
Angular-momentum-projection 

method to approach nuclear 

many-body problems 

Nordita, Sept. 15, 2014 

Yang Sun 
Shanghai Jiao Tong University, China 

 



Nuclear structure models 

 Shell-model diagonalization method 

 Based on quantum mechanical principles  

 Growing computer power helps extending applications 

 A single configuration contains no physics 

 Huge basis dimension required, severe limit in applications 

 Mean-field approximations 

 Applicable to any size of systems  

 Fruitful physics around minima of energy surfaces 

 No configuration mixing, results depend on quality of mean-field 

 States with broken symmetry, cannot study transitions 

 Algebraic models 

 Based on symmetries, simple and elegant 

 Serve as important guidance for complicated calculations 

 



How to treat deformed nuclei 

 Most nuclei in the nuclear chart are deformed. To 

describe a deformed nucleus, a spherical shell model 

loses advantages. 

 One can start from a deformed basis by breaking the 

rotational symmetry spontaneously. 

 Then apply angular-momentum-projection technique to 

recover the symmetry. 

 important correlations prepared through a better mean-field 

 intrinsic states classified with well-defined physical meanings 

 these states transformed to the laboratory frame 

 diagonalization performed in the (angular-momentum) 

projected basis 

 results may be interpreted by algebraic models 



Deformed basis vs spherical basis 

 Rotational spectrum in 48Cr 

 Exp. data:   

• Brandolini et al, NPA 642 (1998) 387 

 PSM:     

• Hara, Sun and Mizusaki, PRL 83 (1999) 

1922  

• Deformed basis with a.-m. projection; 

Basis states ~ 50 

 pf-SM:   

• Caurier et al., PRL 75 (1995) 2466  

• Conventional M-scheme spherical shell 

model; Basis states ~ 2 million 



A method related to mean-field 

and shell models 

 Angular-momentum projection method based on 

deformed mean-field solutions 

 Start from intrinsic bases (e.g. solutions of deformed mean-

field) and select most relevant configurations 

 Use angular momentum projection technique to transform 

them to laboratory basis (many-body technique)  

 Diagonalize Hamiltonian in the projected basis (configuration 

mixing, a shell-model concept)  

 It is an efficient way, and probably the only way to treat 

heavy, deformed nuclei microscopically in a shell model 

concept 

 Example: Projected Shell Model 

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



Projected Shell Model (PSM) 

 Take a set of deformed (quasi)particle states (e.g. 

solutions of HF, HFB or Nilsson + BCS) 
 

 Select configurations (qp vacuum + multi-qp states near 

the Fermi level) 
 

 Project them onto good angular momentum (if necessary, 

also parity, particle number) to form a basis in lab frame 
 

 If necessary, superimpose configurations belonging to 

different qp representations (the GCM-concept) 
 

 Diagonalize a two-body Hamiltonian in projected basis 



Comparison with other models 

 Comparison with spherical shell model 

 No problem with basis size 

 PSM basis constructed by physical guidance 
 

 Comparison with mean-field models 

 Violated symmetries restored 

 Configuration mixing implemented  
 

 Comparison with algebraic models 

 Do not require a symmetry to start with 

 Yet the PSM results can be discussed with symmetry ideas 
 

 Comparison with the Tuebingen, Tokyo approaches 

 Different in preparation of basis and in effective interactions 

 

 



Emergence of SU(3) symmetry 

 Nearly perfect SU(3) symmetry 

emerges from a.-m.-projection 

 Project on separate BCS vacuum 

of         and       , then couple the 

projected states  

    to form the basis        

 Diagonalize the Hamiltonian in the 

coupled basis  

 Multi-phonon scissors mode is 

predicted 

 Sun, Wu, Guidry et al., PRL 80 

(1998) 672; NPA 703 (2002) 130 
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g-vibrational states 

 g-vibration states cannot be obtained when axial symmetry in 

the basis states is assumed 

 Need 3-dimensional angular-momentum projection performed 

on a triaxially deformed basis 

Y. Sun et al.  Phys. Rev. C 61 (2000) 064323  



g-deformed multi-qp excitations 

 0-phonon (K=0), 1-phonon 

(K=2), 2-phonon (K=4) g-

vibrational bands 

 Y. Sun et al, Phys. Rev. C61 

(2000) 064323 

 Each phonon g-vibrational 

mode can couple with qp 

states – generalization of 

the usual concept of g-

vibration 

 Sheikh et al., Phys. Rev. 

