Hall Viscosity of Hierarchical Quantum Hall States

M. Fremling, T. H. Hansson, and J. Suorsa ; Phys. Rev. B 89 125303

Mikael Fremling

Fysikum Stockholm University, Sweden

> Nordita 9 October 2014

Outline

Quantum Hall Viscosity

3 Wave Functions on the Torus

The Hall Effect

- Edwin Hall: 1879
- Transverse resistance: $R_H = \frac{V_H}{I} \propto B$.

The Hall Experiment

The Quantum Hall Effect

• 2D interface, low temperatures, clean samples, high magnetic fields

Klitzing, Dorda & Pepper 80'

• Plateaus at $R_H = \frac{1}{\nu} \frac{h}{e^2}$, with a rational number $\nu = \frac{p}{q}$

Electrons in a Magnetic Field: Landau Levels

Landau Hamiltonian

$$H = \frac{1}{2m} \sum_{j=x,y} (\hat{p}_j - eA_j)^2$$

• Harmonic oscillator solution

$$H=\hbar\omega(a^{\dagger}a+\frac{1}{2})$$

$$\omega = \frac{eB}{mc}, \ \ell_B = \sqrt{\frac{\hbar}{eB}}$$

• Each energy level is called a Landau Level (LL)

Many-body Hamiltonian for the FQHE

• Fractional Quantum Hall Effect: Rational filling, $\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9} \dots$ Flat bands \Rightarrow Kinetic energy zero.

$$H_{\rm Int} = \sum_{i < j} V\left(\mathbf{r}_i - \mathbf{r}_j\right)$$

Many-body Hamiltonian for the FQHE

• Fractional Quantum Hall Effect: Rational filling, $\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9} \dots$ Flat bands \Rightarrow Kinetic energy zero.

$$H_{\rm Int} = \sum_{i < j} V\left(\mathbf{r}_i - \mathbf{r}_j\right)$$

No small parameter!

Numerically hard, as the electrons are strongly interacting

Trial Wave Function for the FQHE

- Use representative wave functions for particular ν .
- Laughlin: $\nu = \frac{1}{q}$

Laughlin 83'

$$\psi_{\frac{1}{q}} = e^{-\frac{1}{4}\sum_{i}|z_{i}|^{2}} \prod_{i < j} (z_{i} - z_{j})^{q}$$

Trial Wave Function for the FQHE

- Use representative wave functions for particular ν .
- Laughlin: $\nu = \frac{1}{q}$ Laughlin 83' $a/\nu = e^{-\frac{1}{4}\sum_{i}|z_{i}|^{2}} \prod (z_{i} - z_{i})$

$$\psi_{\frac{1}{q}} = e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}} \prod_{i < j} (z_{i} - z_{j})^{q}$$

• Moore-Read: $\nu = 5/2$

Moore & Read 91'

$$\psi_{\mathrm{MR}} = e^{-\frac{1}{4}\sum_{i}|z_{i}|^{2}}\prod_{i < j}(z_{i} - z_{j})^{2} \times \mathrm{Pf}\left(\frac{1}{z_{i} - z_{j}}\right)$$

Typically fractionally charged excitations and anyonic statistics!

Trial Wave Function for the FQHE II

- A whole zoo of different wave functions.
- Two layer version of Moore-Read: $\nu=5/2$

Cappelli, Georgiev & Todorov 01'

$$\psi_{\frac{5}{2}} = \mathcal{A} e^{-\frac{1}{4}\sum_{i} (|z_{i}|^{2} + |w_{i}|^{2})} \prod_{i,j} (z_{i} - w_{j})$$
$$\times \prod_{i < j} (z_{i} - z_{j})^{3} \prod_{i < j} (w_{i} - w_{j})^{3}$$

Trial Wave Function for the FQHE II

ų

- A whole zoo of different wave functions.
- Two layer version of Moore-Read: $\nu=5/2$

Cappelli, Georgiev & Todorov 01'

$$b_{rac{5}{2}} = \mathcal{A} e^{-rac{1}{4}\sum_{i} \left(|z_{i}|^{2}+|w_{i}|^{2}
ight)} \prod_{i,j} \left(z_{i}-w_{j}
ight)
onumber \\ imes \prod_{i < j} \left(z_{i}-z_{j}
ight)^{3} \prod_{i < j} \left(w_{i}-w_{j}
ight)^{3}$$

