

Angular-momentum-projection
 method to approach nuclear
 many-body result

Yang Sun Shanghai Jiao Tong University, China

Nordita, Sept. 15, 2014

Nuclear structure models

- Shell-model diagonalization method
 - Based on quantum mechanical principles
 - Growing computer power helps extending applications
 - A single configuration contains no physics
 - Huge basis dimension required, severe limit in applications
- Mean-field approximations
 - Applicable to any size of systems
 - Fruitful physics around minima of energy surfaces
 - No configuration mixing, results depend on quality of mean-field
 - States with broken symmetry, cannot study transitions
- Algebraic models
 - Based on symmetries, simple and elegant
 - Serve as important guidance for complicated calculations

How to treat deformed nuclei

- Most nuclei in the nuclear chart are deformed. To describe a deformed nucleus, a spherical shell model loses advantages.
- One can start from a deformed basis by breaking the rotational symmetry spontaneously.
- Then apply angular-momentum-projection technique to recover the symmetry.
 - important correlations prepared through a better mean-field
 - intrinsic states classified with well-defined physical meanings
 - these states transformed to the laboratory frame
 - diagonalization performed in the (angular-momentum) projected basis
 - results may be interpreted by algebraic models

Deformed basis vs spherical basis

Rotational spectrum in ⁴⁸Cr

- Exp. data:
 - Brandolini et al, NPA 642 (1998) 387
- PSM:
 - Hara, Sun and Mizusaki, *PRL* 83 (1999) 1922
 - Deformed basis with a.-m. projection;
 Basis states ~ 50
- pf-SM:
 - Caurier et al., PRL 75 (1995) 2466
 - Conventional M-scheme spherical shell model; Basis states ~ 2 million

A method related to mean-field and shell models

- Angular-momentum projection method based on deformed mean-field solutions
 - Start from intrinsic bases (e.g. solutions of deformed meanfield) and select most relevant configurations
 - Use angular momentum projection technique to transform them to laboratory basis (many-body technique)
 - Diagonalize Hamiltonian in the projected basis (configuration mixing, a shell-model concept)
- It is an efficient way, and probably the only way to treat heavy, deformed nuclei microscopically in a shell model concept
- Example: Projected Shell Model
 - K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637

Projected Shell Model (PSM)

- Take a set of deformed (quasi)particle states (e.g. solutions of HF, HFB or Nilsson + BCS)
- Select configurations (qp vacuum + multi-qp states near the Fermi level)
- Project them onto good angular momentum (if necessary, also parity, particle number) to form a basis in lab frame
- If necessary, superimpose configurations belonging to different qp representations (the GCM-concept)
- Diagonalize a two-body Hamiltonian in projected basis

Comparison with other models

- Comparison with spherical shell model
 - No problem with basis size
 - PSM basis constructed by physical guidance
- Comparison with mean-field models
 - Violated symmetries restored
 - Configuration mixing implemented
- Comparison with algebraic models
 - Do not require a symmetry to start with
 - Yet the PSM results can be discussed with symmetry ideas
- Comparison with the Tuebingen, Tokyo approaches
 - Different in preparation of basis and in effective interactions

Emergence of SU(3) symmetry

- Nearly perfect SU(3) symmetry emerges from a.-m.-projection
 - Project on separate BCS vacuum of $|\phi_{V}\rangle$ and $|\phi_{\pi}\rangle$, then couple the projected states $|I_{\sigma}\rangle = N^{I}\hat{P}^{I}|\phi_{\sigma}\rangle$ to form the basis $|(I_{V} \otimes I_{\pi})I\rangle$
 - Diagonalize the Hamiltonian in the coupled basis
 - Multi-phonon scissors mode is predicted
 - Sun, Wu, Guidry *et al.*, *PRL* 80 (1998) 672; *NPA* 703 (2002) 130

• • • γ -vibrational states

- γ-vibration states cannot be obtained when axial symmetry in the basis states is assumed
- Need 3-dimensional angular-momentum projection performed on a triaxially deformed basis

Y. Sun et al. Phys. Rev. C 61 (2000) 064323

γ-deformed multi-qp excitations

- 0-phonon (K=0), 1-phonon (K=2), 2-phonon (K=4) γ-vibrational bands
 - Y. Sun et al, Phys. Rev. C61 (2000) 064323
- Each phonon γ-vibrational mode can couple with qp states – generalization of the usual concept of γvibration
 - Sheikh *et al.*, Phys. Rev. C77 (2008) 034313; Nucl. Phys. A824 (2009) 58

