

Double-Beta Decay, Nuclear Structure, and Neutrino Physics

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grants PHY-1068217/PHY-1404442, and DOE/SciDAC grant DE-SC0008529 is acknowledged

Nordita 2014

- Neutrino physics within and beyond the Standard Model
- DBD mechanisms: light Majorana neutrino exchange, right-handed currents, heavy neutrinos, SUSY R-parity violation,...
- 48 Ca: 2*v* and 0*v* shell-model matrix elements
 - The effect of larger model spaces
 - Beyond closure approximation
- ¹³⁶Xe, ⁸²Se, and ⁷⁶Ge results

Nordita 2014

CENTRAL MICHIGAN

UNIVERSITY

Isotope

⁴⁸Ca

⁷⁶Ge

⁸²Se

 ^{96}Zr ¹⁰⁰Mo

¹¹⁶Cd

¹²⁸Te

¹³⁰Te

¹⁵⁰Nd

238U

 $^{136} Xe$

$$|v_{\alpha}\rangle = \sum_{i} U_{\alpha} |v_{\alpha}\rangle \\ |v_{\beta}\rangle = \sum_{i} U_{\alpha} |v_{\alpha}\rangle \\ PMNS - matrix \\ PMNS - matrix \\ U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}c_{13} & s_{13}c_{13} \\ -s_{12}c_{23} - c_{12}c_{23}s_{13}c_{13} & -c_{12}c_{23}s_{13}c_{13} & s_{23}c_{13} \\ -s_{12}c_{23} - s_{12}c_{23}s_{13}c_{13} & -c_{12}c_{23}s_{13}c_{13} & s_{23}c_{13} \\ 0 & 0 & 1 \end{bmatrix} \\ c_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc \\ s_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc \\ s_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc \\ s_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc \\ \beta_{12} = c_{12} + v_{12} + v_{12} \\ m_{\nu_{e}} = \sqrt{\sum_{i} |U_{ei}|^{2}m_{i}^{2}} < 2.2 eV (Mainz \text{ exp.}) \\ KATRIN \text{ exp.} (in progress): goal m_{\nu_{e}} < 0.3 eV \\ solution + c_{12} = s_{10} + s_{10} \\ s_{12} = s_{10} + s_{10} + s_{10} \\ s_{10} = s_{10} \\$$

Nordita 2014

doublet SM fermion masses: $\overline{\psi}_{iL}Y_{ij}\psi_{jR}\phi \rightarrow Y_{ij} < \phi > \overline{\psi}_{iL}\psi_{jR} = (m_D)_{ij}\overline{\psi}_{iL}\psi_{jR}$ $SU(2)_L$ $SU(2)_L$ SU($\psi \rightarrow U(x)\psi \quad U_{jk}(x) = \delta_{jk} - ig\theta^{a}(x)(T^{a})_{jk} + O(\theta^{a})$ $D_{\mu} = I\partial_{\mu} - igA_{\mu}^{a}(x)T^{a}$ $A_{\mu}(x) = A_{\mu}^{a}(x)T^{a} \rightarrow U(x)A_{\mu}(x)U^{+}(x) + \frac{i}{g}U(x)\partial_{\mu}U^{+}(x)$

 $T^a \in GA$ SM group: $SU(3)_c \times SU(2)_L \times U(1)_Y$

Nordita 2014

Fermions masses in the Standard Model

Nordita 2014

$$-\mathcal{L} \supset \frac{1}{2} \overline{\psi}_{iL} Y_{ij} \psi_{jR} \phi \longrightarrow \frac{1}{2} m_{Dij} \overline{\psi}_{iL} \psi_{jR} \quad \left(m_{Dij} = Y_{ij} \mathbf{v} \right)$$

 $-\mathcal{L} \supset \frac{1}{2} m_{LR} \overline{\nu}_{R}^{\prime c} \nu_{L}^{\prime c}$