• Composite fermions: $\nu = \frac{2}{5}$

Jain 89'

$$\psi_{\frac{2}{5}} = \mathcal{A} e^{-\frac{1}{4}\sum_{i} (|z_{i}|^{2} + |w_{i}|^{2})} \prod_{i} \partial_{z_{i}} \prod_{i,j} (z_{i} - w_{j})^{2} \\ \times \prod_{i < j} (z_{i} - z_{j})^{3} \prod_{i < j} (w_{i} - w_{j})^{3}$$

Testing Wave Functions

- What kind of test can I perform on my trial wave functions?
- Compute energy expectation value

$$\langle E \rangle = \int_{V} d^{N} \mathbf{r} \, \psi^{\star}(\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r})$$

Testing Wave Functions

- What kind of test can I perform on my trial wave functions?
- Compute energy expectation value

$$\langle E \rangle = \int_V d^N \mathbf{r} \, \psi^*(\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r})$$

ullet Compute overlap with exact ground state ϕ_0

$$\langle \psi \ket{\phi_0}
angle = \int_V d^N \mathbf{r} \, \psi^\star(\mathbf{r}) \phi_0(\mathbf{r})$$

Testing Wave Functions

- What kind of test can I perform on my trial wave functions?
- Compute energy expectation value

$$\langle E \rangle = \int_V d^N \mathbf{r} \, \psi^*(\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r})$$

ullet Compute overlap with exact ground state ϕ_0

$$\langle \psi \ket{\phi_0}
angle = \int_V d^N \mathbf{r} \, \psi^\star(\mathbf{r}) \phi_0(\mathbf{r})$$

• But, two trial wave functions Ψ_A and Ψ_B can not necessarily be compared directly.

The Shift

• Filling fraction is a thermodynamic quantity

$$u = rac{N_e}{N_{\Phi}} \qquad N_e, N_{\Phi} \to \infty$$

• For finite systems

$$\nu (N_{\phi} + S) = N_e$$
 Shift $S!$

The Shift

• Filling fraction is a thermodynamic quantity

$$u = rac{N_e}{N_\Phi} \qquad N_e, N_\Phi o \infty$$

For finite systems

$$\nu (N_{\phi} + S) = N_e$$
 Shift $S!$

 \bullet Charged particles, curved space \Rightarrow extra contribution to the effective magnetic field

The Shift

• Filling fraction is a thermodynamic quantity

$$u = rac{N_e}{N_{\Phi}} \qquad N_e, N_{\Phi} o \infty$$

For finite systems

$$\nu (N_{\phi} + S) = N_e \quad \text{Shift } S!$$

- \bullet Charged particles, curved space \Rightarrow extra contribution to the effective magnetic field
- The shift is a topological property of a FQH state. Filled lowest LL $\nu = 1$ S = 1Laughlin $\nu = \frac{1}{q}$ S = qComposite Fermions $\nu = \frac{m}{2m+1}$ S = 2 + m

The Sphere and Shift II

• All wave functions do not have the same shift. Shift can distinguish different wave functions!

The Sphere and Shift II

• All wave functions do not have the same shift. Shift can distinguish different wave functions!

but

• ψ_A and ψ_B at different shifts can *not* be compared directly, since N_{ϕ} and N_e do not match!

The Sphere and Shift II

• All wave functions do not have the same shift. Shift can distinguish different wave functions!

but

- ψ_A and ψ_B at different shifts can *not* be compared directly, since N_{ϕ} and N_e do not match!
- Solution: Choose geometry where S = 0. Shift is manifest though the quantum Hall viscosity η

• Sphere:

- Sphere:
- Curved geometry $\Rightarrow S \neq 0$

- Sphere:
- Curved geometry $\Rightarrow S \neq 0$
- Plane/Disc:

- Sphere:
- Curved geometry $\Rightarrow \mathcal{S} \neq 0$
- Plane/Disc:
- Compactification at $\infty \Rightarrow$ sphere \Rightarrow same problem

- Sphere:
- Curved geometry $\Rightarrow \mathcal{S} \neq 0$
- Plane/Disc:
- Compactification at $\infty \Rightarrow$ sphere \Rightarrow same problem
- Torus: Flat geometry $\Rightarrow S = 0$
- Easy access to geometry parameter τ

A reminder about ordinary viscosity:

ullet Viscosity pprox thickness of a fluid

A reminder about ordinary viscosity:

- ${\, \bullet \,}$ Viscosity pprox thickness of a fluid
- Honey: $\eta = 2 10$ Pa·s is thicker than water: $\eta = 0.894$ mPa·s.