Basic structure

• Ansatz of wavefunction: $\Psi_{M}^{I} = \sum_{\kappa} f_{\kappa} \hat{P}_{MK_{\kappa}}^{I} |\phi_{\kappa}\rangle$

with the projector:
$$\hat{P}_{MK}^{I} = \frac{2I+1}{8\pi^{2}} \int d\Omega D_{MK}^{I}(\Omega) \hat{D}(\Omega)$$

• The eigenvalue equation: $\sum_{\kappa} \left(H_{\kappa\kappa'}^{I} - E N_{\kappa\kappa'}^{I} \right) f_{\kappa'} = 0$

with matrix elements: $H_{\kappa\kappa'}^{I} = \langle \phi_{\kappa} | \hat{H} \hat{P}_{\kappa\kappa'}^{I} | \phi_{\kappa'} \rangle \qquad N_{\kappa\kappa'}^{I} = \langle \phi_{\kappa} | \hat{P}_{\kappa\kappa'}^{I} | \phi_{\kappa'} \rangle$

• The Hamiltonian is diagonalized in the projected basis $\left\{ \hat{P}_{\scriptscriptstyle MK}^{\scriptscriptstyle I} \big| \phi_{\scriptscriptstyle \kappa} \right\}$

a.-m.-projected multi-quasi-particle states based on a fixed deformation

• Even-even nuclei:

 $\left\{ \hat{P}_{MK}^{I} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \ldots \right\}$

• Odd-odd nuclei:

 $\left\{\hat{P}_{MK}^{I}\alpha_{v}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{v}^{+}\alpha_{v}^{+}\alpha_{v}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{v}^{+}\alpha_{\pi}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{v}^{+}\alpha_{v}^{+}\alpha_{v}^{+}\alpha_{v}^{+}\alpha_{\pi}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \ldots\right\}$

- Odd-neutron nuclei: $\left\{ \hat{P}_{MK}^{I} \alpha_{\nu}^{+} |0\rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} |0\rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} |0\rangle, \ldots \right\}$
- Odd-proton nuclei: $\left\{ \hat{P}_{MK}^{I} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \ldots \right\}$

Hamiltonian and single particle space

- Hamiltonian $H = H_0 \sum_{\lambda} \frac{\chi_{\lambda}}{2} \sum_{\mu} Q_{\lambda\mu}^+ Q_{\lambda\mu} G_M P^+ P G_Q \sum_{\mu} P_{\mu}^+ P_{\mu}$ Interaction strengths χ is related to deformation ε by $\chi_{\tau\tau'} = \frac{2/3 \varepsilon \hbar \omega_{\tau} \hbar \omega_{\tau'}}{\hbar \omega_n \langle Q_0 \rangle_n + \hbar \omega_p \langle Q_0 \rangle_p}$
 - $G_{\rm M}$ is determined by observed even-odd mass difference
 - $G_{\rm O}$ is assumed to be proportional to $G_{\rm M}$ with a ratio ~ 0.20
- Single particle space
 - Three major shells for neutrons or protons (normally deformed) four major shells for neutrons or protons (super-deformed)
 - For example, for rare-earth nuclei, N = 4, 5, 6 for neutrons N = 3, 4, 5 for protons

Example of a deformed rotor

- Angular-momentum-projected energy calculation shows a deep prolate minimum for a superheavy nucleus
 - A very good rotor with axially-symmetric deformed shape
 - Quasi-particle excitations based on the same deformed potential

Multi-quasiparticle excitations

- 0-, 2-, 4-qp states of ¹⁷⁸Hf
- Data:
 - S.M. Mullins *et al*, *Phys. Lett.* B 393 (1997) 279
- Theory:
 - Y. Sun *et al*, *Phys. Lett.* B 589 (2004) 83

Calculation of matrix elements for multi-quasiparticle states

• If a multi-quasiparticle state is written as $|\Phi_{\kappa}\rangle$, then the central task is to calculate $\mathcal{H}_{\kappa\kappa'} = \langle \Phi_{\kappa} | \hat{H}[\Omega] | \Phi_{\kappa'} \rangle$,

with
$$[\Omega] = \frac{\hat{R}(\Omega)}{\langle \Phi | \hat{R}(\Omega) | \Phi \rangle}$$