Majorana

Nordita 2014

CENTRAL MICHIGAN

The origin of Majorana neutrino masses

- $U^2_{ei}m_i$ term dominates in most cases
- -1 TeV collider Majorana tests not relevant
- Heavy neutrino dominance requires loop corrections

arXiv:0710.4947v3

Nordita 2014

Fermion masses in and beyond the Standard Model^{*}

CENTRAL MICHIGAN Consequences of Existance of Majorana Neutrinos

- Leptogenesis ($\Delta L=2$) => (SM sphalerons) => Baryogenesis

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \approx 6.2 \times 10^{-10} \propto 0.01 \sin \delta_{CP}$$

- Exotic ($\Delta L=2$) decays: $\mu^+ \rightarrow e^+ + \gamma$ $\mu^+ \rightarrow e^+ + e^- + e^+$ $\mu^- + A(N,Z) \rightarrow e^- + A(N,Z)$ $BR < 5.7 \times 10^{-13}$ $BR < 1.0 \times 10^{-12}$ $BR(Au) < 7.0 \times 10^{-13}$
- Larger magnetic moments => Larger decay rates of heavy neutrino
- ~ $10^{-10} \mu_B(present \ \text{lim}it) >> \mu_v(Majorana) \approx 10^{-15} \mu_B >> \mu_{ii}^D(Dirac) \approx 3.2 \times 10^{-19} \left(\frac{m_i}{1eV}\right) \mu_B$
- Different neutrino contribution to Supernovae explosion mechanism => different signals measured on Earth detectors

Nordita 2014

CENTRAL MICHIGAN Possible contributions to 0ββ decay

(b)

Low-energy effective Hamiltonian

$$\mathcal{H}_W = \frac{G_F}{\sqrt{2}} j_L^\mu J_{L\mu}^+ + h.c.$$

 $j_{L/R}^{\mu} = \overline{e} \gamma^{\mu} (1 \mp \gamma^5) v_e$

$\mathcal{H}_{W} = \frac{G_{F}}{\sqrt{2}} \Big[j_{L}^{\mu} \Big(J_{L\mu}^{+} + \kappa J_{R\mu}^{+} \Big) + j_{R}^{\mu} \Big(\eta J_{L\mu}^{+} + \lambda J_{R\mu}^{+} \Big) \Big] + h.c.$
Left – right symmetric model

(a)

M. Horoi CMU

The Black Box Theorems

Black box I (electron neutrino)

- J. Schechter and J.W.F Valle, PRD 25, 2951 (1982)
- E. Takasugi, PLB 149, 372 (1984)
- J.F. Nieves, PLB 145, 375 (1984)

However: (i) Electron neutrinos are Majorana

M. Duerr et al, JHEP 06 (2011) 91

 $\left(\delta m_{v_e}\right)_{\mu\nu} \sim 10^{-24} eV \ll \sqrt{\left|\Delta m_{32}^2\right|} \approx 0.05 eV$

 $0\nu\beta\beta$ observed at some level

fermions (with m > 0). (ii) Lepton number conservation is violated by 2 units

Black box II (all flavors + oscillations)

M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006)

(i) Neutrinos are Majorana fermions.

 $0\nu\beta\beta$ observed \Leftrightarrow

at some level

(ii) Lepton number conservation is violated by 2 units

Regardless of the dominant $0\nu\beta\beta$ mechanism!

(*iii*)
$$\langle m_{\beta\beta} \rangle = \left| \sum_{k=1}^{3} m_k U_{ek}^2 \right| = \left| c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right| > 0$$

 \blacktriangleright 0.7 % systematical uncertainty on the $2\nu 2\beta$ efficiency above 2 MeV

$$|\eta_{\nu}|, |\eta_{NR}| \leftarrow \begin{cases} \left[G_{Ge}^{0\nu}T_{1/2Ge}^{0\nu}\right]^{-1} = \left|M_{Ge}^{(0\nu)}\right|^{2} |\eta_{\nu}|^{2} + \left|M_{Ge}^{(0N)}\right|^{2} |\eta_{NR}|^{2} \\ \left[G_{Xe}^{0\nu}T_{1/2Xe}^{0\nu}\right]^{-1} = \left|M_{Xe}^{(0\nu)}\right|^{2} |\eta_{\nu}|^{2} + \left|M_{Xe}^{(0N)}\right|^{2} |\eta_{NR}|^{2} \end{cases}$$

$$\left|\eta_{\nu}\right| = \frac{\langle m_{\beta\beta} \rangle}{m_e} \approx 10^{-6}$$

