

Ab-initio coupled-cluster method for open-shell nuclei II. Restoring symmetries

Thomas DUGUET

CEA, Service de Physique Nucléaire, Saclay, France NSCL, Michigan State University, East Lansing, USA

NORDITA program on Computational Challenges in Nuclear and Many-Body Physics

Sept. 15th- Oct. 10th 2014, Stockholm 1/24

I. Introduction: how does this fit with the rest?

II. Breaking U(1) symmetry ("trivial" for SU(2)) (last thursday)

Bogoliubov coupled-cluster method

[A. Signoracci, T. Duguet, G. Hagen, G. R. Jansen, in preparation (2014)] [T. M. Henderson, G. E. Scuseria, J. Dukelsky, A. Signoracci, T. Duguet, PRC89, 054305 (2014)]

III. Restoring SU(2) (today) and/or U(1) symmetries

Angular-momentum-restored coupled-cluster formalism

[T. Duguet, to be published in J. Phys. G: Nucl. Part. Phys (2014) ; arXiv:1406.7183] Particle-number-restored Bogoliubov coupled-cluster formalism

[T. Duguet, in preparation (2014)]

Introduction

Non-perturbative *ab-initio* many-body theories

Towards ab-initio methods for open-shell nuclei

First objective: generalize many-body methods to study complete isotopic/isotonic chains → Go from a few 10s of nuclei to several 100s of nuclei

Nuclear structure at/far from β stability

- Magic numbers and their evolution?
- Limits of stability beyond Z=8?

ве

He

neutrons

protons

Cea

- Mechanisms for nuclear superfluidity?
- Role and validation of AN forces?

Option 1: single-reference extensions → Gorkov-SCGF [V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

Bogoliubov CC

[A. Signoracci, T. Duguet, G. Hagen, unpublished (2014)]

Option 2: multi-reference extensions

> MR-IMSRG

^ACa

[H. Hergert et al., PRL 110, 242501 (2013)]

IMSRG-based valence shell model

- [S. K. Bogner et al., arXiv:1402.1407 (2014)]
- CC-based valence shell model
- [G. R. Jansen et al., arXiv:1402.2563 (2014)]

Breaking and restoring symmetries

Symmetry and symmetry breaking

Symmetry breaking and associated physics

Symmetry-restored coupled-cluster theory

Angular-momentum-restored coupled-cluster formalism

[T. Duguet, to be published in J. Phys. G: Nucl. Part. Phys (2014); arXiv:1406.7183]

Particle-number-restored Bogoliubov coupled-cluster formalism

[T. Duguet, in preparation (2014)]

Account of single-reference CC method (1)

Nuclear Hamiltonian

Anti-symmetrized matrix elements

$$\overline{v}_{\alpha\beta\gamma\delta} \equiv v_{\alpha\beta\gamma\delta} - v_{\alpha\beta\delta\gamma}$$

Account of single-reference CC method (2)

Master equations (1)