A reminder about ordinary viscosity:

- ullet Viscosity pprox thickness of a fluid
- Honey: $\eta = 2 10$ Pa·s is thicker than water: $\eta = 0.894$ mPa·s.

```
    Small η
```

```
Liquid nitrogen: (at 77 K)
\eta = 0.158 \text{ mPa} \cdot \text{s.}
```


A reminder about ordinary viscosity:

- ullet Viscosity pprox thickness of a fluid
- Honey: $\eta = 2 10$ Pa·s is thicker than water: $\eta = 0.894$ mPa·s.

• Small η

```
Liquid nitrogen: (at 77 K)
\eta = 0.158 \text{ mPa} \cdot \text{s.}
```

• Large η Pitch tar: $\eta = 2.3 \cdot 10^8$ Pa·s.

• Viscosity η and elastic modulus λ , relate stress tensor σ to the strain u, and the strain rate \dot{u} .

$$\sigma_{\alpha,\beta} = \sum_{\gamma,\delta} \lambda_{\alpha,\beta,\gamma,\delta} u_{\gamma,\delta} + \sum_{\gamma,\delta} \eta_{\alpha,\beta,\gamma,\delta} \dot{u}_{\gamma,\delta}$$

 $\alpha, \beta, \gamma, \delta = 1, \dots, d$ in d dimensions.

• The viscosity tensor may be divided as

$$\eta = \eta^{S} + \eta^{A}$$

where

$$egin{array}{rcl} \eta^{\mathcal{S}}_{lpha,eta,\gamma,\delta} &=& \eta^{\mathcal{S}}_{\gamma,\delta,lpha,eta} \ \eta^{\mathcal{A}}_{lpha,eta,\gamma,\delta} &=& -\eta^{\mathcal{A}}_{\gamma,\delta,lpha,eta} \end{array}$$

Normal Viscosity and Dissipation

Normally one associates viscosity with dissipation,
 ... and in ordinary three dimensions (or higher) that is natural.

Normal Viscosity and Dissipation

- Normally one associates viscosity with dissipation,
 - ... and in ordinary three dimensions (or higher) that is natural.
- The familiar viscous dissipation comes from the symmetric tensor η^{S} . Force and displacement are parallel \Rightarrow dissipation

Anti-symmetric Viscosity

• In all other dimensions than d = 2, isotropic fluids will have $\eta^A = 0$. However in two dimensions there is more to the story...

Anti-symmetric Viscosity

- In all other dimensions than d = 2, isotropic fluids will have $\eta^A = 0$. However in two dimensions there is more to the story...
- In d = 2 dimensions η^A may be non-zero.
 - ... but time reversal symmetry has to be broken.
 - ... like in the quantum Halls system.

Anti-symmetric Viscosity

- In all other dimensions than d = 2, isotropic fluids will have $\eta^A = 0$. However in two dimensions there is more to the story...
- In d = 2 dimensions η^A may be non-zero.
 - ... but time reversal symmetry has to be broken.
 - ... like in the quantum Halls system.

- Now, force and displacement are orthogonal, and no dissipation may occur.
- η^A carries information about the shift S.

Analytic Quantum Hall Viscosity

Viscosity has been computed for:

• The filled lowest Landau level: $\eta = rac{1}{4}\hbarar{n}$

Avron, Seiler & Zograf 95'

 $\mathcal{S} = 1$

Analytic Quantum Hall Viscosity

Viscosity has been computed for:

- The filled lowest Landau level: $\eta = \frac{1}{4}\hbar\bar{n}$ Avron, Seiler & Zograf 95'
 - $\mathcal{S} = 1$

• The Laughlin
$$u = rac{1}{q}$$
 wave function: $\eta = rac{1}{4}\hbar\bar{n}q$

$$S = q$$
.