Assume $T_{1/2}(^{76}Ge)=22.3x10^{24} y$

Nordita 2014

Some mechanisms tested at LHC PRD 86, 055006 (2012)

<u>d</u>, u d, u

 l^{\pm}_{α}

 $-l_{\beta}^{\mp(\pm)}$

d, u d, u

 W_R^{\mp}

 N_i

 10^{4} $m_N = 0.5 \text{ TeV}$ $\sigma(p \ p \ \rightarrow W_R \rightarrow Nl) \ [fb]$ 10³ 10^{2} .5 TeV 101 10^{0} .5 TeV 10^{-1} 3.5 TeV 10-2 CMU 2 6 5 3 1 4 m_{W_R} [TeV]

Left-right symmetric model

2v Double Beta Decay (DBD) of ⁴⁸Ca

$$T_{1/2}^{-1} = G_{2\nu}(Q_{\beta\beta}) \Big[M_{GT}^{2\nu}(0^+) \Big]^2$$

$$M_{\rm GT}^{2\nu}(0^+) = \sum_k \frac{\langle 0_f \| \sigma \tau^- \| 1_k^+ \rangle \langle 1_k^+ \| \sigma \tau^- \| 0_i \rangle}{E_k + E_0}$$

 $^{48}Ca \xrightarrow{2\nu\beta\beta} {}^{48}Ti$

The choice of valence space is important!

$$B(GT) = \frac{\left|\left\langle f \parallel \sigma \cdot \tau \parallel i \right\rangle\right|^2}{(2J_i + 1)}$$

ISR	48Ca	48Ti
pf	24.0	12.0
f7 p3	10.3	5.2

Nordita 2014

Ikeda sum rule(ISR) = $\sum B(GT; Z \rightarrow Z + 1) - \sum B(GT; Z \rightarrow Z - 1) = 3(N - Z)$

Horoi, Stoica, Brown, PRC **75**, 034303 (2007)

Double Beta Decay NME for ⁴⁸Ca

TABLE I. Matrix elements and half-lives for 2ν decay calculated using GXPF1A interaction and two quenching factors. Matrix elements are in MeV⁻¹ for transitions to 0⁺ states and in MeV⁻³ for transitions to 2⁺ states.

M. Horoi, PRC 87, 014320 (2013)

for tra	nsitions to 2 ⁺	states.			$M_{\sigma\pi}^{2\nu}(0^+) = \sum \frac{\langle 0_f \ \sigma \tau^- \ 1_k^+ \rangle \langle 1_k^+ \ \sigma \tau^- \ 0_i \rangle}{\langle 0_f \ \sigma \tau^- \ 0_i \rangle}$
	qf	= 0.77	qf	² = 0.74	$E_k = E_k + E_0$
J_n^{π}	$M^{2\nu}$	$T_{1/2}^{2\nu}$ (yr)	$M^{2\nu}$	$T_{1/2}^{2\nu}$ (yr)	
01+	0.054	$3.3 imes 10^{19}$	0.050	3.9 × 10 ¹⁹ ←	$(T_{1/2}^{2\nu}) = \left[4.4^{+0.6}_{-0.5}(stat) \pm 0.4(syst)\right] \times 10^{19} yr$
2_{1}^{+}	0.012	8.5×10^{23}	0.010	1.0×10^{24}	
0 ⁺ ₂	0.050	1.6×10^{24}	0.043	1.9×10^{24}	

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left| \tilde{\eta}_{\nu L} M_{\nu}^{0\nu} + \tilde{\eta}_{N} M_{N}^{0\nu} + \eta_{\lambda'} M_{\lambda'}^{0\nu} + \eta_{\bar{q}} M_{\bar{q}}^{0\nu} \right|^{2},$$

TABLE II. Matrix elements for 0ν decay using the GXPF1A interaction and two SRC models [61], CD-Bonn (SRC1) and Argonne (SRC2). For comparison, the values labeled (a) are taken from Ref. [27], and the value labeled (b) is taken from Ref. [62] for $g_{pp} = 1$ and no SRC.

