{ign}}/\text{GK}$</td>
<td>---</td>
<td>---</td>
<td>1.318</td>
<td>1.311</td>
<td>1.324</td>
<td>---</td>
</tr>
<tr>
<td>$\psi^{\text{Ne}}_{\text{Ne}}$</td>
<td>---</td>
<td>---</td>
<td>46.0</td>
<td>15.2</td>
<td>5.6</td>
<td>---</td>
</tr>
<tr>
<td>$\rho^{\text{Ne}}_{\odot}/g \text{ cm}^{-3}$</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.343×10^8</td>
<td>7.396×10^7</td>
<td>1.730×10^7</td>
</tr>
<tr>
<td>M_{tot}/M_\odot</td>
<td>7.299</td>
<td>7.910</td>
<td>8.572</td>
<td>8.544</td>
<td>9.189</td>
<td>11.338</td>
</tr>
<tr>
<td>M_{en}/M_\odot</td>
<td>6.031</td>
<td>6.559</td>
<td>7.210</td>
<td>7.174</td>
<td>6.702</td>
<td>8.023</td>
</tr>
<tr>
<td>M_{He}/M_\odot</td>
<td>1.26721</td>
<td>1.35092</td>
<td>1.36230</td>
<td>1.36967</td>
<td>2.48733</td>
<td>3.31580</td>
</tr>
<tr>
<td>M_{CO}/M_\odot</td>
<td>1.26695</td>
<td>1.35086</td>
<td>1.36227</td>
<td>1.36964</td>
<td>1.49246</td>
<td>1.88602</td>
</tr>
<tr>
<td>Remnant</td>
<td>ONc WD</td>
<td>ONc WD/NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>SN type</td>
<td>---</td>
<td>---</td>
<td>EC-SN (IIP)</td>
<td>EC-SN (IIP)</td>
<td>CC-SN (IIP)</td>
<td>CC-SN (IIP)</td>
</tr>
</tbody>
</table>

Note: Various elements and properties are listed in columns corresponding to different masses.

Graphs

- **Left Graph:**
 - $8.2 M_\odot$, $8.7 M_\odot$, $8.75 M_\odot$, $8.8 M_\odot$, $9.5 M_\odot$, and $12.0 M_\odot$ models are plotted on the graph.
 - The trend lines indicate variations in T_\odot vs. $\rho_{\odot}/g \text{ cm}^{-3}$ for different core masses.

- **Right Graph:**
 - $X_c^{(24)}\text{Na}$, $X_c^{(25)}\text{Mg}$, and $X_c^{(27)}\text{Al}$ models are presented.
 - The graph shows T_\odot vs. $\rho_{\odot}/g \text{ cm}^{-3}$ with distinct trends for each isotope concentration.
Coulomb corrections: screening effects

1. Screening effects of electrons

\[V(r) = -\frac{Ze^2}{2\pi^2} \int \frac{e^{i\vec{k}\cdot\vec{r}}}{k^2\epsilon(k, 0)} d^3k \]

\[= -\frac{Ze^22k_F}{2k_Fr} \frac{2}{\pi} \int \frac{\sin(2k_FR)}{q^2\epsilon(q, 0)} dq. \]

\[V_s(r) = V(r) - \left(\frac{-Ze^2}{r} \right) = Ze^2(2k_F)J, \]

\[V_s(0) > 0 \rightarrow \text{reduce both } e\text{-capture and } \beta\text{-decay rates} \]

2. Change of threshold energy

\[\Delta Q_C = \mu_c(Z - 1) - \mu_c(Z), \]

\[\mu_c(Z) = \text{the correction of the chemical potential of the ion with } Z \]

\[\Delta Q_C \rightarrow \text{reduce } e\text{-capture rates & enhance } \beta\text{-decay rates} \]

\[^{25}\text{Na} \leftrightarrow ^{25}\text{Mg} \]

\[\rho Y_e = 8.78 \rightarrow 8.81 \]

URCA density \(\rightarrow \) higher density region
2. Structure of Ca (and O) isotopes and three-body forces

Shell model

G-matrix vs. G-matrix + three-body force

G = BonnC, CD-Bonn for Ca; 3rd-order Q-box
G = Kuo, BonnC, CD-Bonn for O

FM (Fujita-Miyazawa) three-body force

Δ-excitation by two-pion exchange

• Effective neutron single-particle energies
• Ground state energies
• $E_x (2^+)$
• M1 transition in 48Ca
core-polarization effects

Kuo (HJ): 2nd-order, up to 2hw
BonnC: 3rd-order, up to 2-4 hw
CD-Bonn: 3rd-order, up to 24hw

+3rd-order
Tensor force + repulsive corrections in $T=1$ monopoles → SFO-tls

Structure of neutron-rich C isotopes; exotic M1 transitions in 17C is explained (Suzuki-Otsuka, PR C78 (2008))

3 body forces induced by Δ excitations (Fujita-Miyazawa) → repulsion in $T=1$ monopoles → drip-line at 24O in O isotopes (Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, (2010))

More repulsion than G in $T=1$
More attraction than G in $T=0$
- Modification of SFO
- Full inclusion of tensor force
 - \(p\text{-sd}: \) tensor-\(\rightarrow \pi + \rho \)
 - \(LS \rightarrow \sigma + \rho + \omega \)

\[
V = V_C + V_T + V_{LS} \\
V_T = V_\pi + V_\rho \\
V_{LS} = V_\sigma + \omega + \rho
\]

- \(sd\): Kuo G-matrix
- T=1 monopole terms more repulsive
 \(\rightarrow \) SFO-tls
Anomalous suppression of B(M1) strength in ^{17}C

