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Nuclear structure models 

 Shell-model diagonalization method 

 Based on quantum mechanical principles  

 Growing computer power helps extending applications 

 A single configuration contains no physics 

 Huge basis dimension required, severe limit in applications 

 Mean-field approximations 

 Applicable to any size of systems  

 Fruitful physics around minima of energy surfaces 

 No configuration mixing, results depend on quality of mean-field 

 States with broken symmetry, cannot study transitions 

 Algebraic models 

 Based on symmetries, simple and elegant 

 Serve as important guidance for complicated calculations 

 



How to treat deformed nuclei 

 Most nuclei in the nuclear chart are deformed. To 

describe a deformed nucleus, a spherical shell model 

loses advantages. 

 One can start from a deformed basis by breaking the 

rotational symmetry spontaneously. 

 Then apply angular-momentum-projection technique to 

recover the symmetry. 

 important correlations prepared through a better mean-field 

 intrinsic states classified with well-defined physical meanings 

 these states transformed to the laboratory frame 

 diagonalization performed in the (angular-momentum) 

projected basis 

 results may be interpreted by algebraic models 



Deformed basis vs spherical basis 

 Rotational spectrum in 48Cr 

 Exp. data:   

• Brandolini et al, NPA 642 (1998) 387 

 PSM:     

• Hara, Sun and Mizusaki, PRL 83 (1999) 

1922  

• Deformed basis with a.-m. projection; 

Basis states ~ 50 

 pf-SM:   

• Caurier et al., PRL 75 (1995) 2466  

• Conventional M-scheme spherical shell 

model; Basis states ~ 2 million 



A method related to mean-field 

and shell models 

 Angular-momentum projection method based on 

deformed mean-field solutions 

 Start from intrinsic bases (e.g. solutions of deformed mean-

field) and select most relevant configurations 

 Use angular momentum projection technique to transform 

them to laboratory basis (many-body technique)  

 Diagonalize Hamiltonian in the projected basis (configuration 

mixing, a shell-model concept)  

 It is an efficient way, and probably the only way to treat 

heavy, deformed nuclei microscopically in a shell model 

concept 

 Example: Projected Shell Model 

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



Projected Shell Model (PSM) 

 Take a set of deformed (quasi)particle states (e.g. 

solutions of HF, HFB or Nilsson + BCS) 
 

 Select configurations (qp vacuum + multi-qp states near 

the Fermi level) 
 

 Project them onto good angular momentum (if necessary, 

also parity, particle number) to form a basis in lab frame 
 

 If necessary, superimpose configurations belonging to 

different qp representations (the GCM-concept) 
 

 Diagonalize a two-body Hamiltonian in projected basis 



Comparison with other models 

 Comparison with spherical shell model 

 No problem with basis size 

 PSM basis constructed by physical guidance 
 

 Comparison with mean-field models 

 Violated symmetries restored 

 Configuration mixing implemented  
 

 Comparison with algebraic models 

 Do not require a symmetry to start with 

 Yet the PSM results can be discussed with symmetry ideas 
 

 Comparison with the Tuebingen, Tokyo approaches 

 Different in preparation of basis and in effective interactions 

 

 



Emergence of SU(3) symmetry 

 Nearly perfect SU(3) symmetry 

emerges from a.-m.-projection 

 Project on separate BCS vacuum 

of         and       , then couple the 

projected states  

    to form the basis        

 Diagonalize the Hamiltonian in the 

coupled basis  

 Multi-phonon scissors mode is 

predicted 

 Sun, Wu, Guidry et al., PRL 80 

(1998) 672; NPA 703 (2002) 130 

 

 III  

 II PNI ˆ



g-vibrational states 

 g-vibration states cannot be obtained when axial symmetry in 

the basis states is assumed 

 Need 3-dimensional angular-momentum projection performed 

on a triaxially deformed basis 

Y. Sun et al.  Phys. Rev. C 61 (2000) 064323  



g-deformed multi-qp excitations 

 0-phonon (K=0), 1-phonon 

(K=2), 2-phonon (K=4) g-

vibrational bands 

 Y. Sun et al, Phys. Rev. C61 

(2000) 064323 

 Each phonon g-vibrational 

mode can couple with qp 

states – generalization of 

the usual concept of g-

vibration 

 Sheikh et al., Phys. Rev. 

