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The Hall E�ect

Edwin Hall: 1879

Transverse resistance: RH = VH

I
∝ B .
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The Quantum Hall E�ect

2D interface, low temperatures, clean samples, high magnetic �elds
Klitzing, Dorda & Pepper 80'

Stormer 92'

Plateaus at RH = 1
ν

h
e2
, with a rational number ν = p

q
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Electrons in a Magnetic Field: Landau Levels

Landau Hamiltonian

H =
1

2m

∑
j=x ,y

(p̂j − eAj)
2

Harmonic oscillator solution

H = ~ω(a†a +
1

2
)

ω = eB
mc

, `B =
√

~
eB

Each energy level is called a
Landau Level (LL)
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Many-body Hamiltonian for the FQHE

Fractional Quantum Hall E�ect:

Rational �lling, ν = 1
3
, 2
5
, 3
7
, 4
9
. . .

Flat bands ⇒ Kinetic energy zero.

HInt =
∑
i<j

V (ri − rj)

No small parameter!

Numerically hard, as the electrons are
strongly interacting
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Trial Wave Function for the FQHE

Use representative wave functions for particular ν.

Laughlin: ν = 1
q

Laughlin 83'

ψ 1
q

= e−
1
4

∑
i |zi |2

∏
i<j

(zi − zj)
q

Moore-Read: ν = 5/2
Moore & Read 91'

ψMR = e−
1
4

∑
i |zi |2

∏
i<j

(zi − zj)
2 × Pf

(
1

zi − zj

)

Typically fractionally charged excitations and anyonic statistics!
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Trial Wave Function for the FQHE II

A whole zoo of di�erent wave functions.

Two layer version of Moore-Read: ν = 5/2
Cappelli, Georgiev & Todorov 01'

ψ 5
2

= A e−
1
4

∑
i(|zi |2+|wi |2)

∏
i ,j

(zi − wj)

×
∏
i<j

(zi − zj)
3
∏
i<j

(wi − wj)
3

Composite fermions: ν = 2
5

Jain 89'

ψ 2
5

= A e−
1
4

∑
i(|zi |2+|wi |2)

∏
i

∂zi
∏
i ,j

(zi − wj)
2

×
∏
i<j

(zi − zj)
3
∏
i<j

(wi − wj)
3
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Testing Wave Functions

What kind of test can I perform on my trial wave functions?

Compute energy expectation value

〈E 〉 =

∫
V

dNrψ?(r)V (r)ψ(r)

Compute overlap with exact ground state φ0

〈ψ |φ0 〉 =

∫
V

dNrψ?(r)φ0(r)

But, two trial wave functions ΨA and ΨB can not necessarily be
compared directly.
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The Shift

Filling fraction is a thermodynamic quantity

ν =
Ne

NΦ
Ne ,NΦ →∞

For �nite systems

ν (Nφ + S) = Ne Shift S!

Charged particles, curved space ⇒ extra contribution to the e�ective
magnetic �eld

The shift is a topological property of a FQH state.
Filled lowest LL ν = 1 S = 1

Laughlin ν = 1
q

S = q

Composite Fermions ν = m
2m+1

S = 2 + m
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The Sphere and Shift II

All wave functions do not have the same shift.

Shift can distinguish di�erent wave functions!

but

ψA and ψB at di�erent shifts can not be compared directly, since Nφ
and Ne do not match!

Solution: Choose geometry where S = 0.

Shift is manifest though the quantum Hall viscosity η
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A Flat Geometry

Sphere:

Curved geometry ⇒ S 6= 0

Plane/Disc:

Compacti�cation at ∞ ⇒
sphere ⇒ same problem

Torus: Flat geometry ⇒ S = 0

Easy access to geometry
parameter τ
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Ordinary Viscosity

A reminder about ordinary viscosity:

Viscosity ≈ thickness of a �uid

Honey: η = 2− 10 Pa·s is thicker than
water: η = 0.894 mPa·s.
Small η
Liquid nitrogen: (at 77 K)
η = 0.158 mPa·s.
Large η
Pitch tar: η = 2.3 · 108 Pa·s.
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Ordinary Viscosity

Viscosity η and elastic modulus λ, relate stress tensor σ to the strain
u, and the strain rate u̇.

