

Computational Challenges in Nuclear and Many-Body Physics Stockholm, September 15th – October 10th

Combined ab initio-mean field approach to solute-atom diffusion in alloys

Luca Messina^[a], Pär Olsson^[a], Maylise Nastar^[b]

In collaboration with:

Thomas Garnier^[b] Christophe Domain^[c] October 7th 2014 NORDITA, Stockholm

Outline

- 1. Solute diffusion and applications
- 2. Onsager matrix (transport coefficients)
- 3. First-principles calculations of jump rates
- 4. Self-consistent mean field model
- 5. Application to bcc Fe-X model dilute alloys
- 6. Radiation-induced segregation
- 7. Conclusions

Solute diffusion in alloys

Vacancy exchange

Dumbbell migration

Foreign interstitial

Diffusion capability depends on:

- Stability of the defected configuration (binding energies).
- Transition (jump) rates.

$$P_{config} \propto \exp\left(\frac{-E_{config}^B}{k_B T}\right) \qquad \qquad \omega = v \exp\left(-\frac{E^M}{k_B T}\right)$$

Solute diffusion in alloys

INVERSE KIRKENDALL MECHANISM

VACANCY DRAG

DUMBBELL MECHANISM (rotation-translation)

Defect chemical potential gradient

- ··· Slow diffusion processes at low temperatures.
 - No extrapolation from high T in magneticallyordered systems.
 - Resolution of material analysis techniques.

Microstructural characterization

Diffusion mechanisms are important to control many **metallurgical processes** requiring a very precise microstructural characterization. Examples ^[1,2]:

- Ad-hoc heat treatments to induce phase separation.
- Enhancement of mechanical properties through formation of hardening phases.

Diffusion mechanisms are also responsible for **degradation of mechanical properties**! Example: <u>Embrittlement of Reactor Pressure Vessel (RPV) steels in nuclear reactors</u>.

[1] Z. Mao et al., Nat. Mater. 6, 210 (2007).

[2] F. Danoix et al., Adv. Eng. Mater. 8, 1202 (2006).

Embrittlement in RPV steels

Onsager matrix

FICK'S
LAW
$$J_i = -\sum_{j=1}^N D_{ij} \nabla C_j$$

ONSAGER'S FORMULATION^[3]

$$J_i = -\sum_{j=1}^N L_{ij} \nabla \mu_j$$

• Clear separation between thermodynamic and kinetic properties of the system.

$$J_{A} = -L_{AA}^{x} \nabla \mu_{A} - L_{AB}^{x} \nabla \mu_{B}$$
$$J_{B} = -L_{BA}^{x} \nabla \mu_{A} - L_{BB}^{x} \nabla \mu_{B}$$

FLUX COUPLING

Vacancy drag Solute and vacancy

direction.

 $\frac{-(L_{AB}^{V}+L_{BB}^{V})}{L_{VDD}^{V}} > 0$ flowing in the same

Interstitial transport

Solute transported by dumbbells faster than solvent atoms.

$$L^{I}_{AB} + L^{I}_{BB} < L^{I,0}_{BB}$$

How to compute the L_{ii}'s?

EXPERIMENTS

- Low-temperature impediments.
- No off-diagonal coefficients.

Ρ

W

KINETIC MONTE CARLO

- Good for benchmark!
- Difficult with trapping effects.

 $L_{ij} = \frac{\left\langle \Delta \vec{R}_i \cdot \Delta \vec{R}_j \right\rangle}{2}$

- Steady-state solution to master equation

$$\frac{dP(n)}{dt} = \sum_{n'} \left[W(n' \to n)P(n') - W(n \to n')P(n) \right] = 0$$

(n) = probability of configuration n $P(n) \propto \exp\left(-\frac{E(n)}{k_B T}\right)$
 $V(n' \to n) = \text{rate of transition between} \qquad W(n' \to n) = \omega = v \exp\left(-\frac{E(n)}{k_B T}\right)$

- W depends on the local chemical environment around the moving defect!
- Need for interaction range cutoff.

Multifrequency network in dilute alloys

[4] L. Messina et al., PRB 90, 104203 (2014).