C77 (2008) 034313; Nucl. 

Phys. A824 (2009) 58 



Basic structure 

 Ansatz of wavefunction: 

 

    with the projector: 

 

 The eigenvalue equation: 

 

    with matrix elements:  

 

 The Hamiltonian is diagonalized in the projected basis  
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a.-m.-projected multi-quasi-particle 

states based on a fixed deformation 

 Even-even nuclei: 

 

 

 Odd-odd nuclei: 

 

 

 Odd-neutron nuclei: 

 

 

 Odd-proton nuclei: 
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Hamiltonian and single particle 

space 

 Hamiltonian 

 Interaction strengths 

 c is related to deformation e by  

 

 GM is determined by observed even-odd mass difference 

 GQ is assumed to be proportional to GM with a ratio ~ 0.20 

 Single particle space 

 Three major shells for neutrons or protons (normally deformed) 

    four major shells for neutrons or protons (super-deformed)  

 For example, for rare-earth nuclei, N = 4, 5, 6 for neutrons 

                                                            N = 3, 4, 5 for protons 
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Example of a deformed rotor 

 Angular-momentum-projected energy calculation shows a 

deep prolate minimum for a superheavy nucleus 

 A very good rotor with axially-symmetric deformed shape 

 Quasi-particle excitations based on the same deformed potential 

Herzberg et al., Nature 442 (2006) 896 



Multi-quasiparticle excitations 

 0-, 2-, 4-qp states 

of 178Hf 

 Data:  

 S.M. Mullins et al, 

Phys. Lett.  B 393 

(1997) 279 

 Theory:  

 Y. Sun et al, 

Phys. Lett. B 589 

(2004) 83 



Calculation of matrix elements for 

multi-quasiparticle states 
 If a multi-quasiparticle state is written as        , then the central 

task is to calculate 

 

 

     with  

 

 For example, a norm matrix element 

 

     can be written as combinations of  

 

 

 



Multi-quasiparticle computation  

using the Pfaffian algorithm 

 Calculation of projected matrix elements usually uses the 

generalized Wick theorem 

 A matrix element having n (n’) qp creation or annihilation 

operators respectively on the left- (right-) sides of the rotation 

operator contains (n + n − 1)!! terms in the expression – a 

problem of combinatorial complexity 

 Use of the Pfaffian algorithm: 

 L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).  

 L.M. Robledo, Phys. Rev. C 84 (2011) 014307. 

 T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219. 

 M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305. 

 T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175 



L.-J. Wang et al.  Phys. Rev. C90 (2014) 011303(R)  

A third band-crossing is described. 

Extension of configuration  

space to 6-qps. 



Example for very high-spin states 

Calculation including 8-qps 

based on a fixed deformation 



Example of softness – no definite 

shapes 

Mean-field calculation  

shows a spherical shape. 

 

Projected calculation 

shows shallow minima 

separated by a low  

energy barrier. 

 

Shapes may be 

developed with rotation. 



g-softness in well-deformed nuclei 

Angular-momentum-projected energy surfaces as functions of e and g 



 A spherical nucleus described by 

spherical shell model. 

 A deformed nucleus described by 

deformed shell model. 

 Transitional ones are difficult. A 

better wavefunction is a 

superposition of many states of 

deformation parameter b.  

Description of a system with soft 

potential surfaces 

Schematic energy potential for 

spherical (red), transitional (dashed), 

and deformed (blue) nuclei. 

Spherical 

Deformed 

Transitional 



Generate Coordinate Method (GCM) 

 GCM starts with a general ansatz for a trail wave function 

 

 

     with                                being generate coordinates   

         is a weight function, determined by solving the Hill-Wheeler 

Equation 

 

      with the overlap functions 

 

 

 



Projected Generate Coordinate 

Method (PGCM) 

 Choosing generate coordinate as e2, an improved wave function 

 

 

 

 Hamiltonian 

 

 

     with a fixed set of parameters (fixed c, GM, and GQ) is 

diagonalized for a chain of isotopes. 