Analytic Quantum Hall Viscosity

Viscosity has been computed for:

- The filled lowest Landau level: $\eta = \frac{1}{4}\hbar\bar{n}$ Avron, Seiler & Zograf 95'
 - $\mathcal{S} = 1$

• The Laughlin $u = rac{1}{q}$ wave function: $\eta = rac{1}{4}\hbarar{n}q$

$$\mathcal{S} = q$$
.

The (conjectured) general relation is
 Read 09'
 1

$$\eta = rac{1}{4}\hbarar{n}\mathcal{S}$$

• Viscosity can distinguish between different states.

Recapitulation

• Sphere:

Curved geometry $\Rightarrow \mathcal{S} \neq 0$

• Plane/Disc:

Curved geometry $\Rightarrow \mathcal{S} \neq 0$

Recapitulation

• Sphere:

Curved geometry $\Rightarrow S \neq 0$

• Plane/Disc: Curved geometry $\Rightarrow S \neq 0$

• Torus: Flat geometry \Rightarrow S = 0Easy access to geometry parameter τ

The Mathematical Torus

- The torus is periodic in two directions:
 - L_x and $\tau L_x = L_{\Delta} + \imath L_y$.
- Torus area: $2\pi N_s \ell^2 = L_x L_y$.
- Torus geometry:

$$\tau = \tau_1 + i\tau_2 = \frac{L_\Delta + iL_y}{L_x}$$

- τ_2 : Aspect ratio
- au_1 : Skewness ratio
- Ns: Number of flux quanta

The Complex τ -plane

The Complex τ -plane Fremling 13' 6 5 τ_2 Square Torus 4 $\tau = i$ 3 2 τ_1 $au_2 = 1$

Low $\leftarrow |\psi|^2 \rightarrow \mathsf{High}$

The Complex τ -plane Fremling 13' 6 5 τ_2 Square Torus 4 $\tau = i$ 3 2 τ_1 $\tau_2 = 1$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{6}$ $\tau_1 = 0$ Low $\leftarrow |\psi|^2 \rightarrow \mathsf{High}$

Mikael Fremling, Stockholm University

Hall Viscosity of Hierarchical Quantum Hall States

Computing Viscosity

- Viscosity is a response to strain rate, such as a velocity gradient.
- Is related to a Berry phase under changes in geometry.

$$egin{aligned} \mathcal{F} &= \imath \partial_{ au} A_{ au} - \imath \partial_{ au} A_{ au} \ & \eta^{H} &= -rac{2 au_{2}^{2}}{A_{ ext{Torus}}} \mathcal{F} \end{aligned}$$

 $A_{
m Torus} = L_x L_y = 2\pi N_s \ell_B^2$. Berry connection $A_\mu = \imath \left< \varphi \left| \partial_\mu \varphi \right>
ight>$

Computing Viscosity

- Viscosity is a response to strain rate, such as a velocity gradient.
- Is related to a Berry phase under changes in geometry.

$$egin{aligned} \mathcal{F} &= \imath \partial_{ar{ au}} A_{ au} - \imath \partial_{ au} A_{ar{ au}} \ \eta^H &= -rac{2 au_2^2}{A_{ ext{Torus}}} \mathcal{F} \end{aligned}$$

 $A_{\text{Torus}} = L_x L_y = 2\pi N_s \ell_B^2$. Berry connection $A_\mu = i \langle \varphi | \partial_\mu \varphi \rangle$

• Numerically: Discretizing path in au-space

$$W = e^{iA_{\Omega}\bar{\mathcal{F}}} = e^{i\oint A_{\mu}(\lambda) \, d\lambda_{\mu}} \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle$$

giving

$$\eta^{H} = -\frac{2\tau_{2}^{2}}{A_{\text{Torus}}} \frac{\Im(W)}{A_{\Omega}}$$

 A_{Ω} : Area of circle.