Symmetry group of H includes SU(2) = non abelian compact Lie group – Lie algebra $\{J_X, J_Y, J_Z\}$ $R(\alpha,\beta,\gamma) \equiv R(\Omega)$ and IRREPs are $D^{J}_{MK}(\Omega) \equiv \langle \Psi^{JM} | R(\Omega) | \Psi^{J'K} \rangle \delta_{JJ'}$ labeled by J and spanned by M ↑ E[ρ ; |q|] Wigner D functions -1) UHF reference state **Eigen-states of H** $|\Phi\rangle$ $[H, R(\Omega)] = 0$ leads to $H|\Psi_{\mu}^{JM}\rangle = E_{\mu}^{J}|\Psi_{\mu}^{JM}\rangle$ 2) Rotated reference state $|\Phi(\Omega)\rangle \equiv R(\Omega)|\Phi\rangle$ Imaginary-time dependent scheme **Thouless transformation** $\mathcal{U}(\tau) \equiv e^{-\tau H}$ **Evolution operator** $|\Phi(\Omega)\rangle$ Infinite sum of p-h excitations $R(\Omega)$ Time-evolved state $|\Psi(\tau)\rangle \equiv \mathcal{U}(\tau)|\Phi\rangle$ Ground state and energy $N(\tau, \Omega) \equiv \langle \Psi(\tau) | \mathbb{1} | \Phi(\Omega) \rangle$ $|\Psi(\infty)\rangle = |\Psi_0^{J_0}\rangle$ $H(\tau, \Omega) \equiv \langle \Psi(\tau) | H | \Phi(\Omega) \rangle$ **Off-diagonal** kernels $\lim_{\tau \to \infty} \mathcal{H}(\infty, \Omega) = E_0^{J_0} \mathcal{N}(\infty, \Omega)$ $J_i(\tau, \Omega) \equiv \langle \Psi(\tau) | J_i | \Phi(\Omega) \rangle$ $J^2(\tau, \Omega) \equiv \langle \Psi(\tau) | J^2 | \Phi(\Omega) \rangle$ Dynamical equation $H(\tau, \Omega) = -\partial_{\tau} N(\tau, \Omega)$ -True for all Ω -Usual sym. unrest. MB schemes ($\Omega = 0$) $O(\tau, \Omega) \equiv O(\tau, \Omega) / N(\tau, 0)$ **Reduced kernel** $N(\tau, 0) = 1$ Intermediate normalization <u>-02</u> cea Expand un-rotated energy kernel $\mathcal{H}(\infty, 0) = E_{0 11/24}^{J_0}$

Benefit of inserting rotation operator in kernels! 12/24

Angular-momentum-restored CC theory

Objectives: extend symmetry restoration techniques beyond PHF to any order in CC such that

- 1. It keeps the simplicity of a single-reference-like CC theory
- 2. It is valid for any symmetry (spontaneously) broken by the reference state
- 3. It is valid for any system, i.e. closed shell, near degenerate and open shell
- 4. It accesses not only the ground state but also the lowest state of each IRREP

Static correlations from integral over SU(2)
 Dynamic correlations from CC expansions of kernels

Technical points of importance

- Wick Theorem for off-diagonal matrix element $\langle \Phi | \dots | \Phi(\Omega) \rangle$ of strings of operators [R. Balian. E. Brezin, NC 64, 37 (1969)]
- Care must be taken of both the *rotated* energy $\mathcal{H}(\tau, \Omega)$ and norm $\mathcal{N}(\tau, \Omega)$ kernels

Expansion and truncation must be consistent

Problematic to find a naturally terminating expansion

Does not stay normalized when arOmega varies!

Many-body perturbation theory (1)

Symmetry-breaking unperturbed system

Rotated state

$$|\Phi(\Omega)\rangle = \prod_{i=1}^{N} a_{\overline{i}}^{\dagger} |0\rangle \quad \text{with} \quad a_{\overline{\alpha}}^{\dagger} = \sum_{\beta} R_{\beta\alpha}(\Omega) a_{\beta}^{\dagger} \quad \text{and} \quad R_{\alpha\beta}(\Omega) \equiv \langle \alpha | R(\Omega) | \beta \rangle$$

 $\langle \Phi | \Phi(\Omega) \rangle = \det M(\Omega)$ where $M_{\alpha\beta}(\Omega) \equiv R_{\alpha\beta}(\Omega) \delta_{\alpha i} \delta_{\beta j}$

Off diagonal unperturbed one-body density matrix Ω -dependent part couples p and h spaces

$$\rho_{\alpha\beta}(\Omega) \equiv \frac{\langle \Phi | a_{\beta}^{\dagger} a_{\alpha} | \Phi(\Omega) \rangle}{\langle \Phi | \Phi(\Omega) \rangle} \longrightarrow \rho(\Omega) = \begin{pmatrix} 1^{hh} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ R(\Omega)M^{-1}(\Omega) & 0 \end{pmatrix} \equiv \rho(0) + \rho^{ph}(\Omega)$$
Density matrix of sym. unrest. reference state 14/24