Multifrequency network in dilute alloys

Ab initio methodology

VASP SETTINGS

PAW-PBE method

Spin-polarized calculations

Full-core PAW potentials

Supercell: 128 atoms (vac), 250 atoms (int)

K-point mesh: 3x3x3

Cutoff energy: 300 eV (vac), 350 eV (int)

Refinement of mixing tags to prevent the simulation from getting trapped into a wrong magnetic state (Mn, Si).

Nudged Elastic Band (NEB) method

Phonon calculations (Hessian matrix)

BINDING ENERGIES

Supercell relaxation at constant volume.

ATTEMPT FREQUENCIES

(Vineyard's theory^[9]):

$$v = \prod_{j=1}^{N-3} v_j^{init} / \prod_{j=1}^{N-4} v_j^{saddle}$$

MIGRATION BARRIERS (NEB)

Ab initio results (V) ^[4]

- Solute-vacancy interaction to 5nn.
- Migration barriers converging to background ω_0 with distance.

Ab initio results (I)

Ab initio results (I)

ω = Rotation-translation			$\tau = Translation$			R = Onsite rotation				
	0a	1 a	1b	2 a	2b	3b	3 c	4b	4 c	5b
0a	ω, τ, Β		ω, τ							
1a		R	R	ω	ω, τ	ω, τ	ω			
1b	ω, τ	R	R	τ	ω	ω	τ			ω, τ
2a		ω	τ		R			τ	ω	
2b		ω, τ	ω	R	R			ω	ω, τ	
3b		ω, τ	ω							
3c		ω	τ							
4b				τ	ω					
4c				ω	ω, τ					
5b			ω, τ							

2nn model --> 27 + 3 frequencies (ω_0 , τ_0 , R_0 not shown)

Self-Consistent Mean Field method^[5]

CONFIGURATION = ENSEMBLE OF OCCUPATION NUMBERS

$$n = \{n_1^A, n_1^B, \dots, n_1^v, n_2^A, n_2^B, \dots, n_2^v, \dots\}$$

MASTER EQUATION

$$\frac{dP(n)}{dt} = \sum_{n'} \left[W(n' \to n)P(n') - W(n \to n')P(n) \right]$$
$$P(n) = P_0(n) \cdot P_1(n)$$

EQUILIBRIUM

The probability for a state to occur depends on the energy of the state according to the Boltzmann factor.

$$P_0(n) \propto \exp\left(-\frac{E_0(n)}{k_B T}\right)$$

 $E_0(n)$: sum of pair interactions (possibly multi-body) THERMODYNAMIC INTERACTIONS

Ρ

Small perturbation from equilibrium state.

The variation of energy of the system is given by pair (possibly multi-body) interactions with the same

mathematical structure.

KINETIC INTERACTIONS

$$(n) \propto \exp\left(-\frac{E(n)}{k_B T}\right)$$

UNKNOWNS TO BE FOUND!

$$E(n) = \frac{1}{2!} \sum_{i \neq j, \alpha, \beta} n_i^{\alpha} n_j^{\beta} v_{ij}^{\alpha\beta} + \frac{1}{3!} \sum_{i \neq j \neq k, \alpha, \beta, \gamma} n_i^{\alpha} n_j^{\beta} n_k^{\gamma} v_{ijk}^{\alpha\beta\gamma} + \cdots$$

Example 1: Vacancies

Example of kinetic interaction

 1^{st} : Configuration n can change when atom α jump from site i to a neighboring site s occupied by a vacancy.

 2^{nd} : Configuration n can change when atom β jump from site j to a neighboring site s occupied by a vacancy.