Mikael Fremling, Stockholm University

Computing Viscosity from Diagonalization

$$W \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle$$
$$|\varphi_{n}\rangle = \sum_{\mathbf{k}} \alpha_{\mathbf{k}}^{(n)} | \mathbf{k} \rangle$$
$$\langle \varphi_{n+1} | \varphi_{n} \rangle " = " \sum_{\mathbf{k}} \bar{\alpha}_{\mathbf{k}}^{(n+1)} \alpha_{\mathbf{k}}^{(n)}$$

Mikael Fremling, Stockholm University

Hall Viscosity of Hierarchical Quantum Hall States

Computing Viscosity from Diagonalization

$$W \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle$$
$$|\varphi_{n} \rangle = \sum_{\mathbf{k}} \alpha_{\mathbf{k}}^{(n)} | \mathbf{k} \rangle$$
$$\langle \varphi_{n+1} | \varphi_{n} \rangle " = " \sum_{\mathbf{k}} \bar{\alpha}_{\mathbf{k}}^{(n+1)} \alpha_{\mathbf{k}}^{(n)}$$

Extra piece with Fock basis

$$\eta^{H} = -\frac{2\tau_{2}^{2}}{A_{\text{Torus}}} \frac{\Im(W)}{A_{\Omega}} + \frac{1}{4}\hbar\bar{n}$$

- Numerically computed viscosity
 s = S/2 for the exact ground state
- Laughlin $u = 1/2, \
 u = 1/3$

Read & Rezayii 11'

- Numerically computed viscosity
 s = S/2 for the exact ground state
- Laughlin $u = 1/2, \ \nu = 1/3$ Read & Rezayii 11'
- Moore Read u = 1, u = 5/2

Read & Rezayii 11'

- Numerically computed viscosity
 s = S/2 for the exact ground state
- Laughlin $u = 1/2, \ \nu = 1/3$ Read & Rezayii 11'
- Moore Read $\nu=1$, $\nu=5/2$ Read & Rezayii 11'
- Our contribution u = 2/5

Fremling, Hansson & Suorsa 14'

- Numerically computed viscosity
 s = S/2 for the exact ground state
- Laughlin $u = 1/2, \ \nu = 1/3$ Read & Rezayii 11'
- Moore Read $\nu = 1$, $\nu = 5/2$ Read & Rezavii 11'
- Our contribution $\nu=2/5$

Fremling, Hansson & Suorsa 14'

• But what about the trial wave functions?

- Next, compute viscosity of trial wave function.
- Problem: Only a few known on the torus.

- Next, compute viscosity of trial wave function.
- Problem: Only a few known on the torus.
- Simplest approach: Begin with Laughlin $\nu = \frac{1}{a}$ on the plane

$$\psi_{\frac{1}{q}}(\{z\}) = e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}} \prod_{i < j} (z_{i} - z_{j})^{q}$$

- Next, compute viscosity of trial wave function.
- Problem: Only a few known on the torus.
- Simplest approach: Begin with Laughlin $\nu = \frac{1}{q}$ on the plane

$$\psi_{\frac{1}{q}}(\{z\}) = e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}} \prod_{i < j} (z_{i} - z_{j})^{q}$$

• Generalize to the torus by letting $z \to \vartheta_1(z|\tau)$, New piece $\mathcal{F}_s(Z)$, fixed by boundary conditions.

Haldane 85

- Next, compute viscosity of trial wave function.
- Problem: Only a few known on the torus.
- Simplest approach: Begin with Laughlin $\nu = \frac{1}{a}$ on the plane

$$\psi_{\frac{1}{q}}(\{z\}) = e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}} \prod_{i < j} (z_{i} - z_{j})^{q}$$

• Generalize to the torus by letting $z \to \vartheta_1(z|\tau)$, New piece $\mathcal{F}_s(Z)$, fixed by boundary conditions.