^{17}C: B(M1: 3/2$^+$$\rightarrow$ 1/2$^+$) suppressed
Iwasaki et al., MSU

$|1/2^+|=|d_{5/2}^4(0^+)\times1s_{1/2}>$
$|3/2^+|=\alpha |d_{5/2}^3(3/2^+)\times1s_{1/2}>$
$+\beta |d_{5/2}^4(2^+)\times1s_{1/2}>$
$<3/2^+|| M1 ||1/2^+>=0$

Exp: D. Suzuki et al., PLB666 (2008)
Roles of three-body force on shell evolutions

three-body force = FM (Fujita-Miyazawa)

\[\Delta \text{-excitation by two-pion exchange} \]

FM \rightarrow \text{repulsion between valence neutrons (T=1)}

\[\frac{1}{\Delta E} |< pj' | V | hj >|^2 > 0 \]

\[\frac{1}{\Delta E} |< pj | V | h'j' - j'h >|^2 > 0 \]

Oxygen isotopes: drip-line at \(^{24}\text{O}\)

48Ca B(M1) +3N \(\rightarrow\) concentration of the strength

EXP.: Steffen et al. NP A404, 413 (1983)

G-matrix; 3rd Q-box up to 24 hw excitations
Hjorth-Jensen

3-body force \(\rightarrow\) repulsion

shell-closure at \(A=48\)

G-matrix; 3rd Q-box up to 24 hw excitations
Hjorth-Jensen

G-matrix; 3rd Q-box up to 24 hw excitations
Hjorth-Jensen

EXP.
pf-$g_{9/2}$ shell

degenerate pf-$g_{9/2}$ orbits
Non-degenerate treatment of pf and $g_{9/2}$ shells by EKK (extended Kuo-Krenciglowa) method

Cf: monopoles with non-degenerate vs degenerate method

Kuo-Krenciglowa method

$$V_{\text{eff}}^{(n)} = \hat{Q}(\epsilon_0) + \sum_{k=1}^{\infty} \hat{Q}_k(\epsilon_0)\{V_{\text{eff}}^{(n-1)}\}^k,$$

$$P H_0 P = \epsilon_0 P.$$

$$\hat{Q}(E) = PV P + PV Q \frac{1}{E - QHQ} QVP,$$

$$\hat{Q}_k(E) = \frac{1}{k!} \frac{d^k}{dE^k} \hat{Q}(E).$$

Extended Kuo-Krenciglowa method

$$\tilde{H} = H - E$$

$$\tilde{H}_{\text{eff}}^{(n)} = \tilde{H}_{BH}(E) + \sum_{k=1}^{\infty} \hat{Q}_k(E)\{\tilde{H}_{\text{eff}}^{(n-1)}\}^k,$$

$$\tilde{H}_{eff} = H_{\text{eff}} - E, \quad \tilde{H}_{RH}(E) = H_{RH}(E) - E,$$

$$H_{BH}(E) = PHP - PVQ \frac{1}{E - QHQ} QVP,$$

$$V_{\text{eff}} = H_{\text{eff}} - PH_0 P.$$

energy independent

Ground state energies & $E(2_{1}^{+})$ for 48Ca

B(M1)

Mass number

Ex.

exp.

$pfg_{9/2}$

fp

Tsunoda, Shimizu
Summary

- New spin-dependent transition strengths based on new shell-model Hamiltonians with proper tensor forces (SFO for p-shell, GXPF1 for pf-shell, VMU)
- Good reproduction of experimental $B(GT)$ in ^{12}C, ^{56}Fe and ^{56}Ni and cross section data for ν-induced reactions on ^{12}C and ^{56}Fe
- Light element synthesis in SN explosions and effects of ν-oscillations (MSW effects) in nucleosynthesis
 Abundance ratio of $^7Li/^{11}B \rightarrow \nu$ mass hierarchy
- GXPF1J well describes the GT strengths in Ni isotopes: ^{56}Ni two-peak structure confirmed by recent exp.
 Accurate evaluation of e-capture rates at stellar environments
 Implications on synthesis of Ni isotopes; $^{58}Ni/^{56}Ni$
- VMU for ^{40}Ar (sd-pf-shell) and p-sd shell nuclei:
 GT strength consistent with observations
 New cross section for $^{40}\text{Ar} (\nu,e^-) ^{40}\text{K}$ induced by solar ν

- Detailed e-capture and beta-decay rates for URCA nuclear pairs in 8-10 solar-mass stars
 → URCA density for $A=25$ and 23 with fine mesh of density and temperature
 → Cooling of O-Ne-Mg core by nuclear URCA processes determines the fate of the stars.

- Repulsive contributions from FM three-nucleon forces in $T=1$ monopoles
 → Shell evolutions in neutron-rich isotopes
 Ca: shell-closure at ^{48}Ca and M1 strength pf vs pf-$g_{9/2}$ by non-degenerate treatment of $g_{9/2}$
Collaborators

T. Otsukaa, M. Honmab, N. Tsunodac, N. Shimizua
T. Kajino d, S. Chibae, T. Yoshidaf

aCNS and Dept. of Physics, the Univ. of Tokyo
bUniversity of Aizu
cthe University of Tokyo
dNational Astronomical Observatory of Japan
 Department of Astronomy, the University of Tokyo
eTokyo Institute of Technology
fYITP, Kyoto University
Collaborators

H. Tokig, K. Nomotoh, S. Jonesi, R. Hiriscii
A. Balantekinj

gRCNP, Osaka University
hWPI, the Univ. of Tokyo
iKeele University, jRIKEN
jUniv. of Wisconsin