Many-body perturbation theory (2)

ESNT

30 220 00

cea

15/24

Off-diagonal unperturbed propagator = basic contraction for Wick Theorem

$$G_{\alpha\beta}^{0}(\tau_{1},\tau_{2};\Omega) \equiv \frac{\langle \Phi | T[a_{\alpha}(\tau_{1})a_{\beta}^{\dagger}(\tau_{2})] | \Phi(\Omega) \rangle}{\langle \Phi | \Phi(\Omega) \rangle} = G_{\alpha\alpha}^{0}(\tau_{1}-\tau_{2})\delta_{\alpha\beta} + G_{\alpha\beta}^{ph}(\tau_{1},\tau_{2})\rho_{\alpha\beta}^{ph}(\Omega)$$
Evolution operator $\mathcal{U}(\tau)$ Off diagonal Wick theorem
[R. Balian. E. Brezin, NC 64, 37 (1969)]
 $N(\tau,\Omega) = \langle \Phi | e^{-\tau H_{0}} T e^{-\int_{0}^{\tau} d\tau_{1} H_{1}(\tau_{1})} | \Phi(\Omega) \rangle = e^{-\tau E_{0}+n(\tau,\Omega)} \langle \Phi | \Phi(\Omega) \rangle$
where $n(\tau,\Omega) \equiv \sum_{k=1}^{\infty} n^{(k)}(\tau,\Omega)$ = connected vacuum-to-vacuum diagrams
Rotated energy kernel
 $H(\tau,\Omega) = \langle \Phi | e^{-\tau H_{0}} T e^{-\int_{0}^{\tau} d\tau_{1} H_{1}(\tau_{1})} (T+V) | \Phi(\Omega) \rangle = h(\tau,\Omega) N(\tau,\Omega)$
where $h(\tau,\Omega) \equiv t(\tau,\Omega) + v(\tau,\Omega) \equiv \sum_{n=0}^{\infty} [t^{(n)}(\tau,\Omega) + v^{(n)}(\tau,\Omega)]$
and $O(\tau,\Omega)$ = vacuum-to-vacuum diagrams linked to O

Many-body perturbation theory (3)

Connected vacuum-to-vacuum norm diagrams – Example at first order

Many-body perturbation theory (3)

Connected vacuum-to-vacuum energy diagrams – example at zero order

Coupled cluster theory (1) – energy kernel

$$\mathcal{T}_{1}^{\dagger}(\tau,\Omega) \equiv \frac{1}{(1!)^{2}} \sum_{ia} \mathcal{T}_{ia}^{\dagger}(\tau,\Omega) a_{i}^{\dagger} a_{a}$$
$$\mathcal{T}_{2}^{\dagger}(\tau,\Omega) \equiv \frac{1}{(2!)^{2}} \sum_{ijab} \mathcal{T}_{ijab}^{\dagger}(\tau,\Omega) a_{i}^{\dagger} a_{j}^{\dagger} a_{b} a_{a}$$

Kinetic energy kernel = connected diagrams linked to T(0)

Coupled cluster theory (2) – energy kernel
1) Cluster operators contracted with
$$TV$$

