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Nuclear structure models

o Shell-model diagonalization method

Based on quantum mechanical principles
Growing computer power helps extending applications

A single configuration contains no physics
Huge basis dimension required, severe limit in applications

o Mean-field approximations

Applicable to any size of systems
Fruitful physics around minima of energy surfaces
No configuration mixing, results depend on quality of mean-field

States with broken symmetry, cannot study transitions

o Algebraic models
Based on symmetries, simple and elegant
Serve as important guidance for complicated calculations



How to treat deformed nuclel

o Most nuclel in the nuclear chart are deformed. To
describe a deformed nucleus, a spherical shell model
loses advantages.

o One can start from a deformed basis by breaking the
rotational symmetry spontaneously.

o Then apply angular-momentum-projection technigue to
recover the symmetry.
Important correlations prepared through a better mean-field
Intrinsic states classified with well-defined physical meanings
these states transformed to the laboratory frame

diagonalization performed in the (angular-momentum)
projected basis

results may be interpreted by algebraic models



o Rotational spectrum in #8Cr
Exp. data:

Brandolini et al, NPA 642 (1998) 387 g
PSM: &
Hara, Sun and Mizusaki, PRL 83 (1999)

1922
Deformed basis with a.-m. projection;
Basis states ~ 50 =
E
pf-SM: b
Caurier et al., PRL 75 (1995) 2466 g.,

Conventional M-scheme spherical shell
model; Basis states ~ 2 million
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A method related to mean-field
and shell models

o Angular-momentum projection method based on
deformed mean-field solutions

Start from intrinsic bases (e.g. solutions of deformed mean-
field) and select most relevant configurations

Use angular momentum projection technique to transform
them to laboratory basis (many-body technigue)

Diagonalize Hamiltonian in the projected basis (configuration
mixing, a shell-model concept)

o lItis an efficient way, and probably the only way to treat
heavy, deformed nuclei microscopically in a shell model
concept

o Example: Projected Shell Model

K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637



Projected Shell Model (PSM)

Take a set of deformed (quasi)particle states (e.qg.
solutions of HF, HFB or Nilsson + BCS)

Select configurations (gp vacuum + multi-gp states near
the Fermi level)

Project them onto good angular momentum (if necessary,
also parity, particle number) to form a basis in lab frame

If necessary, superimpose configurations belonging to
different gp representations (the GCM-concept)

Diagonalize a two-body Hamiltonian in projected basis



Comparison with other models

o Comparison with spherical shell model
No problem with basis size
PSM basis constructed by physical guidance

o Comparison with mean-field models
Violated symmetries restored
Configuration mixing implemented

o Comparison with algebraic models
Do not require a symmetry to start with
Yet the PSM results can be discussed with symmetry ideas

o Comparison with the Tuebingen, Tokyo approaches
Different in preparation of basis and in effective interactions



o Nearly perfect SU(3) symmetry
emerges from a.-m.-projection

Project on separate BCS vacuum
of |¢,) and |4, ), then couple the
projected states |1,)=N'P'|g,)

to form the basis |(1, ® 1))

Diagonalize the Hamiltonian in the
coupled basis

Multi-phonon scissors mode is
predicted

Sun, Wu, Guidry et al., PRL 80
(1998) 672; NPA 703 (2002) 130
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v-vibrational states

o vy-vibration states cannot be obtained when axial symmetry in
the basis states is assumed

o Need 3-dimensional angular-momentum projection performed
on a triaxially deformed basis
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v-deformed multi-gp excitations

o 0-phonon (K=0), 1-phonon
(K=2), 2-phonon (K=4) vy-
vibrational bands

Y. Sun et al, Phys. Rev. C61 i
(2000) 064323 g

o Each phonon y-vibrational
mode can couple with gp
states — generalization of
the usual concept of y-
vibration o
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Sheikh et al., Phys. Reuv. 0¢ T
C77 (2008) 034313; Nucl. Spin ()
Phys. A824 (2009) 58
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Basic structure

by

. I S
o Ansatz of wavefunction: ¥m= 2. fcPu,

2I +1

with the projector: Py, = j dQ D), (@)D(Q)
o The eigenvalue equation: Z(H,'(K. ‘EN,lK')fK:O

with matrix elements: H' = {4 |HP,|6>  N' . =<(g|P, |8

o The Hamiltonian is diagonalized in the projected basis

{Pilo}



a.-m.-projected multi-quasi-particle
states based on a fixed deformation

o Even-even nuclei:

B 10), B a0, Plara|0), Bl alara

| 2000 2/ Al 1

0),...|

o Odd-odd nuclei:
{IS,JIKa:a;‘ O>, FA’,\}lKajajaja;‘ O>, Iﬁ,\:lKa:a;a;a;‘ O>, FA’,\LKajajaja;a;a;‘ O>, .. }

o Odd-neutron nuclei:

{IS,JIKOCV* 0), I5,J|Kav+a;a;‘0>, I5,\}|Ka+a+a+a+a+‘ 0),.. }

VVVVV

o Odd-proton nuclei:

Blar|0), Bl | 0), Bl e eteterl|O),..|

14 14 7| /T NMWKN“TV TV T



Hamiltonian and single particle
space

o Hamiltonian H =H, —YJZ—;YQL,Q@ -GyP"P-Gy > PP,
- U 7
o Intergctllo? :ttregl%ths - 213 chao heo,
y is related to deformation sby y. . =
T ha)n <Q0>n +ha)p<Q0> 0
G,, Is determined by observed even-odd mass difference
G, Is assumed to be proportional to Gy, with a ratio ~ 0.20

o Single particle space
Three major shells for neutrons or protons (normally deformed)
four major shells for neutrons or protons (super-deformed)
For example, for rare-earth nuclei, N = 4, 5, 6 for neutrons
N =3, 4, 5 for protons
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Example of a deformed rotor

o Angular-momentum-projected energy calculation shows a
deep prolate minimum for a superheavy nucleus
A very good rotor with axially-symmetric deformed shape
Quasi-particle excitations based on the same deformed potential
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Deformation €2 Spin Herzberg et al., Nature 442 (2006) 896




o 0O-, 2-, 4-gp states
of 178Hf

o Data:

S.M. Mullins et al,
Phys. Lett. B 393
(1997) 279

o Theory:

Y. Sun et al,
Phys. Lett. B 589
(2004) 83
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Calculation of matrix elements for
multi-quasiparticle states

o If a multi-quasiparticle state is written as|®,) , then the central
task is to calculate Hew = (D |H[Q]| D),

4"\"';;(" — <(I)x|[£2]|q)x)
with R(Q)
Q] = ——
(P|R(€2)[D)
o For example, a norm matrix element
Niew = (®Play - - -a”[Q]a}} . -af;,lCD)
can be written as combinations of

A (Q) = (®|[Qlalal,|®) = (VYU (), .
B, (Q) = (Dlayay[Q]|P) = (UH(Q)V(Q)),, .
Cov(Q) = (Play[Qlal,|®) = (U™ (Q)), .

|
v




Multi-quasiparticle computation
using the Pfaffian algorithm

o Calculation of projected matrix elements usually uses the
generalized Wick theorem

o A matrix element having n (n’) gp creation or annihilation
operators respectively on the left- (right-) sides of the rotation
operator contains (n + n — 1)!! terms in the expression — a
problem of combinatorial complexity

o Use of the Pfaffian algorithm:

L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).

L.M. Robledo, Phys. Rev. C 84 (2011) 014307.

T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219.

M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305.

T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175



200 _
14 4
> 160 i 12 _
L]
= S 10 i
< 420 i =
@ < .
N - = _
=
= |
80 - IJEJ 6 F -
4 _
40 L L 1 1 I 1 L 1 1 L 1 1 1 L
0.0 0.1 0.2 0.3
®? (MeV’/h%) 2+ i
A third band-crossing is described. o- L
0 4 8 12 16 20 24 28 32 36 40
(1), af a] |®@), al a] |®), af a] a] af |©@), Spin (h)
! Vj
T o7 i
X avl_aujawawﬁb}, ama i m m|<’-D)

Extension of configuration

xaI, IaT iIT T T|'Il}\ ::1 a, aT a' al a | D), space to 6-gps.

T T,

Xﬂj: _T[aTaT T T|(D} H{I aTcITa a | D)}

Vi w T T,

L.-J. Wang et al. Phys. Rev. C90 (2014) 011303(R)



E (MeV)

Example for very high-spin states

Energy (MeV)
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Example of softness — no definite
shapes

Mean-field calculation
shows a spherical shape.

Projected calculation
shows shallow minima
separated by a low
energy barrier.

Shapes may be
developed with rotation.




v-softness in well-deformed nuclel
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Angular-momentum-projected energy surfaces as functions of € and y



Description of a system with soft
potential surfaces

o A spherical nucleus described by
spherical shell model. Eh

o A deformed nucleus described by
deformed shell model.

o Transitional ones are difficult. A
better wavefunction is a
superposition of many states of Bo 0 Bo
deformation parameter f.

Schematic energy potential for
spherical (red), transitional (dashed),

}‘l*“r> — /f!(ﬁ) ‘(;[)'r(ﬁ)>dﬁ and deformed (blue) nuclei.
D' (B))=P'o(B)) By =1{B1.B2. B3, }



Generate Coordinate Method (GCM)

o GCM starts with a general ansatz for a trail wave function
) = [ daf(a)|®(a)

with {a} = ay.a,.....a; being generate coordinates

o f(a) Is a weight function, determined by solving the Hill-Wheeler
Equation

Hf=EN|
with the overlap functions
H(a,d) = (®(a)|H|P(d))
N(a.d) = (P(a)|P(d)



Projected Generate Coordinate
Method (PGCM)

o Choosing generate coordinate as &,, an improved wave function

‘ liﬂ,N) _ f dngf.N ( & ) ‘(I)I,N (SZ) >

D' (&2)) = PP |y (e2).)
o Hamiltonian
A =Ho—% Y 05 Ou—GuP P—Go Y B P,
It L

with a fixed set of parameters (fixed y, Gy, and Gy) is
diagonalized for a chain of isotopes.