Haldane 85

$$\psi_{\frac{1}{q}}(\{z\}) = e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}} \prod_{i < j} \vartheta_{1}(z_{i} - z_{j}|\tau)^{q} \mathcal{F}_{s}(Z)$$
$$Z = \sum_{i} z_{i} \qquad \mathcal{F}_{s}(Z) = \vartheta \begin{bmatrix} \frac{s}{q} \\ 0 \end{bmatrix} (qz|q\tau)$$

The Conformal Field Theory (CFT) Construction I

- Simplest approach works for Laughlin, Moore-Read, but then difficult. The center of mass piece *F* is hard to guess.
- Idea: Use CFT to construct Laughlin wave function instead
- On the plane

$$\psi_{\frac{1}{q}}(\{z\}) = \left\langle \mathcal{O}\prod_{j=1}^{N_{e}} V(z_{j}) \right\rangle$$

Electron operator

$$V(z) =: e^{i\sqrt{q}\phi(z)}:$$

 \mathcal{O} : Background operator $\phi(z)$: Scalar boson

The Conformal Field Theory (CFT) Construction II

- Works also on the torus, but with some more work.
- ullet Both chiralities in ϕ

$$V(z,\bar{z}) =: e^{i\sqrt{q}\phi(z,\bar{z})} :$$

$$\left\langle \mathcal{O}\prod_{j=1}^{N_{e}} V(z_{j},\bar{z}_{j}) \right\rangle = \sum_{\mathbf{F}} \Psi_{\mathbf{F}}(\{z\}) \bar{\Psi}_{\mathbf{F}}(\{\bar{z}\})$$

• The Laughlin wave function is a linear combination

$$\psi_{\frac{1}{q}}(\{z\}) = \sum_{\mathsf{F}} e^{i2\pi\lambda_{\mathsf{F}}} \Psi_{\mathsf{F}}(\{z\})$$

• Yes, I'm hiding a lot of ugly details!

The Normalization

- Good news, can be done for more complicated states than Laughlin and Moore-Read.
- Eg. positive Jain series $\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \dots$
- Essential Bonus: Gives control over the τ -dependence of the normalization constant.
- For Laughlin

$$\mathcal{N} = \mathcal{N}_0 \left(\sqrt{\tau_2} \eta(\tau)^2 \right)^{q N_e/2}$$

 \mathcal{N}_{0} : au-independent (assumption).

 $\eta(au)$: Dedekind's η -function.

Wave Function for $\nu = \frac{2}{5}$ on the Torus

• We have applied the CFT construction to the $u = \frac{2}{5}$ wave function

$$\psi_{\frac{2}{5}} = \mathcal{A} e^{-\frac{1}{4}\sum_{i} (|z_{i}|^{2} + |w_{i}|^{2})} \prod_{i} \partial_{z_{i}} \prod_{i,j} (z_{i} - w_{j})^{2} \\ \times \prod_{i < j} (z_{i} - z_{j})^{3} \prod_{i < j} (w_{i} - w_{j})^{3}$$

Wave Function for $\nu = \frac{2}{5}$ on the Torus

• We have applied the CFT construction to the $\nu = \frac{2}{5}$ wave function

$$\psi_{\frac{2}{5}} = \mathcal{A} e^{-\frac{1}{4}\sum_{i} (|z_{i}|^{2} + |w_{i}|^{2})} \prod_{i} \partial_{z_{i}} \prod_{i,j} (z_{i} - w_{j})^{2} \\ \times \prod_{i < j} (z_{i} - z_{j})^{3} \prod_{i < j} (w_{i} - w_{j})^{3}$$

On the torus becomes

$$\psi_{\frac{2}{5}} = \mathcal{A} \sum_{m,n} D_{m,n}^{(z,\tau)} e^{-\frac{1}{4} \sum_{i} \left(|z_{i}|^{2} + |w_{i}|^{2} \right)} \prod_{i,j} \vartheta_{1} (z_{i} - w_{j} | \tau)^{2}$$
$$\times \prod_{i < j} \vartheta_{1} (z_{i} - z_{j} | \tau)^{3} \prod_{i < j} \vartheta_{1} (w_{i} - w_{j} | \tau)^{3} \times \mathcal{F} (Z, W)$$

Wave Function for $\nu = \frac{2}{5}$ on the Torus

• We have applied the CFT construction to the $u = rac{2}{5}$ wave function

$$\psi_{\frac{2}{5}} = \mathcal{A} e^{-\frac{1}{4}\sum_{i} (|z_{i}|^{2} + |w_{i}|^{2})} \prod_{i} \partial_{z_{i}} \prod_{i,j} (z_{i} - w_{j})^{2} \\ \times \prod_{i < j} (z_{i} - z_{j})^{3} \prod_{i < j} (w_{i} - w_{j})^{3}$$