• For example, a norm matrix element

$$\mathcal{N}_{\kappa\kappa'} = \langle \Phi | a_1 \cdots a_n [\Omega] a_{1'}^{\dagger} \cdots a_{n'}^{\dagger} | \Phi \rangle$$

can be written as combinations of

$$A_{\nu\nu'}(\Omega) \equiv \langle \Phi | [\Omega] a_{\nu}^{\dagger} a_{\nu'}^{\dagger} | \Phi \rangle = (V^*(\Omega) U^{-1}(\Omega))_{\nu\nu'},$$

$$B_{\nu\nu'}(\Omega) \equiv \langle \Phi | a_{\nu} a_{\nu'}[\Omega] | \Phi \rangle = (U^{-1}(\Omega) V(\Omega))_{\nu\nu'},$$

$$C_{\nu\nu'}(\Omega) \equiv \langle \Phi | a_{\nu}[\Omega] a_{\nu'}^{\dagger} | \Phi \rangle = (U^{-1}(\Omega))_{\nu\nu'},$$

Multi-quasiparticle computation using the Pfaffian algorithm

- Calculation of projected matrix elements usually uses the generalized Wick theorem
- A matrix element having n (n') qp creation or annihilation operators respectively on the left- (right-) sides of the rotation operator contains (n + n - 1)!! terms in the expression – a problem of combinatorial complexity
- Use of the Pfaffian algorithm:
 - L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).
 - L.M. Robledo, Phys. Rev. C 84 (2011) 014307.
 - T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219.
 - M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305.
 - T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175

L.-J. Wang et al. *Phys. Rev.* C90 (2014) 011303(R)

Example for very high-spin states

Example of softness – no definite shapes

Mean-field calculation shows a spherical shape.

Projected calculation shows shallow minima separated by a low energy barrier.

Shapes may be developed with rotation.

Angular-momentum-projected energy surfaces as functions of ϵ and γ

Description of a system with soft potential surfaces

- A spherical nucleus described by spherical shell model.
- A deformed nucleus described by deformed shell model.
- Transitional ones are *difficult*. A better wavefunction is a superposition of many states of deformation parameter β.

$$\begin{split} \left| \Psi^{I} \right\rangle &= \int f^{I}(\beta) \left| \Phi^{I}(\beta) \right\rangle d\beta \\ \left| \Phi^{I}(\beta) \right\rangle &= \hat{P}^{I} \left| \phi(\beta) \right\rangle \end{split}$$

Schematic energy potential for spherical (red), transitional (dashed), and deformed (blue) nuclei.

$$\{\boldsymbol{\beta}\} = \{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \dots\}$$

Generate Coordinate Method (GCM)

• GCM starts with a general ansatz for a trail wave function

$$\left|\Psi\right\rangle = \int da f(a) \left|\Phi(a)\right\rangle$$

with $\{a\} = a_1, a_2, \dots, a_i$ being generate coordinates

• f(a) is a weight function, determined by solving the Hill-Wheeler Equation

$$\mathcal{H}f = E\mathcal{N}f$$

with the overlap functions

$$\mathcal{H}(a,a') = \left\langle \Phi(a) | \hat{H} | \Phi(a') \right\rangle, \mathcal{N}(a,a') = \left\langle \Phi(a) | \Phi(a') \right\rangle$$

Projected Generate Coordinate Method (PGCM)

• Choosing generate coordinate as \mathcal{E}_2 , an improved wave function

$$\left|\Psi^{I,N}\right\rangle = \int d\varepsilon_2 f^{I,N}(\varepsilon_2) \left|\Phi^{I,N}(\varepsilon_2)\right\rangle$$
$$\left|\Phi^{I,N}(\varepsilon_2)\right\rangle = \hat{P}^I \hat{P}^N \left|\Phi_0(\varepsilon_2).\right\rangle$$

• Hamiltonian

$$\hat{H} = \hat{H}_0 - \frac{\chi}{2} \sum_{\mu} \hat{Q}^+_{\mu} \hat{Q}_{\mu} - G_M \hat{P}^+ \hat{P} - G_Q \sum_{\mu} \hat{P}^+_{\mu} \hat{P}_{\mu}$$

with a fixed set of parameters (fixed χ , G_M , and G_Q) is diagonalized for a chain of isotopes.