	Model	$M^{0 u}_{ u}$	$M_N^{0 u}$	$M^{0 u}_{\lambda'}$	$M_q^{0\nu}$
0 ⁺	SRC1	0.90	75.5	618	86.7
	SRC2	0.82	52.9	453	81.8
	others	2.3 ^(a)	46.3 ^(a)	392 ^(b)	
0^{+}_{2}	SRC1	0.80	57.2	486	84.2
-	SRC2	0.75	40.6	357	80.6

Nordita 2014

The effect of larger model spaces for ⁴⁸Ca

M(0 v)	SDPFU	SDPFMUP
0 ħω	0.941	0.623
$0+2\hbar\omega$	1.182 (26%)	1.004 (61%)

SDPFU: PRC 79, 014310 (2009)

SDPFMUP: PRC 86, 051301(R) (2012)

	M(0v)
$0 \hbar \omega / \text{GXPF1A}$	0.733
$0 \hbar \omega + 2^{nd}$ ord./GXPF1A	1.301 (77%)

arXiv:1308.3815, PRC 89, 045502 (2014)

PRC 87, 064315 (2013)

Closure Approximation and Beyond in Shell Model

$$M_{S}^{0v} = \sum_{\substack{\mathcal{I}, p < p' \\ n < n' \\ p < n}} \left(\Gamma \right) \left\langle 0_{f}^{+} \left| \left[\left(a_{p}^{+} a_{p'}^{+} \right)^{\mathcal{I}} \left(\tilde{a}_{n'} \tilde{a}_{n} \right)^{\mathcal{I}} \right]^{0} \left| 0_{i}^{+} \right\rangle \left\langle p p'; \mathcal{I} \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; \mathcal{I} \right\rangle_{as} - closure$$

$$M_{S}^{0v} = \sum_{\substack{pp'nn'\\Jkj}} \left(\tilde{\Gamma} \right) \left\langle 0_{f}^{+} \left\| \left(a_{p}^{+} \tilde{a}_{n} \right)^{J} \right\| J_{k} \right\rangle \left\langle J_{k} \left\| \left(a_{p'}^{+} \tilde{a}_{n'} \right)^{J} \right\| 0_{i}^{+} \right\rangle \left\langle p p'; \mathcal{I} \right| \int q^{2} dq \left| \hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + E_{k}^{J})^{2}} \tau_{1-} \tau_{2-} \right\| nn'; \mathcal{I} \right\rangle - beyond$$

Challenge: there are about 100,000 J_k states in the sum for 48Ca

Much more intermediate states for heavier nuclei, such as ⁷⁶Ge!!!

 $\hat{S} = \begin{cases} \sigma_{1}\tau_{1}\sigma_{2}\tau_{2} & Gamow - Teller \ (GT) \\ \tau_{1}\tau_{2} & Fermi \ (FM) \\ \left[3(\vec{\sigma}_{1}\cdot\hat{n})(\vec{\sigma}_{2}\cdot\hat{n}) - (\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}) \right] \tau_{1}\tau_{2} \ Tensor \ (T) \\ Nordita \ 2014 \end{cases}$

No-closure may need states out of the model space (not considered).