On the torus becomes

$$\psi_{\frac{2}{5}} = \mathcal{A} \sum_{m,n} D_{m,n}^{(z,\tau)} e^{-\frac{1}{4} \sum_{i} \left(|z_{i}|^{2} + |w_{i}|^{2} \right)} \prod_{i,j} \vartheta_{1} (z_{i} - w_{j} | \tau)^{2}$$
$$\times \prod_{i < j} \vartheta_{1} (z_{i} - z_{j} | \tau)^{3} \prod_{i < j} \vartheta_{1} (w_{i} - w_{j} | \tau)^{3} \times \mathcal{F} (Z, W)$$

• $D_{m,n}$: Translation operator on z

- $\mathcal{F}(Z, W)$: Center of mass function
- S = 4, $\eta = \frac{1}{4}\hbar\bar{n}4$

Overlap with Coulomb: The Whole τ -plane

• Different terms D_{m,n} are dominant in different regions

- Red lines: Fundamental SL(2, ℤ) domain
 Black lines: Boundaries for the dominating D_{m,n}
- The anzats for very well in the entire τ -plane. Above 99% overlap by taking the 8 most dominant terms.
- Fantastic!

Computing Viscosity from Real-space Wave Functions

$$W \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle \qquad \langle \varphi_{n+1} | \varphi_{n} \rangle = \int_{\Omega} \varphi_{n+1}^{\star}(\mathbf{z}) \varphi_{n}(\mathbf{z})$$

Mikael Fremling, Stockholm University

Computing Viscosity from Real-space Wave Functions

$$W \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle \qquad \langle \varphi_{n+1} | \varphi_{n} \rangle = \int_{\Omega} \varphi_{n+1}^{\star}(\mathbf{z}) \varphi_{n}(\mathbf{z})$$

Evaluated using Monte Carlo as

Computing Viscosity from Real-space Wave Functions

$$W \approx \prod_{j} \langle \varphi_{j} | \varphi_{j+1} \rangle \qquad \langle \varphi_{n+1} | \varphi_{n} \rangle = \int_{\Omega} \varphi_{n+1}^{\star}(\mathbf{z}) \varphi_{n}(\mathbf{z})$$

Evaluated using Monte Carlo as

$$\langle \varphi_{n+1} | \varphi_n \rangle = \frac{1}{Z_N} \sum_m \frac{\varphi_n(\mathbf{z}_m) \varphi_{n+1}^{\star}(\mathbf{z}_m)}{p_m} \qquad Z_N = \sum_m \frac{1}{p_m}$$

 All MC integrals use the same set of z_m for numerical stability

$$\eta^{H} = -\frac{2\tau_{2}^{2}}{A_{\mathrm{Torus}}}\frac{\Im\left(W\right)}{A_{\Omega}}$$

Viscosity at $\nu = 2/5$

• We then numerically calculate \overline{s} for a trial wave function we believe describes the ground state

 \overline{s} at v = 2/5 for $N_e = 8$ and $Re(\tau) = 0$

Viscosity at $\nu = 2/5$

• We then numerically calculate \overline{s} for a trial wave function we believe describes the ground state

 \overline{s} at $\nu=2/5$ for $N_e\!=\!8$ and $Re(\tau)\!=\!0$

• Again, \overline{s} is not constant in the τ -plane, but converges on $\overline{s} = 2$ as $N_{\phi} \rightarrow \infty$.

Summary

- We have constructed torus wave functions for u = 2/5 (among many other)
- ullet The construction is valid for all au
- We have qualitative understanding of with terms $D_{m,mn}$ are dominant
- We have computed the viscosity for these state and it coincided with the Coulomb ground state, and theoretical predictions.

Summary

- We have constructed torus wave functions for u = 2/5 (among many other)
- ullet The construction is valid for all au
- We have qualitative understanding of with terms $D_{m,mn}$ are dominant
- We have computed the viscosity for these state and it coincided with the Coulomb ground state, and theoretical predictions.

Thank you!