F.-Q. Chen, Y. Sun, P. Ring, Phys. Rev. C88 (2013) 014315

Energy levels

- Comparison of energy levels of 2₁⁺, 4₁⁺, and 6₁⁺ of ground band and excited 0₂⁺ state
 - Exp data (filled squares)
 - Calculations (open circles)

for isotopes from N=90 (transitional) to N=98 (well-deformed) nuclei

Spherical-deformed shape phase transition

- Drastic changes in electric quadrupole transition B(E2, 2⁺ → 0⁺) from vibrator ¹⁵²Gd (N=88), to critical point ¹⁵⁴Gd (N=90), to rotor ¹⁵⁶⁻¹⁶⁰Gd (N>90).
- Black squares show if use only one fixed deformation ε_2 in the calculation, transitional feature cannot be reproduced.

Distribution function

- The Hill-Wheeller Equation diagonalizes the Hamiltonian in a non-orthogonal basis, and therefore, $f(\varepsilon_2)$ is not a proper quantity to analyze the GSM wave function.
- Transformation of $f(\varepsilon_2)$ to an orthogonal basis gives

$$g(\boldsymbol{\varepsilon}_2) = \int \mathscr{N}^{1/2}(\boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_2') f(\boldsymbol{\varepsilon}_2') d\boldsymbol{\varepsilon}_2'$$

which can be used to present the distribution of the GCM wave functions.

• $g^2(\varepsilon_2)$ represent the probability function.

Distribution function of deformation

Calculated distribution function of deformation for the first three 0⁺ states in ¹⁵⁴Gd and ¹⁶⁰Gd

Probability function of deformation

Calculated probability function of deformation for ground state 0_1^+ and excited 0_2^+ state in ¹⁵⁴Gd and ¹⁶⁰Gd.

Probability function of deformation

- Peak of the Gaussian defines deformation
 - ¹⁶⁰Gd being more deformed than ¹⁵⁴Gd
- The distribution is wider for ¹⁵⁴Gd
 - reflecting the softness of this nucleus
- The distribution for 0_2^+ is much more fragmented
 - reflecting a vibrational nature of these states
- For 0₁⁺, system stays mainly at system's deformation with the largest probability
- For 0₂⁺, system shows two peaks having different heights lying separately at both sides of the equilibrium
 - indicating an anharmonic oscillation
 - prefering to have a larger probability in the site of larger deformation

β-decay & electron-capture in stars (with temperature)

- Stellar weak-interaction rates are important for resolving astrophysical problems
 - for nucleosynthesis calculations
 - for core collapse supernova modeling
- Calculation of transition matrix element
 - essentially a nuclear structure problem
 - necessary to connect thermally excited parent states with many daughter states
 - for both allowed and forbidden GT transitions

Stellar enhancement of decay rate

• A stellar enhancement can result from the thermal population of excited states

$$\lambda_{\beta} = \sum_{i} \left(p_{i} \times \sum_{j} \lambda_{\beta i j} \right)$$
$$p_{i} = \frac{\left(2I_{i} + 1\right) \times \exp\left(-E_{i} / kT\right)}{\sum_{m} \left(2I_{m} + 1\right) \times \exp\left(-E_{m} / kT\right)}$$

• Examples in the s-process

F. Kaeppeler, Prog. Part. Nucl. Phys. 43 (1999) 419

Transition matrix elements in the projected basis

• Gamow-Teller rate
$$B(GT) = \frac{2I_f + 1}{2I_i + 1} \left\langle \psi_{I_f} \middle| \hat{\beta}^{\pm} \middle| \psi_{I_i} \right\rangle^2$$

• Wavefunction $\Psi_{M}^{I} = \sum_{\kappa} f_{\kappa} \hat{P}_{MK_{\kappa}}^{I} |\phi_{\kappa}\rangle$

• e-e system
$$|\phi_e(\varepsilon_e)\rangle = \{ |\varepsilon_e\rangle, b_v^+ b_v^+|\varepsilon_e\rangle, b_\pi^+ b_\pi^+|\varepsilon_e\rangle, b_v^+ b_v^+ b_\pi^+|\varepsilon_e\rangle, \cdots \}$$