Minimal model spaces

- 82 Se : 10M states
- ¹³⁰Te : 22M states
- ⁷⁶Ge: 150M states

¹³⁶Xe $\beta\beta$ Experimental Results $M_{exp}^{2\nu} = 0.019 MeV^{-1}$

Publication	Experiment	$T^{2\nu}_{1/2}$	T ⁰ v _{1/2}	T ⁰ v _{1/2} (Maj)
PRL 110, 062502	KamLAND-Zen		> 1.9x10 ²⁵ y	
PRL 107, 212501	EXO-200	$(2.11\pm0.04\pm0.21)$ x10 ²¹ y		
PRL 109, 032505	EXO-200	$(2.23\pm0.017\pm0.22)$ x10 ²¹ y	>1.6x10 ²⁵ y	
PRC 85, 045504	KamLAND-Zen	$(2.38\pm0.02\pm0.14)$ x10 ²¹ y	>5.7x10 ²⁴ y	
PRC 86, 021601	KamLAND-Zen		>6.2x10 ²⁴ y	>2.6x10 ²⁴ y
10 ²⁶	GERDA 13-07	^{□0} first order be	ta decay energeti	cally forbidden
Ge combined ↑ GERDA Phase I claim (2004)	GERDA arXiv:1	A $-\frac{9}{8} \frac{136}{53} I$ β^{-} .307.4720 $-\frac{6}{5}$	A=136	β^+
10 ²⁵ -68% C.L68% C.L68% C.L68% C.L68% C.L68% C.L68% C.L.	EXO-200 KamLAND-Zen Xe combined	M. Horoi	$\frac{136}{55}$ Cs B β^+	-a 136 Ce
10 ²⁴ 10 ²⁵	T ^{0v} _{1/2} (¹³⁶ Xe) [yr] ¹⁰ ²⁶	(MeV)	^{1,36} ₅₆ Ba	

Shell Model description of the $\beta\beta$ decay of ¹³⁶Xe

E. Caurier^a, F. Nowacki^a, A. Poves^{b,*}

Table 2

Physics Letters B 711 (2012) 62-64

 $g_A \sigma \tau \xrightarrow{quenched} q g_A \sigma \tau$

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

Other Shell Model Results

		$M^{2\nu}(exp)$	q 🖌	$M^{2\nu}(th)$	INT
-	⁴⁸ Ca→ ⁴⁸ Ti	0.047 ± 0.003	0.74	0.047	kb3
	⁴⁸ Ca → ⁴⁸ Ti	0.047 ± 0.003	0.74	0.048	kb3g
	⁴⁸ Ca → ⁴⁸ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
	$^{76}Ge \rightarrow ^{76}Se$	0.140 ± 0.005	0.60	0.116	gcn28:50
	$^{76}Ge \rightarrow ^{76}Se$	0.140 ± 0.005	0.60	0.120	jun45
	$^{82}Se \rightarrow {}^{82}Kr$	0.098 ± 0.004	0.60	0.126	gcn28:50
	82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
	$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
	$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
	136 Xe $\rightarrow $ ¹³⁶ Ba	0.019 ± 0.002	0.45	0.025	gcn50:82
_					7
$M_{\rm GT}^{2\nu}(0^+) = \sum_k$	$\frac{\langle 0_f \ \sigma \tau^- \ 1_k^+ \rangle \langle 1_k^+}{E_k + E_0}$	$\frac{\ \sigma\tau^{-}\ 0_{i}\rangle}{0g}$	$T_{7/2} Id_{5/2}$	$1d_{3/2} \ 2s_{5/2} \ 0h_{11/2}$	v_2 valence space
Nordita 201	14	M. Horo	i CMU		

¹³⁶Xe $2\nu\beta\beta$ Results $M_{exp}^{2\nu} = 0.019 MeV^{-1}$

New effective interaction, $\sigma \tau \rightarrow 0.74 \sigma \tau$ quenching $a(0^+)$ $0g_{7/2} 1d_{5/2} 1d_{3/2} 2s_{5/2} 0h_{11/2}$ model space $\sum B(GT; Z \rightarrow Z + 1) - \sum B(GT; Z \rightarrow Z - 1) = 52$ *Ikeda*: 3(N - Z) = 84 $M^{2\nu} = 0.064 \ MeV^{-1}$

$$\begin{array}{ll} \partial g_{9/2} \ \partial g_{7/2} ld_{5/2} \ ld_{3/2} \ 2s_{5/2} \ \partial h_{11/2} \ \partial h_{9/2} \\ & \sum B(GT; Z \rightarrow Z+1) - \sum B(GT; Z \rightarrow Z-1) = 84 \\ Ikeda: & 3(N-Z) = 84 \end{array}$$

n (0+)	n (1+)	M(2v)
0	0	0.062
0	1	0.091
1	1	0.037
1	2	0.020

Comparisons of M^{0ν} 0νββ Results

Observation of 0νββ will signal **New Physics Beyond the Standard Model**.