2) No contraction within cluster operators
3) No contraction mang cluster operators
 $(\tau, \Omega) = \langle \Phi | T + T_1^{\dagger}(\tau, \Omega) T | \Phi(\Omega) \rangle_{0}^{\bullet} \Phi | \Phi(\Omega)^{-1}$
 $= \sum_{i} t_{ii}(\Omega) + \sum_{ia} T_{ia}^{\dagger}(\tau, \Omega) t_{iii}(\Omega)$
 $v(\tau, \Omega) = \langle \Phi | V + T_1^{\dagger}(\tau, \Omega) V + T_2^{\dagger}(\tau, \Omega) V + \frac{1}{2}T_1^{\dagger 2}(\tau, \Omega) V | \Phi(\Omega) \rangle_{0}^{\bullet} \langle \Phi | \Phi(\Omega) \rangle^{-1}$
 $= \frac{1}{2} \sum_{ij} \bar{v}_{ijij}(\Omega) + \sum_{ija} T_{ia}^{\dagger}(\tau, \Omega) \bar{v}_{ijjj}(\Omega) + \frac{1}{4} \sum_{ijab} T_{ijab}^{\dagger}(\tau, \Omega) \bar{v}_{abij}(\Omega) + \sum_{ijab} T_{ija}^{\dagger}(\tau, \Omega) T_{jb}^{\dagger}(\tau, \Omega) \bar{v}_{abij}(\Omega)$
Transformed operators
Bi-orthogonal system
 $| \hat{\alpha} \rangle = D(\Omega) | \alpha \rangle$
 $\langle \hat{\alpha} | = (\alpha | D^{-1}(\Omega))$
 $D(\Omega) = 1 + \rho^{ph}(\Omega)$
At the equations for the CC amplitudes
At the equations of the of diagonal energy kernel
 $h(\tau, \Omega) = \frac{\langle \Phi | e^{T^{\dagger}(\tau, \Omega) H | \Phi(\Omega) \rangle_{c}}{\langle \Phi | \Phi(\Omega) \rangle} = \langle \Phi | e^{T^{\dagger}(\tau, \Omega) \tilde{H}(\Omega) | \Phi \rangle_{c}}$
 24

cea

ALC: NO.

Coupled cluster theory (3) – amplitudes

N-tuples off-diagonal norm and energy kernels

$$\begin{split} N^{ab\dots}_{ij\dots}(\tau,\Omega) &\equiv \langle \Psi(\tau) | A^{ab\dots}_{ij\dots} | \Phi(\Omega) \rangle \\ H^{ab\dots}_{ij\dots}(\tau,\Omega) &\equiv \langle \Psi(\tau) | H A^{ab\dots}_{ij\dots} | \Phi(\Omega) \rangle \end{split}$$

where
$$A_{ij...}^{ab...} \equiv a_a^{\dagger} a_i a_b^{\dagger} a_j \dots$$

Dynamical amplitude equations

- 1) Perform MBPT expansion
- 2) Recast in terms of cluster operators
- 3) Remove disconnected terms involving A^{ab...}ii...
- 4) Recast in terms of transformed operators

 $H^{ab\dots}_{ij\dots}(\tau,\Omega)=-\partial_\tau N^{ab\dots}_{ij\dots}(\tau,\Omega)$

Imaginary-time-dependent equation of motion

1) CC scheme for *transformed* cluster amplitudes

Naturally terminating

- 3) Amplitude equations formally identical to those in standard CC
- 5) Transformed amplitudes reduce to bare ones for $\Omega = 0$; i.e. standard CC

Note: one eventually solves in the stationary limit, i.e. at $\tau = \infty$ 20/24

 $\langle \Phi | e^{\mathcal{T}^{\dagger}(\tau,\Omega)} \tilde{H}(\Omega) | \Phi^{ab...}_{ii...} \rangle_{c} = -\overline{\mathcal{O}_{\mathcal{T}}} \tilde{H}_{ii...}$

Coupled cluster theory (4) – norm

 $N(\tau, \Omega) = e^{-\tau \varepsilon_0 + n(\tau, \Omega)} \langle \Phi | \Phi(\Omega) \rangle$ No direct naturally terminating expansion of $N(\tau, \Omega)$ from MBPT

Solution to this key problem comes from

- **Coupled ODEs satisfied by Wigner D functions** [D. A. Varshalovich et al., Quantum Theory of Angular Momentum, 1988]
- Expansion of $J_i(\tau, \Omega)$ over Wigner D functions
- Factorization of connected kernels $j_i(\tau, \Omega)$

Display naturally terminating CC expansions

$$\frac{\partial \alpha}{\partial \beta} \mathcal{N}(\tau, \Omega) - \frac{i}{\hbar} \Big[\sin \alpha j_x(\tau, \Omega) - \cos \alpha j_y(\tau, \Omega) \Big] \mathcal{N}(\tau, \Omega) = 0$$