C77 (2008) 034313; Nucl. 

Phys. A824 (2009) 58 



Basic structure 

 Ansatz of wavefunction: 

 

    with the projector: 

 

 The eigenvalue equation: 

 

    with matrix elements:  

 

 The Hamiltonian is diagonalized in the projected basis  
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a.-m.-projected multi-quasi-particle 

states based on a fixed deformation 

 Even-even nuclei: 

 

 

 Odd-odd nuclei: 

 

 

 Odd-neutron nuclei: 

 

 

 Odd-proton nuclei: 

 ,0ˆ,0ˆ,0ˆ,0ˆ 
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Hamiltonian and single particle 

space 

 Hamiltonian 

 Interaction strengths 

 c is related to deformation e by  

 

 GM is determined by observed even-odd mass difference 

 GQ is assumed to be proportional to GM with a ratio ~ 0.20 

 Single particle space 

 Three major shells for neutrons or protons (normally deformed) 

    four major shells for neutrons or protons (super-deformed)  

 For example, for rare-earth nuclei, N = 4, 5, 6 for neutrons 

                                                            N = 3, 4, 5 for protons 
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Example of a deformed rotor 

 Angular-momentum-projected energy calculation shows a 

deep prolate minimum for a superheavy nucleus 

 A very good rotor with axially-symmetric deformed shape 

 Quasi-particle excitations based on the same deformed potential 

Herzberg et al., Nature 442 (2006) 896 



Multi-quasiparticle excitations 

 0-, 2-, 4-qp states 

of 178Hf 

 Data:  

 S.M. Mullins et al, 

Phys. Lett.  B 393 

(1997) 279 

 Theory:  

 Y. Sun et al, 

Phys. Lett. B 589 

(2004) 83 



Calculation of matrix elements for 

multi-quasiparticle states 
 If a multi-quasiparticle state is written as        , then the central 

task is to calculate 

 

 

     with  

 

 For example, a norm matrix element 

 

     can be written as combinations of  

 

 

 



Multi-quasiparticle computation  

using the Pfaffian algorithm 

 Calculation of projected matrix elements usually uses the 

generalized Wick theorem 

 A matrix element having n (n’) qp creation or annihilation 

operators respectively on the left- (right-) sides of the rotation 

operator contains (n + n − 1)!! terms in the expression – a 

problem of combinatorial complexity 

 Use of the Pfaffian algorithm: 

 L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).  

 L.M. Robledo, Phys. Rev. C 84 (2011) 014307. 

 T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219. 

 M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305. 

 T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175 



L.-J. Wang et al.  Phys. Rev. C90 (2014) 011303(R)  

A third band-crossing is described. 

Extension of configuration  

space to 6-qps. 



Example for very high-spin states 

Calculation including 8-qps 

based on a fixed deformation 



Example of softness – no definite 

shapes 

Mean-field calculation  

shows a spherical shape. 

 

Projected calculation 

shows shallow minima 

separated by a low  

energy barrier. 

 

Shapes may be 

developed with rotation. 



g-softness in well-deformed nuclei 

Angular-momentum-projected energy surfaces as functions of e and g 



 A spherical nucleus described by 

spherical shell model. 

 A deformed nucleus described by 

deformed shell model. 

 Transitional ones are difficult. A 

better wavefunction is a 

superposition of many states of 

deformation parameter b.  

Description of a system with soft 

potential surfaces 

Schematic energy potential for 

spherical (red), transitional (dashed), 

and deformed (blue) nuclei. 

Spherical 

Deformed 

Transitional 



Generate Coordinate Method (GCM) 

 GCM starts with a general ansatz for a trail wave function 

 

 

     with                                being generate coordinates   

         is a weight function, determined by solving the Hill-Wheeler 

Equation 

 

      with the overlap functions 

 

 

 



Projected Generate Coordinate 

Method (PGCM) 

 Choosing generate coordinate as e2, an improved wave function 

 

 

 

 Hamiltonian 

 

 

     with a fixed set of parameters (fixed c, GM, and GQ) is 

diagonalized for a chain of isotopes. 