Black box II (all flavors + oscillations)

$$T_{1/2}^{-1}(0v) = G^{0v}(Q_{\beta\beta}) \left[M^{0v}(0^{+}) \right]^{2} \left(\frac{\langle m_{\beta\beta} \rangle}{m_{e}} \right)^{2}$$

 $\phi_2 = \alpha_2 - \alpha_1 \qquad \phi_3 = -\alpha_1 - 2\delta$

$$\langle m_{\beta\beta} \rangle = \langle m_{\nu} \rangle = |c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$$

$$\phi_2 = \alpha_2 - \alpha_1 \quad \phi_3 = -\alpha_1 - 2\delta$$

$$\phi_2 = \alpha_2 - \alpha_1 \quad \phi_3 = -\alpha_1 - 2\delta$$

$$\phi_2 = \alpha_2 - \alpha_1 \quad \phi_3 = -\alpha_1 - 2\delta$$

$$\phi_2 = \alpha_2 - \alpha_1 \quad \phi_3 = -\alpha_1 - 2\delta$$

10

10

10-3

 10^{-4}

10

<m><hr/>[eV]</hr>

Take-Away Points

NAL SCIENCE.

Information about Majorana CPviolation phases may require the mass hierarchy from LBNE, cosmology, etc, but also **accurate Nuclear Matrix Elements**.

IS

10-2

 $m_0 [eV]$

$$\langle m_{\beta\beta} \rangle = |c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$$

$$\phi_2 = \alpha_2 - \alpha_1 \qquad \phi_3 = -\alpha_1 - 2\delta$$

 $\Sigma = m_1 + m_2 + m_3$ from cosmology

Nordita 2014

Claim for evidence

NS

10-3

M. Horoi CMU

disfavored

10⁰

by cosmology

10-1

Take-Away Points

Alternative mechanisms to $0\nu\beta\beta$ need to be carefully tested: many isotopes, energy and angular correlations.

These analyses also require **accurate Nuclear Matrix Elements**.

$$|\eta_{\nu}|, |\eta_{NR}| \Leftarrow \begin{cases} \left[G_{Ge}^{0\nu}T_{1/2Ge}^{0\nu}\right]^{-1} = \left|M_{Ge}^{(0\nu)}\right|^{2}\left|\eta_{\nu}\right|^{2} + \left|M_{Ge}^{(0N)}\right|^{2}\left|\eta_{NR}\right|^{2} \\ \left[G_{Xe}^{0\nu}T_{1/2Xe}^{0\nu}\right]^{-1} = \left|M_{Xe}^{(0\nu)}\right|^{2}\left|\eta_{\nu}\right|^{2} + \left|M_{Xe}^{(0N)}\right|^{2}\left|\eta_{NR}\right|^{2} \end{cases}$$

Dints

$$1.5$$

 MM
 MMM
 MMM

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|\sum_{j} M_{j} \eta_{j}\right|^{2} = G^{0\nu} \left|M^{(0\nu)} \eta_{\nu L} + M^{(0N)} (\eta_{NL} + \eta_{NR}) + \tilde{X}_{\lambda} < \lambda > + \tilde{X}_{\eta} < \eta > + M^{(0\lambda')} \eta_{\lambda'} + M^{(0\tilde{q})} \eta_{\tilde{q}} + \cdots\right|^{2}$$
Nordita 2014
M. Horoi CMU

Amplitude (a.u.)

1.5

1

0.5

- Observation of neutrinoless double beta decay would signal physics beyond the Standard Model: massive Majorana neutrinos, right-handed currents, SUSY LNV, etc
- ⁴⁸Ca and ¹³⁶Xe cases suggest that 2v double-beta decay can be described reasonably within the shell model with standard quenching, provided that all spin-orbit partners are included.
- Higher order effects for 0v NME included: range 1.0 1.4
- Reliable $0\nu\beta\beta$ nuclear matrix elements could be used to identify the dominant mechanism if energy/angular correlations and data for several isotopes become available.
- The effects of the quenching and the missing spin-orbit partners are important (see the ¹³⁶Xe case), and they need to be further investigated for ⁷⁶Ge, ⁸²Se and ¹³⁰Te.

Nordita 2014