 $\frac{\partial}{\partial t} \mathcal{N}(\tau, \Omega) + \frac{i}{2} j_{z}(\tau, \Omega) \mathcal{N}(\tau, \Omega) = 0$

$$\frac{\partial}{\partial \gamma} \mathcal{N}(\tau, \Omega) + \frac{i}{\hbar} \Big[\sin\beta \cos\alpha j_x(\tau, \Omega) + \sin\beta \sin\alpha j_y(\tau, \Omega) + \cos\beta j_z(\tau, \Omega) \Big] \mathcal{N}(\tau, \Omega) = 0$$

This rational ensures that the symmetry is exactly restored at any truncation order of $j_i(\tau, \Omega)$

 ∂

Initial condition

 $\mathcal{N}(\tau,0) = 1$

Coupled ODEs

Important limits

Symmetry-restored energy
$$E_0^J = \frac{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega D_{MK}^{J*}(\Omega) h(\Omega) \mathcal{N}(\Omega)}{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega D_{MK}^{J*}(\Omega) \mathcal{N}(\Omega)}$$

1. Standard SR-CC is recovered at arOmega = 0 or if $|\Phi
angle$ does not break the symmetry

$$E_0^{J_0} = h(0)$$

2. Projected Hartree Fock is recovered at lowest order

$$h^{(0)}(\tau,\Omega) = \frac{\langle \Phi|H|\Phi(\Omega)\rangle}{\langle \Phi|\Phi(\Omega)\rangle}$$

$$j_i^{(0)}(\tau,\Omega) = \langle \Phi|J_i|\Phi(\Omega)\rangle$$

$$\mathbf{P}_0^{J(0)} = \frac{\langle \Phi_0^{JM}|H|\Phi_0^{JM}\rangle}{\langle \Phi_0^{JM}|\Phi_0^{JM}\rangle}$$

$$\mathcal{N}^{(0)}(\tau,\Omega) = \langle \Phi|\Phi(\Omega)\rangle$$
where $|\Phi_0^{JM}\rangle \equiv \sum_K f_K^J P_{MK}^J|\Phi\rangle$

$$\mathcal{P}_{MK}^J \equiv \frac{2J+1}{16\pi^2} \int_{D_{SU(2)}} d\Omega D_{MK}^{J*}(\Omega) R(\Omega)$$

$$(22/24)$$

Algorithm

62

Steps to follow on the basis of a symmetry-unrestricted (e.g. m scheme) SR-CC code

- 1) Solve unrestricted HF equations to generate $|\Phi
 angle$
- 2) Discretize the integration domain of the Euler angles $\Omega = \alpha, \beta, \gamma$
- 3) For each combination of α , β , γ
 - **1)** Compute matrices $R_{\alpha\beta}(\Omega)$ and $\rho_{ai}^{ph}(\Omega)$ in the HF single-particle basis
 - 2) Build the system of bi-orthogonal bases
 - 3) Transform the matrix elements of T and V in the bi-orthogonal system
 - 4) Initiate $\mathcal{T}_n^{\dagger(1)}(\Omega)$ and run the SR-CC code using the matrix elements of $\tilde{T}(\Omega)$ and $\tilde{V}(\Omega)$
 - **5)** At convergence compute and store $h(\Omega), j_i(\Omega)$ and $j^2(\Omega)$
- 4) Using the $j_i(\Omega)$ and $\mathcal{N}(0) = 1$, solve the coupled ODEs that determine $\mathcal{N}(\Omega)$
- 5) Calculate the yrast energies E_0^J and check that J² is indeed exactly restored

$$E_0^J = \frac{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega \, D_{MK}^{J*}(\Omega) \, h(\Omega) \, \mathcal{N}(\Omega)}{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega \, D_{MK}^{J*}(\Omega) \, \mathcal{N}(\Omega)}$$
23/2