 
      F.-Q. Chen, Y. Sun, P. Ring,  Phys. Rev. C88 (2013) 014315  

 



Energy levels 

 
 Comparison of energy 

levels of 21
+, 41

+, and 61
+ 

of ground band and 

excited 02
+ state 

 

 Exp data (filled squares) 

 Calculations (open circles) 

 

     for isotopes from N=90 

(transitional) to N=98 

(well-deformed) nuclei  

N=90 N=98 



 Drastic changes in electric 

quadrupole transition B(E2, 2+ 

 0+) from vibrator 152Gd 

(N=88), to critical point 154Gd 

(N=90), to rotor 156-160Gd (N>90). 

 

 Black squares show if use only 

one fixed deformation e2 in the 

calculation, transitional feature 

cannot be reproduced. 

Spherical-deformed shape phase 

transition 



Distribution function 

 The Hill-Wheeller Equation diagonalizes the Hamiltonian in 

a non-orthogonal basis, and therefore, f(e2) is not a proper 

quantity to analyze the GSM wave function. 

 

 Transformation of f(e2) to an orthogonal basis gives 

 

 

    which can be used to present the distribution of the GCM   

wave functions. 

 

• g2(e2)  represent  the probability function. 



Distribution function of deformation 

Calculated distribution function of deformation 

for the first three 0+ states in 154Gd and 160Gd 



Probability function of deformation 

Calculated probability function of deformation for ground 

state 01
+ and excited 02

+ state in 154Gd and 160Gd.  



 Peak of the Gaussian defines deformation 


160Gd being more deformed than 154Gd 

 The distribution is wider for 154Gd 

 reflecting the softness of this nucleus 

 The distribution for 02
+ is much more fragmented 

 reflecting a vibrational nature of these states 

 For 01
+ , system stays mainly at system’s deformation with the 

largest probability 

 For 02
+ , system shows two peaks having different heights lying 

separately at both sides of the equilibrium  

 indicating an anharmonic oscillation 

 prefering to have a larger probability in the site of larger 

deformation 

 

 

Probability function of deformation 



b-decay & electron-capture in 

stars (with temperature) 

 Stellar weak-interaction rates are 

important for resolving astrophysical 

problems 

 for nucleosynthesis calculations 

 for core collapse supernova modeling 

 Calculation of transition matrix 

element  

 essentially a nuclear structure problem 

 necessary to connect thermally excited 

parent states with many daughter states  

 for both allowed and forbidden GT 

transitions 



Stellar enhancement of decay rate 

 A stellar enhancement can result from the thermal 

population of excited states 

 

 

 

 

 Examples in the s-process 
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Transition matrix elements in the 

projected basis 

 Gamow-Teller rate 

 

 Wavefunction 

 

 e-e system 

 

 o-o system 

 

 Overlapping matrix element (K. Tanabe et al., PRC 59 (1999) 2494). 
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The interactions 

 Total Hamiltonian 
 

 Quadrupole + monopole-pairing + quadrupole-pairing 

 

 

 Charge-exchange (Gamow-Teller) 

 

 

 

 

 

 

 Kuz'min & Soloviev, Nucl. Phys. A 486 (1988) 118 



Distribution of B(GT) 

 Initial state: ground state 

in even-even nucleus 

 Final states: all 1+ states 

in odd-odd nucleus  

 Ikeda sum-rule fulfilled   



B(GT) and logft in 164Ho  164Dy 

Z.-C. Gao, Y. Sun, Y.-S. Chen, PRC 74 (2006) 054303 



 Angular momentum projection is an efficient way to 

approach the nuclear many-body problem with the shell 

model concept. 

 Projected Shell Model is a practical example. 

 Start from Nilsson + BCS quasiparticle states 

 Perform angular-momentum-projection on (multi-quasiparticle) 

states 

 Improve the PSM wave function by superimposing projected 

states with different deformation 

 Diagonalize the Hamiltonian in the projected basis 

 Phaffian algorithm can help to simplify numerical calculations  

 Computer code can be developed when large number of 

quasiparticle excitations are included.  

 

 

Summary 
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