 
      F.-Q. Chen, Y. Sun, P. Ring,  Phys. Rev. C88 (2013) 014315  

 



Energy levels 

 
 Comparison of energy 

levels of 21
+, 41

+, and 61
+ 

of ground band and 

excited 02
+ state 

 

 Exp data (filled squares) 

 Calculations (open circles) 

 

     for isotopes from N=90 

(transitional) to N=98 

(well-deformed) nuclei  

N=90 N=98 



 Drastic changes in electric 

quadrupole transition B(E2, 2+ 

 0+) from vibrator 152Gd 

(N=88), to critical point 154Gd 

(N=90), to rotor 156-160Gd (N>90). 

 

 Black squares show if use only 

one fixed deformation e2 in the 

calculation, transitional feature 

cannot be reproduced. 

Spherical-deformed shape phase 

transition 



Distribution function 

 The Hill-Wheeller Equation diagonalizes the Hamiltonian in 

a non-orthogonal basis, and therefore, f(e2) is not a proper 

quantity to analyze the GSM wave function. 

 

 Transformation of f(e2) to an orthogonal basis gives 

 

 

    which can be used to present the distribution of the GCM   

wave functions. 

 

• g2(e2)  represent  the probability function. 



Distribution function of deformation 

Calculated distribution function of deformation 

for the first three 0+ states in 154Gd and 160Gd 



Probability function of deformation 

Calculated probability function of deformation for ground 

state 01
+ and excited 02

+ state in 154Gd and 160Gd.  



 Peak of the Gaussian defines deformation 


160Gd being more deformed than 154Gd 

 The distribution is wider for 154Gd 

 reflecting the softness of this nucleus 

 The distribution for 02
+ is much more fragmented 

 reflecting a vibrational nature of these states 

 For 01
+ , system stays mainly at system’s deformation with the 

largest probability 

 For 02
+ , system shows two peaks having different heights lying 

separately at both sides of the equilibrium  

 indicating an anharmonic oscillation 

 prefering to have a larger probability in the site of larger 

deformation 

 

 

Probability function of deformation 



b-decay & electron-capture in 

stars (with temperature) 

 Stellar weak-interaction rates are 

important for resolving astrophysical 

problems 

 for nucleosynthesis calculations 

 for core collapse supernova modeling 

 Calculation of transition matrix 

element  

 essentially a nuclear structure problem 

 necessary to connect thermally excited 

parent states with many daughter states  

 for both allowed and forbidden GT 

transitions 



Stellar enhancement of decay rate 

 A stellar enhancement can result from the thermal 

population of excited states 

 

 

 

 

 Examples in the s-process 
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F. Kaeppeler,  

Prog. Part. Nucl. Phys. 43 (1999) 419 



Transition matrix elements in the 

projected basis 

 Gamow-Teller rate 

 

 Wavefunction 

 

 e-e system 

 

 o-o system 

 

 Overlapping matrix element (K. Tanabe et al., PRC 59 (1999) 2494). 

 

     ,,,, eeeeee bbbbbbbb eeeee 

2
ˆ

12

12
)(

if II

i

f

I

I
GTB b 










  I

MK

I

M Pf





     ,,, ooooo aaaaaaaaaa eeee 

           eeoo
I

KKee
I

KKoo RODdPO
eoeo

eeee  ˆˆ~ˆˆ



The interactions 

 Total Hamiltonian 
 

 Quadrupole + monopole-pairing + quadrupole-pairing 

 

 

 Charge-exchange (Gamow-Teller) 

 

 

 

 

 

 

 Kuz'min & Soloviev, Nucl. Phys. A 486 (1988) 118 



Distribution of B(GT) 

 Initial state: ground state 

in even-even nucleus 

 Final states: all 1+ states 

in odd-odd nucleus  

 Ikeda sum-rule fulfilled   



B(GT) and logft in 164Ho  164Dy 

Z.-C. Gao, Y. Sun, Y.-S. Chen, PRC 74 (2006) 054303 



 Angular momentum projection is an efficient way to 

approach the nuclear many-body problem with the shell 

model concept. 

 Projected Shell Model is a practical example. 

 Start from Nilsson + BCS quasiparticle states 

 Perform angular-momentum-projection on (multi-quasiparticle) 

states 

 Improve the PSM wave function by superimposing projected 

states with different deformation 

 Diagonalize the Hamiltonian in the projected basis 

 Phaffian algorithm can help to simplify numerical calculations  

 Computer code can be developed when large number of 

quasiparticle excitations are included.  

 

 

Summary 
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