σα,β =
∑
γ,δ

λα,β,γ,δuγ,δ +
∑
γ,δ

ηα,β,γ,δu̇γ,δ

α, β, γ, δ = 1, . . . , d in d dimensions.

The viscosity tensor may be divided as

η = ηS + ηA

where

ηSα,β,γ,δ = ηSγ,δ,α,β

ηAα,β,γ,δ = −ηAγ,δ,α,β
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Normal Viscosity and Dissipation

Normally one associates viscosity with dissipation,

... and in ordinary three dimensions (or higher) that is natural.

The familiar viscous dissipation comes from the symmetric tensor ηS .

Force and displacement are parallel ⇒ dissipation
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Anti-symmetric Viscosity

In all other dimensions than d = 2, isotropic �uids will have ηA = 0.

However in two dimensions there is more to the story...

In d = 2 dimensions ηA may be non-zero.

... but time reversal symmetry has to be broken.

... like in the quantum Halls system.

Now, force and displacement are
orthogonal, and no dissipation may
occur.

ηA carries information
about the shift S.
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Analytic Quantum Hall Viscosity

Viscosity has been computed for:

The �lled lowest Landau level: η = 1
4
~n̄

Avron, Seiler & Zograf 95'

S = 1

The Laughlin ν = 1
q
wave function: η = 1

4
~n̄q

Read 09'

S = q.

The (conjectured) general relation is
Read 09'

η =
1

4
~n̄S

Viscosity can distinguish between di�erent states.
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Recapitulation

Sphere:

Curved geometry ⇒ S 6= 0

Plane/Disc:

Curved geometry ⇒ S 6= 0

Torus: Flat geometry ⇒ S = 0

Easy access to geometry
parameter τ
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The Mathematical Torus

The torus is periodic in two
directions:
Lx and τLx = L∆ + ıLy .

Torus area: 2πNs`
2 = LxLy .

Torus geometry:

τ = τ1 + ıτ2 =
L∆ + ıLy

Lx

τ2 : Aspect ratio

τ1 : Skewness ratio

Ns : Number of �ux quanta
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The Complex τ -plane

Fremling 13'

6

5

4

3

2

τ2 = 1

Low ← |ψ|2 → High

τ1 = 0 1

6

1

3

1

2
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Computing Viscosity

Viscosity is a response to strain rate, such as a velocity gradient.

Is related to a Berry phase under changes in geometry.

F = ı∂τ̄Aτ − ı∂τAτ̄

ηH = − 2τ22
ATorus

F

ATorus = LxLy = 2πNs`
2
B . Berry connection Aµ = ı 〈ϕ |∂µϕ〉

Numerically: Discretizing path in τ -space

W = eıAΩF̄ = eı
∮
Aµ(λ) dλµ ≈

∏
j

〈ϕj |ϕj+1 〉

giving

ηH = − 2τ22
ATorus

= (W )

AΩ

AΩ : Area of circle.
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Computing Viscosity from Diagonalization

W ≈
∏
j

〈ϕj |ϕj+1 〉

|ϕn〉 =
∑
k

α
(n)
k
|k〉

〈ϕn+1 |ϕn 〉 ” = ”
∑
k

ᾱ
(n+1)
k

α
(n)
k

Extra piece with Fock basis

ηH = − 2τ22
ATorus

= (W )

AΩ
+

1

4
~n̄
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Viscosity from Exact Diagonalization

Numerically computed viscosity

s̄ = S/2 for the exact ground
state

Laughlin ν = 1/2, ν = 1/3
Read & Rezayii 11'

Moore - Read ν = 1, ν = 5/2
Read & Rezayii 11'

Our contribution ν = 2/5
Fremling, Hansson & Suorsa 14'

But what about the trial wave
functions?
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Wave Function on the Torus

Next, compute viscosity of trial wave function.

Problem: Only a few known on the torus.