F.-Q. Chen, Y. Sun, P. Ring, Phys. Rev. C88 (2013) 014315
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transition

o Drastic changes in electric
guadrupole transition B(E2, 2*
- 0%) from vibrator 1°2Gd
(N=88), to critical point >4Gd
(N=90), to rotor 1%6-160Gd (N>90).

o Black squares show if use only
one fixed deformation ¢, in the
calculation, transitional feature
cannot be reproduced.

B(E2, 2] --> 0) (W.u.)
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Distribution function

o The Hill-Wheeller Equation diagonalizes the Hamiltonian in
a non-orthogonal basis, and therefore, f(s,) is not a proper
guantity to analyze the GSM wave function.

o Transformation of f(¢,) to an orthogonal basis gives

g(&) = /,_/V'f’fj(eg.eﬁ)f(ei)dei

which can be used to present the distribution of the GCM
wave functions.

g%(s,) represent the probability function.



Distribution function of deformation
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Calculated distribution function of deformation
for the first three 0t states in °4Gd and 16°Gd



Probabillity function of deformation
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Probabillity function of deformation

Peak of the Gaussian defines deformation
160Gd being more deformed than %4Gd
The distribution is wider for 1°4Gd
reflecting the softness of this nucleus
The distribution for 0,* iIs much more fragmented
reflecting a vibrational nature of these states
For 0,*, system stays mainly at system’s deformation with the
largest probability

For 0,* , system shows two peaks having different heights lying
separately at both sides of the equilibrium
Indicating an anharmonic oscillation

prefering to have a larger probability in the site of larger
deformation



o Stellar weak-interaction rates are
Important for resolving astrophysical

problems

for nucleosynthesis calculations
for core collapse supernova modeling

o Calculation of transition matrix

element

essentially a nuclear structure problem

necessary to connect thermally excited
parent states with many daughter states

for both allowed and forbidden GT

transitions

Energy

B-decay & electron-capture In
stars (with temperature)

Low-spin
high-excited

Chaotic region

,-" High-spin
.~ yrast

Isomers

Spin



Stellar enhancement of decay rate

o A stellar enhancement can result from the thermal
population of excited states

ﬂ,ﬂ :Z[p|><2/1ﬁ”] T LE—SJ -
! J L% - "Te (faw)f T(me”)
o - (21; +1)xexp(- E; /KT) § ]
i Zm(ZIm +1)xexp(—E, /KT) %mz_ = e
v | Sm
o Examples in the s-process = ]
Elo" 83, 1193 mﬂlﬂiﬂ 17
. |Nd[~Pm]| Tm
F. Kaeppeler,

Prog. Part. Nucl. Phys. 43 (1999) 419



o

o

o

Transition matrix elements in the
projected basis

Gamow-Teller rate B(GT)—ZZII +1 (v, |8 \l//|>

Wavefunction V= Z f Pk,

e-e system  [(e.) ={ &) bib] )bl ) bIDbIb )

0-0 system  |#(¢ ) =1 aalle,)aalaialle,) alalalal s, ).
Overlapping matrix element (K. Tanabe et al., PRC 59 (1999) 2494).

<¢o(‘90)‘OPK K, ‘¢e ge IdQDK K, (Q)<¢o o ‘OR( X¢e(5e)>



The Iinteractions

o Total Hamiltonian # = A, + Hop + Her

o Quadrupole + monopole-pairing + quadrupole-pairing

. ] At A ;A , Ao A
HQP — _§XQQ Z Cl?é,ucl?%u. - Crﬂ'fp' P— (IQ Z PQIM.PQM.

7 [
o Charge-exchange (Gamow-Teller)

3 _ / p{r—l— p: +
Hor = +9XCT231M 31 1 ‘h’CTZrlp. rl I

— Z{ma*#r_lv}cjrf.u ﬁm = [_]#[ﬁl—,u

m.v

o= Z{Jﬂcr r_|v)elel, lgfr# = (—}“(rl—_#ﬁ

m.v

Kuz'min & Soloviev, Nucl. Phys. A 486 (1988) 118



Distribution of B(GT)

Initial state: ground state
In even-even nucleus .

Final states: all 1* states b | B(GT)

In odd-odd nucleus 10 4 B(GT)

8

lkeda sum-rule fulfilled 0- |
S(GT™) — 5(GTH) . \
ZB(GT* i— f) — ZB (GT+,i— f)  o- . .

B(GT)

S50 5 10 15 20 25 30 35 40
Z| \ij|dl,u|qj Z| ];[jf|dl,u|qj Ex(MEU)

3(N Z).



B(GT) and logft in 14Ho - 184Dy
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Summary

Angular momentum projection is an efficient way to
approach the nuclear many-body problem with the shell
model concepit.
Projected Shell Model is a practical example.

Start from Nilsson + BCS guasiparticle states

Perform angular-momentum-projection on (multi-quasiparticle)
states

Improve the PSM wave function by superimposing projected
states with different deformation

Diagonalize the Hamiltonian in the projected basis
Phaffian algorithm can help to simplify numerical calculations

Computer code can be developed when large number of
guasiparticle excitations are included.
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