• o-o system
$$|\phi_o(\varepsilon_o)\rangle = \{ a_v^+ a_\pi^+ | \varepsilon_o\rangle, a_v^+ a_v^+ a_\nu^+ a_\pi^+ | \varepsilon_o\rangle, a_v^+ a_\pi^+ a_\pi^+ a_\pi^+ | \varepsilon_o\rangle, \cdots \}$$

• Overlapping matrix element (K. Tanabe *et al.*, *PRC* 59 (1999) 2494). $\langle \phi_o(\varepsilon_o) | \hat{O} \hat{P}^I_{K_o K_e} | \phi_e(\varepsilon_e) \rangle \sim \int d\Omega D^I_{K_o K_e}(\Omega) \langle \phi_o(\varepsilon_o) | \hat{O} \hat{R}(\Omega) | \phi_e(\varepsilon_e) \rangle$

The interactions

• Total Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}_{QP} + \hat{H}_{GT}$

Quadrupole + monopole-pairing + quadrupole-pairing

$$\hat{H}_{QP} = -\frac{1}{2}\chi_{QQ}\sum_{\mu}\hat{Q}_{2\mu}^{\dagger}\hat{Q}_{2\mu} - G_M\hat{P}^{\dagger}\hat{P} - G_Q\sum_{\mu}\hat{P}_{2\mu}^{\dagger}\hat{P}_{2\mu}$$

• Charge-exchange (Gamow-Teller)

$$\hat{H}_{GT} = + 2\chi_{GT} \sum_{\mu} \hat{\beta}_{1\mu}^{-} (-1)^{\mu} \hat{\beta}_{1-\mu}^{+} - 2\kappa_{GT} \sum_{\mu} \hat{\Gamma}_{1\mu}^{-} (-1)^{\mu} \hat{\Gamma}_{1-\mu}^{+}$$
$$\hat{\beta}_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle c_{\pi}^{\dagger} c_{\nu}, \quad \hat{\beta}_{1\mu}^{+} = (-)^{\mu} (\beta_{1-\mu}^{-})^{\dagger}$$
$$\hat{\Gamma}_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle c_{\pi}^{\dagger} c_{\bar{\nu}}^{\dagger}, \quad \hat{\Gamma}_{1\mu}^{+} = (-)^{\mu} (\Gamma_{1-\mu}^{-})^{\dagger}$$

• Kuz'min & Soloviev, Nucl. Phys. A 486 (1988) 118

Distribution of B(GT)

- Initial state: ground state in even-even nucleus
- Final states: all 1⁺ states in odd-odd nucleus
- Ikeda sum-rule fulfilled

$$S(\mathrm{GT}^{-}) - S(\mathrm{GT}^{+})$$

$$= \sum_{f} B(GT^{-}, i \to f) - \sum_{f} B(GT^{+}, i \to f)$$

$$= \sum_{f,\mu} |\langle \Psi_{f} | \hat{\beta}_{1\mu}^{-} | \Psi_{i} \rangle|^{2} - \sum_{f,\mu} |\langle \Psi_{f} | \hat{\beta}_{1\mu}^{+} | \Psi_{i} \rangle|^{2}$$

$$= 3(N - Z).$$

• • • | B(GT) and log *ft* in ¹⁶⁴Ho \rightarrow ¹⁶⁴Dy

Z.-C. Gao, Y. Sun, Y.-S. Chen, PRC 74 (2006) 054303

• • • Summary

- Angular momentum projection is an efficient way to approach the nuclear many-body problem with the shell model concept.
- Projected Shell Model is a practical example.
 - Start from Nilsson + BCS quasiparticle states
 - Perform angular-momentum-projection on (multi-quasiparticle) states
 - Improve the PSM wave function by superimposing projected states with different deformation
 - Diagonalize the Hamiltonian in the projected basis
- Phaffian algorithm can help to simplify numerical calculations
 - Computer code can be developed when large number of quasiparticle excitations are included.

Collaboration

- (Students) Y.-C. Yang (杨迎春), Y.-X. Liu (刘艳鑫)
 H. Jin (金华), F.-Q. Chen (陈芳祁)
 L.-J. Wang (王龙军), Q.-L. Hu (胡庆丽)
- o (China) Z.-C. Gao (高早春)
- (Japan) T. Mizusaki (水崎高浩) M. Oi
- (USA) M. Guidry
- o (Germany) P. Ring