Simplest approach: Begin with Laughlin ν = 1
q
on the plane

ψ 1
q

({z}) = e−
1
4

∑
j |zj |2

∏
i<j

(zi − zj)
q

Generalize to the torus by letting z → ϑ1(z | τ),

New piece Fs(Z ), �xed by boundary conditions.

Haldane 85'

ψ 1
q

({z}) = e−
1
4

∑
j |zj |2

∏
i<j

ϑ1(zi − zj | τ)qFs(Z )

Z =
∑
i

zi Fs(Z ) = ϑ

[
s
q

0

]
(qz |qτ)
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The Conformal Field Theory (CFT) Construction I

Simplest approach works for Laughlin, Moore-Read, but then di�cult.

The center of mass piece F is hard to guess.

Idea: Use CFT to construct Laughlin wave function instead

On the plane

ψ 1
q

({z}) =

〈
O

Ne∏
j=1

V (zj)

〉
Electron operator

V (z) =: eı
√
qφ(z) :

O : Background operator

φ(z) : Scalar boson
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The Conformal Field Theory (CFT) Construction II

Works also on the torus, but with some more work.

Both chiralities in φ

V (z , z̄) =: eı
√
qφ(z,z̄) :〈

O
Ne∏
j=1

V (zj , z̄j)

〉
=
∑
F

ΨF({z})Ψ̄F({z̄})

The Laughlin wave function is a linear combination

ψ 1
q

({z}) =
∑
F

eı2πλFΨF({z})

Yes, I'm hiding a lot of ugly details!
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The Normalization

Good news, can be done for more complicated states than Laughlin
and Moore-Read.

Eg. positive Jain series ν = 1
3
, 2
5
, 3
7
, 4
9
, . . .

Essential Bonus:
Gives control over the τ -dependence of the normalization constant.

For Laughlin

N = N0

(√
τ2η(τ)2

)qNe/2

N0: τ -independent (assumption).

η(τ) : Dedekind's η-function.
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Wave Function for ν = 2

5
on the Torus

We have applied the CFT construction to the ν = 2
5
wave function

ψ 2
5

= A e−
1
4

∑
i(|zi |2+|wi |2)

∏
i

∂zi
∏
i ,j

(zi − wj)
2

×
∏
i<j

(zi − zj)
3
∏
i<j

(wi − wj)
3

On the torus becomes

ψ 2
5

= A
∑
m,n

D
(z,τ)
m,n e−

1
4

∑
i(|zi |2+|wi |2)

∏
i ,j

ϑ1(zi − wj | τ)2

×
∏
i<j

ϑ1(zi − zj | τ)3
∏
i<j

ϑ1(wi − wj | τ)3 ×F (Z ,W )

Dm,n : Translation operator on z

F (Z ,W ) : Center of mass function

S = 4, η = 1
4
~ n̄ 4
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Overlap with Coulomb: The Whole τ -plane

Di�erent terms Dm,n are dominant in di�erent regions

Red lines: Fundamental SL(2,Z) domain
Black lines: Boundaries for the dominating Dm,n

The anzats for very well in the entire τ -plane.
Above 99% overlap by taking the 8 most dominant terms.

Fantastic!
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Computing Viscosity from Real-space Wave Functions

W ≈
∏
j

〈ϕj |ϕj+1 〉 〈ϕn+1 |ϕn 〉 =

∫
Ω
ϕ?n+1(z)ϕn(z)

Evaluated using Monte Carlo as

〈ϕn+1 |ϕn 〉 =
1

ZN

∑
m

ϕn(zm)ϕ?n+1(zm)

pm
ZN =

∑
m

1

pm

All MC integrals use the same
set of zm for numerical stability

ηH = − 2τ22
ATorus

= (W )

AΩ
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Viscosity at ν = 2/5

We then numerically calculate s̄ for a trial wave function we believe
describes the ground state

Again, s̄ is not constant in the τ -plane, but converges on s̄ = 2 as
Nφ →∞.
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Summary

We have constructed torus wave functions for ν = 2/5 (among many
other)

The construction is valid for all τ

We have qualitative understanding of with terms Dm,mn are dominant

We have computed the viscosity for these state and it coincided with
the Coulomb ground state, and theoretical predictions.

Thank you!
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