Microscopic description of nuclear reactions within Coupled Cluster and Gamow Shell Model theories

<u>N. Michel^a</u>, K. Fossez^a, M. Płoszajczak^a, Y. Jaganathen^b and G. Hagen^{c,d}

^a Grand Accélérateur National d'Ions Lourds, Bd Henri Becquerel, BP 55027 - 14076 Caen Cedex 05, France
 ^b National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing MI, 48824, USA
 ^c Department of Physics and Astronomy, Knoxville TN, 37996, University of Tennessee, USA
 ^d Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA

Computational Challenges in Nuclear and Many-Body Physics, NORDITA, Stockholm

September, 15th 2014

<ロ> (四) (四) (三) (三) (三) (三)

Reactions with GSM

Reactions/Coupled Clusters

Scientific motivation

Experimental interest

Study of nuclei far from the valley of stability SPIRAL-2 (GANIL), (EURISOL - Europe), FAIR (GSI), RIKEN (Japan), FRIB (USA) <u>Nuclei</u>: halos (⁶He, ⁸B, ¹¹Be, ¹¹Li), resonant (⁷He, ⁸C, ⁹Be)

Reactions with GSM

Reactions/Coupled Clusters

Open quantum systems

Open vs. closed systems

Open quantum system: interaction with an external environment Distinguished part of a larger quantum system Different physical properties from those of closed quantum systems: small binding energy, halos, finite life-time Molecules, quantum wires and dots, hadrons, microwave cavities

Gamow Shell Model (GSM)	Reactions with GSM	Reactions/Coupled Clusters	Conclusion \circ

2 Nuclear reactions with GSM

3 Nuclear reactions with Coupled Clusters

<回と < 目と < 目と

Gamow Shell Model (GSM) ●○○○○○○ Reactions with GSM

Reactions/Coupled Clusters

Conclusion

Berggren completeness relation

Scattering states: $u(r) = u^+(r) + u^-(r) = C^+ H^+_{\ell\eta}(kr) + C^- H^-_{\ell\eta}(kr)$

イロト イヨト イヨト イヨト

3

Gamow Shell Model (GSM) ○●○○○○○ Reactions with GSM

Reactions/Coupled Clusters

Conclusion

Gamow Shell Model (GSM)

2

Reactions with GSM

Reactions/Coupled Clusters

Conclusion

GSM within a core/valence particles picture

Cluster orbital shell model (COSM)

1 3A particle $\neq 3(A-1)$ physical degrees of freedom \Rightarrow spurious states

Lawson method:
$$H \to H + \lambda \left(\frac{P^2}{2M} + \frac{1}{2}M\omega^2 R^2 - \frac{3}{2}\hbar\omega\right)$$

Well-bound states only

3 <u>COSM</u>: use of relative core coordinates \Rightarrow no center of mass excitation Appearance of a recoil term: $H \rightarrow H + \frac{1}{M_{core}} \sum_{i < j} \vec{p}_i \cdot \vec{p}_j$

Reactions with GSM

Reactions/Coupled Clusters

Conclusion

Asymptotic normalization coefficient (ANC)

Overlap function

$$I_{\ell j}(r) = \sum_{n \in (b,d)} \langle \Psi_A || a_{n\ell j}^{\dagger} || \Psi_{A-1} \rangle u_n(r) + \int_{L^+} \langle \Psi_A || a_{\ell j}^{\dagger}(k) || \Psi_{A-1} \rangle u_k(r) dk$$

$$I_{\ell j}(r) \sim C_{\ell j} \frac{W_{-\eta,\ell+1/2}(2\kappa r)}{r} \text{ (bound), } C_{\ell j} \frac{H_{\ell,\eta}^+(kr)}{r} \text{ (resonant), } r \to +\infty$$

$$C_{\ell j}: \text{ ANC}$$

Reactions at low energy

 $\sigma \propto |C_{\ell j}|^2$: astrophysical reactions (radiative capture, transfer reactions, ...)

Theoretical description in different models

Standard models: Indirect determination of $C_{\ell j}$ $|\Psi\rangle$: harmonic oscillator shell model, $a^{\dagger}|\Psi\rangle$: u(r) from DWBA approximation (N.K. Timofeyuk, R.C. Johnson, A.M. Mukhamedzanov, Phys. Rev. Lett, **91** 232501 (2003))

Oscillation of ANCs GSM: Exact determination of ANCs

(J. Okołowicz, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C, 85 064320 (2012))

Gamow Shell Model (GSM) ○○○○●○○ Reactions with GSM

Reactions/Coupled Clusters

Conclusion

ANCs in ⁷Li and ⁸B

Modified Surface Gaussian Interaction, ⁴He core, COSM frame

2 Energies of ground and first excited states fitted to experimental data

3 Unbound states ANCs provide emission width: $\Gamma_{ANC} = (\hbar^2/\mu)\Re(k)\sum_{\ell j} |C_{\ell j}|^2$ $\frac{^8B 1^+ \text{ state: }}{^8B 3^+ \text{ state: }} \Gamma_{GSM} = 24 \text{ keV}, \Gamma_{ANC} = 23 \text{ keV}, \Gamma_{exp} = 36 \text{ keV}$ $\frac{^8B 3^+ \text{ state: }}{^8Li 3^+ \text{ state: }} \Gamma_{GSM} = 275 \text{ keV}, \Gamma_{ANC} = 258 \text{ keV}, \Gamma_{exp} = 350 \text{ keV}$ $\frac{^8Li 3^+ \text{ state: }}{^8Li 3^+ \text{ state: }} \Gamma_{GSM} = 21 \text{ keV}, \Gamma_{ANC} = 21 \text{ keV}, \Gamma_{exp} = 32 \text{ keV}$