Conclusions and perspectives

First consistent symmetry-restoration scheme within CC theory

- Main features
 - Applies to any symmetry
 - Applies to any system

Conclusions

- Reduces to standard SR-CC if symmetry is not broken
- Reduces to Projected Hartree Fock at lowest order
- Features naturally terminating expansion of energy and norm kernels
- Accesses yrast spectroscopy
- Denotes a multi-reference scheme amenable to parallelization

Future

Particle-number Bogoliubov CC formalism
 Implement for (doubly) open-shell nuclei

Complementary slides

Summary

Final remarks

- 1) Numerical procedure to integrate over SU(2) routinely applied in MR-EDF
- 2) Reduces to standard CC if the reference state does not break the symmetry
- 3) Reduces to Projected Hartree Fock at lowest order
- 4) Accesses yrast spectroscopy by restoring on $J \neq J_0$
- 5) Truncates consistently energy and Lie algebra kernels at a given n-tuple order
- 6) Set of single-reference-like CC calculations at various Ω -> amenable to *parallelization*
- 7) Captures consistently static and dynamic correlations along with their interference

Issues with near degenerate systems

AMR-CC scheme in one slide

Kernels

for each rotation angle Ω

CQ2

$$O(\tau, \Omega) = o(\tau, \Omega) \mathcal{N}(\tau, \Omega)$$
 with $O = H, J^2, J_z$
 $H(\tau, \Omega) = -\partial_\tau N(\tau, \Omega)$

Symmetry-restored energy

$$E_0^J = \frac{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega \, D_{MK}^{J*}(\Omega) \, h(\Omega) \, \mathcal{N}(\Omega)}{\sum_{MK} f_M^{J*} f_K^J \int_{SU(2)} d\Omega \, D_{MK}^{J*}(\Omega) \, \mathcal{N}(\Omega)}$$

Coupled cluster imaginary-time-dependent scheme

Connected and naturally terminating expansions of off-diagonal energy and norm kernels

N-tuply excited energy kernels Norm kernel $\frac{\partial}{\partial \alpha} \mathcal{N}(\tau, \Omega) + \frac{i}{\hbar} j_z(\tau, \Omega) \mathcal{N}(\tau, \Omega) = 0$ $h_{ij\dots}^{ab\dots}(\tau,\Omega) = \langle \Phi | e^{\mathcal{T}^{\dagger}(\tau,\Omega)} \tilde{H}(\Omega) | \Phi_{ij\dots}^{ab\dots} \rangle_c$ $\frac{\partial}{\partial\beta}\mathcal{N}(\tau,\Omega) - \frac{i}{\hbar} \Big[\sin\alpha j_x(\tau,\Omega) - \cos\alpha j_y(\tau,\Omega)\Big]\mathcal{N}(\tau,\Omega) = 0$ $h_{ij\ldots}^{ab\ldots}(\tau,\Omega) = -\partial_{\tau}\mathcal{T}_{ij\ldots ab\ldots}^{\dagger}$ $\frac{\partial}{\partial \gamma} \mathcal{N}(\tau, \Omega) + \frac{i}{\hbar} \Big[\sin\beta \cos\alpha j_x(\tau, \Omega) + \sin\beta \sin\alpha j_y(\tau, \Omega) + \cos\beta j_z(\tau, \Omega) \Big] \mathcal{N}(\tau, \Omega) = 0$ **Operator in bi-orthogonal system** connected kernels of Lie algebra operators $D(\Omega)|\alpha\rangle$ $|\tilde{\alpha}\rangle$ $\langle \alpha | D^{-1}(\Omega)$ $\langle \tilde{\alpha} |$

Solve in stationary limit at au = ∞

62

ESNT

Recovers single-reference CC at $\Omega = 0$ Recovers Projected HF at lowest order

Set of SR-CC calculations for N_{sym}~(10)^{angle} values of Ω

Symmetry breaking reference state

Purpose of symmetry breaking reference state $|\Phi\rangle$

No generic and consistent symmetry broken & restored CC theory...

Diagrammatic and BCCSD equations (3)

