Computational Challenges in Nuclear and Many-Body Physics

Summary
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* Physical systems of interest

« Challenges in many-body physics

« Computational methods and their formulation
 Highlights of recent progress

« Some outstanding problems



Many-body physics
Systems of interest

Correlated finite-size systems: nuclei, molecules, quantum dots,
small cold atom clusters, nanostructures,...

Bulk strongly correlated systems: neutron matter, cold atom quantum gases,
electronic condensed matter systems,...

Challenges

Strong correlations require non-perturbative methods.
« Large number of degrees of freedom and/or large dimension of spaces.

« Effective low-energy interactions: integrating out the high-energy
degrees of freedom.

« Thermodynamic limit: extrapolating the finite-size results to bulk systems.

Recent progress in the field enabled by advances in computational methods
and availability of high performance computational resources.



Computational methods

Self-consistent mean-field (SCMF) theories and their extensions.
Density functional theories (DFT).

Quantum Monte Carlo (QMC) methods.
Configuration-interaction (Cl) shell model approach.
Coupled-cluster (CC) methods.

Methods based on integrable models.

Density matrix renormalization group (DMRG) and tensor network
methods.



Formulation of the computational methods
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Self-consistent mean-field (SCMF) theories
A. Black-Schaffer, C. Horowitz, L. Robledo

Optimal independent-particle description in the presence of interactions.

New physics is revealed by breaking symmetries.

Correlation effects beyond SCMF can be introduced in several ways:

Restoration of broken symmetries by projection methods, e.g.,
angular momentum (C. Yannouleas, Y. Sun), isospin (W. Satula).

Generator coordinate method: collective states are described as a
superposition of mean-field states.

Multi quasi-particle excitations.



These extensions require a formula for the overlap
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A general pfaffian formula was derived using fermionic coherent states:
« Solves a sign ambiguity of the overlap.
« Facilitates the use of Wick’s theorem (L. Robledo).

Spectrum of 2°Mg in
“beyond the mean field”
(GCM + projections + HFB)
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Density functional theory (DFT)
D. Abergel, A. Bulgac, J. Carlson, W. Satula

« Exact functional is usually unknown and is based on approximations
and/or conjectures.

« Depends on a number of parameters but is universal and global.

DFT for the unitary Fermi gas: scale invariance imposes strict constraints
on possible terms in the energy density functional (unlike nuclei, where the
number of terms is large).
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Time-dependent density functional theory (TDDFT)

« Describes real-time dynamics of many-particle systems in terms of DFT.

DFT extended to fermionic superfluids in the local density approximation
(SLDA) (A. Bulgac).

* Most previous models of superfluids were phenomenological and
classical (e.g., Landau, Tisza's two-fluid hydrodynamics).

Solving a large number ~ 104 — 10¢ of coupled partial differential equations
on the lattice.

Example: collision of



Quantum Monte Carlo (QMC) methods
J.Carlson, J. Drut, C. Gilbreth, L. Pollet, M. Wallin, S. Zhang

» Auxiliary-field Monte Carlo (AFMC)
» Diffusion Monte Carlo (DMC)
« Variational Monte Carlo (VMC)

QMC in cold atoms
Challenge problem at the 10th many-body conference (G.F. Bertsch, 1999):

What is the ground-state of a system composed of spin-1/2 fermions
interacting via zero range, infinite scattering-length interaction ?
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AFMC in quantum chemistry

Comparable or better accuracy than the best approaches
(e.g., coupled cluster), but with a better scaling (S. Zhang).

Constrained AFMC (to avoid the sign problem), and then release the
constraints to improve the results.

1.0

05—

(=]
=)
L R

Binding energy vs distance
between atoms

CCSD(T)

Binding energy (eV)
. =

>
Cr, molecule " 3 =T ]
\Y o T —F -
53 37
Nk ™\
L5 # AFQMC ’

Experiment AFQMC (phaseless)
| L |

_2 O ‘ | | | | | | | | ‘
1.5 20 2.5 30
R(Cr-Cr) (angstrom)

Purwanto, SZ, Krakauer, in prep, 14 (Preliminary)



AFMC in nuclei

« Derive model-independent signatures of deformation (a mean-field
concept) in a rotationally invariant framework (e.g., spherical shell model).