Symmetries: bond projection on $\nabla \mu$

$$\frac{d\langle n_{i}^{v}n_{j}^{\alpha}\rangle}{dt} = 0 = \beta \sum_{s\neq i\neq j,\sigma} \langle n_{j}^{\alpha}n_{i}^{\sigma}n_{s}^{v}\hat{\omega}_{is}^{\sigma v}\rangle^{(0)} (\mu_{i}^{\sigma} - \mu_{s}^{\sigma}) + \beta \langle n_{i}^{\alpha}n_{j}^{v}\hat{\omega}_{ji}^{v\alpha}\rangle^{(0)} (\mu_{i}^{\alpha} - \mu_{j}^{\alpha})$$
$$+\beta \sum_{s\neq i\neq j,\sigma} \left[\sum_{k\neq s,\gamma} \langle n_{j}^{\alpha}n_{i}^{\sigma}n_{s}^{v}n_{k}^{\gamma}\hat{\omega}_{is}^{\sigma v}\rangle^{(0)} v_{sk}^{\sigma \gamma} - \sum_{k\neq i,\gamma} \langle n_{j}^{\alpha}n_{i}^{\sigma}n_{s}^{v}n_{k}^{\gamma}\hat{\omega}_{is}^{\sigma v}\rangle^{(0)} v_{ik}^{\sigma \gamma} \right] 1 \text{st}$$
$$+\beta \left[\sum_{k\neq s,\gamma} \langle n_{i}^{\alpha}n_{j}^{v}n_{k}^{\gamma}\hat{\omega}_{ji}^{v\alpha}\rangle^{(0)} v_{jk}^{\alpha \gamma} - \sum_{k\neq s,\gamma} \langle n_{i}^{\alpha}n_{j}^{v}n_{k}^{\gamma}\hat{\omega}_{ji}^{v\alpha}\rangle^{(0)} v_{ik}^{\alpha \gamma} \right] 2 \text{nd}$$

Example 2: Dumbbells

Automatic Matlab routines were developed at CEA^[6] and KTH^[7].

^[6] T. Garnier et al., PRB 88, 134201 (2013).

^[7] L. Messina et al., to be submitted to PRB [2014].

Results: Vacancy drag^[4]

$$\frac{L_{BV}}{L_{BB}} > 0$$

- Vacancy drag occurring at low
 ^{1.0} temperature for all solutes except Cr.
- Perfect benchmarking by KMC.
- -0.5 Possibility of Ni, Si and Cu drag towards
 -1.0 Mn-loop nuclei is confirmed.
 - Contraddicting previous study in FeNi^[8].
 - Necessity of 2nn model in BCC.
 - 5nn interaction negligible.

Results: Solute diffusion coefficients

Results: Interstitial diffusion

Ratio of correlated to uncorrelated solute diffusion coefficient.

Radiation-induced segregation (RIS)

Enrichment of solute atoms at defect sinks (grain boundaries, dislocations, precipitates).

Radiation-induced segregation (RIS)

Enrichment/Depletion tendencies determined by solute-defect flux coupling!

RIS tendencies

Summary by impurity

	Vacancy diffusion	Interstitial diffusion	Dominant mechanism*	RIS tendency
Cr	no drag	yes	in competition	V: Depletion I: Enrichment
Cu	drag T < 930 °C	no	vacancies	V: Enrichment I: Depletion
Mn	drag T < 825 °C	yes	interstitials	V: Enrichment I: Enrichment
Ni	drag T < 887 °C	no	vacancies (≈)	V: Enrichment I: Depletion
Р	drag at any T	yes	interstitials	V: Enrichment I: Enrichment
Si	drag T < 1141 °C	no	vacancies (≈)	V: Enrichment I: Depletion

* Inferred by comparing magnitude of diffusion coefficient ratios d_{BV}/d_{AV} and d_{BI}/d_{AI} .

Conclusions

• Theoretical model to investigate and predict solute transport phenomena and solutedefect flux coupling, so to better understand diffusion processes leading to wanted or unwanted changes of local chemical composition in alloys.

• Very flexible and general method, applicable to many sorts of crystal structures and migrating objects (defect clusters, foreign interstitials, etc..).

• Exact transport coefficients are calculated through a mean field method by making use of accurate first principle calculations.

- Main findings
 - a) Vacancy drag on all solutes but Cr, enhanced by low temperatures.
 - b) Interstitial transport for Cr, P, Mn not for Si, Cu, Ni.
 - c) Vacancy-driven diffusion for Si, Cu, (Ni); interstitial-driven for P, Mn; both for Cr.
 - d) Enrichment of solutes at grain boundaries and dislocations.

• Solid theoretical modelling of mechanisms for emrittling nanofeature formation in RPV steels.

Thanks for your attention!

Contact: messina@kth.se

Main reference: L. Messina et al., PRB 90, 104203 (2014).

ACKNOWLEDGMENTS

- P. Olsson, P. Efsing, Z. Chang (KTH)
- M. Nastar, F. Soisson, T. Garnier (CEA Saclay)
- C. Domain (EDF)
- L. Malerba (SKC-CEN)
- Financial support from Vattenfall and the Göran Gustafsson foundation