Y.A., C. Gilbreth, G.F. Bertsch (arXiv:1408.0081)
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Lattice QMC in quantum information

Use QMC to calculate entanglement
entropy in strongly correlated
fermionic systems (J. Drut)




Coupled-cluster method (CCM)
R. Bishop, T. Duguet, N. Michel, T. Papenbrock

CCM in condensed matter

Used high-order CCM to construct accurate quantum phase diagrams of
frustrated magnetic quantum systems (R. Bishop).
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CCM in nuclei

Application to calcium isotopes using interaction from chiral
effective field theory (T. Papenbrock).

Hagen et al., PRL 109, 032502 (2012)
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Large-scale configuration-interaction approach
M. Horoi, P. Maris, N. Michel, T. Misuzaki, D. Pfannkuche, Y. Sun, Y. Suzuki, F. Xu
« Exact diagonalization in large model spaces: it is now possible to

diagonalize matrices of dimension ~10'° -- limited to small systems
(e.g., light nuclei).

« Optimize the basis by using deformed basis and then project on good
angular momentum to restore the spherical symmetry (Y. Sun).
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Pairing correlations and superconductivity
A. Black-Schaffer, M. Guidry, N. Sandulescu, Y. Zhao

Non-uniform superconducting states using Bogoliubov-de Gennes:
SNS graphene Josephson junctions (A. Black-Schaffer).
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Integrable models

Integrable models (e.g., Richardson-Gaudin models) can be solved in
very large many-body model spaces (S. de Baerdemacker, J. Dukelsky).

 Solvable models are used in both condensed matter and nuclear
many-body systems to validate many-body methods.
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Density matrix renormalization group (DMRG) and quantum tensor networks
F. Verstraete, O. Legeza

DMRG is a powerful method in quasi 1D systems but difficult to
generalize to higher dimensions.

Quantum tensor networks provide insight to DMRG and generalize it to
problems in higher dimensions — can find new phases (e.g., topological).

Applications in quantum chemistry (up to 50 electrons in 50 orbitals).
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Some outstanding problems

« Dynamical mean-field theory (DMFT) has many applications in condensed
matter theory and quantum chemistry. Is it useful for nuclear physics ?

Finite-temperature DFT for nuclei and cold atoms ?

Cold atoms: is there an SLDA that can
describe the pseudogap phase ?
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 Auniversal DFT that works across the nuclear chart ?
* Excited states in QMC ?
Example: find the lowest state for each good quantum number

by projection.
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Optical conductivity (L. Pollet)
Help from AdS/CFT correspondence ?

« Implementation of CCM in open-shell nuclei might be too time-
consuming.

« CCM for excited nuclear states: 4p-4h are currently beyond reach.

« DMRG was used in the nuclear shell model with partial success.
(J. Dukelsky, T. Papenbrock, S. Pittel, J. Rotureau, N. Sandulescu...).

Are tensor network methods useful for nuclei ?



« Relate seemingly different methods that complement each other.

Recent example: DFT parameters for cold atoms determined by
ab initio QMC calculations.

« Energy density functionals are often constructed based on
Hamiltonian models.

How to map an energy density functional on Hamiltonian models ?

» Several of the methods include uncontrolled approximations that make the
estimation of systematic errors difficult.

« Extrapolations are often necessary but might not be reliable without a
theoretical guidance.



It is useful to have simple models that capture the main physics of the
problem and guide the more advanced and accurate computations.

“The purpose of computing is insight, not numbers”

(Richard Hamming, 1962)

“According to Einstein’s theory, if we
move the computer real fast, we can
go back in time and recover the files

you accidentally deleted.”

Thanks the organizers for a wonderful conference !