Reactions/Coupled Clusters

Comparisons of ANCs ratios for bound states

ANC ratio

- **1** $\mathcal{R} = |C_p/C_n|^2$ (N.K. Timofeyuk et al., Phys. Rev. Lett. **91**, 232501 (2003))
- 2 Interest: insensitive to model details, $\mathcal{R} \simeq \mathcal{R}_0 = \left| \frac{e^{i\sigma_{\ell}(-i\eta)} F_{\ell,-i\eta}(i\kappa_p R_f)}{\kappa_p R_f j_{\ell}(i\kappa_n R_f)} \right|^2$

<ロ> (四) (四) (三) (三) (三)

- Easier comparison with experimental data
- Compared models: GSM and VMC (variational Monte Carlo) (K. Nollett and R. Wiringa, Phys. Rev. C 83 041001 (2011))

Mirror pair	j^{π}	$\mathcal{R}_{\mathrm{GSM}}$	$\mathcal{R}_{\mathrm{VMC}}$	\mathcal{R}_0	$\mathcal{R}_{\mathrm{Exp.}}$
	$1/2^{-}$	1.04	1.28	1.06	_
$(^{7}\text{Be}/^{7}\text{Li})_{3/2}$	3/2-	1.06	1.29	1.06	_
0/2	$1/2^{-}+3/2^{-}$	1.06	1.29	1.06	_
$({^8{\rm B}}/{^8{\rm Li}})_{2^+}$	$1/2^{-}$ $3/2^{-}$ $1/2^{-}+3/2^{-}$	1.39 1.04 1.04	1.27 1.25 1.25	1.12 1.12 1.12	$\begin{array}{c} 1.08 \pm 0.18 \\ 1.08 \pm 0.15 \\ 1.08 \pm 0.15 \end{array}$
$({\rm ^{17}F}/{\rm ^{17}O})_{j\pi}$	5/2 ⁺ 1/2 ⁺	1.20 701	_	1.22 796	1.33 ± 0.20

Reactions/Coupled Clusters

Conclusion

Comparisons of ANCs ratios with unbound states

Consideration of unbound proton state

1
$$\mathcal{R}_{\Gamma} = (1/\hbar c) |\Gamma_p| C_n|^2 = |C_p/C_n|^2 \Re(\kappa_p) (\hbar c/\mu_p c^2)$$

(N.K. Timofeyuk et al., Phys. Rev. Lett. 91, 232501 (2003))

Example: excited 1⁺ state of ⁸B and ⁸Li in GSM.
 Good agreement with experimental data.

j^{π}	C_p	C_n	\mathcal{R}_{Γ} (GSM)	\mathcal{R}_{Γ} (Exp.)
$1/2^{-}$	0.0322-i0.00138	0.1379	0.0021	_
3/2-	0.0442-i0.00273	0.2090	0.0018	
$1/2^{-}+3/2^{-}$	0.0547	0.2504	0.0019	0.0022 ± 0.0002

・ 同 ト ・ ヨ ト ・ ヨ ト

Gamow	Shell	Model	(GSM)
	00		

Reactions/Coupled Clusters

Outline

2 Nuclear reactions with GSM

3 Nuclear reactions with Coupled Clusters

4 Conclusion

- 4 回 2 - 4 回 2 - 4 回 2

Reactions with GSM ••••••

Reactions/Coupled Clusters

Resonating Group Method with GSM (RGM-GSM): Theory

Generalities

- 1 Resonating Group Method: $\overline{\langle \Psi_{GSM;f} \otimes \Phi_{proj;f} | H | \Psi_{GSM;i} \otimes \Phi_{proj;i} \rangle}$ \Rightarrow coupled-channel equations with coupling potentials
- 2 Fundamental equation for nucleon emission: $\langle \mathcal{A}\{\langle \Psi_{T_f}|^{J_f} \langle r_f \ \ell_f \ j_f \ \tau_f | \}_M^J | H | \mathcal{A}\{|\Psi_{T_i}\rangle^{J_i} | r_i \ \ell_i \ j_i \ \tau_i \rangle\}_M^J \rangle$
- In Fundamental equation for cluster emission: $\langle \mathcal{A}\{\langle \Psi_{T_f}|^{J_f} \langle R^f_{CM} \ L^f_{CM} \ J^f_{int}; J^f_p|\}^J_M |H| \mathcal{A}\{|\Psi_{T_i}\rangle|^{J_i} |R^i_{CM} \ L^i_{CM} \ J^i_{int}; J^i_n\rangle\}^J_M \rangle$
- 4 Advantages: No Jacobi coordinates (COSM), Antisymmetry exactly handled Fully microscopic Core arbitrary

(4月) (4日) (4日)

Reactions/Coupled Clusters

One-body projectile treatment

1 Nucleon:

Berggren basis expansion of one-body projectile

$$|r\ell j au
angle = \sum_n u_n(r) \; |u_n\ell j au
angle$$

2 Composite:

Linear combination of Slater determinants $\{a^{\dagger}_{n\ell j\tau}|\Psi\rangle^{J_T}\}^J_M = \sum c_i |SD_i\rangle$

Infinite range terms:

Kinetic and Coulomb terms appear from $n \to +\infty$ Analytical treatment of RGM matrix elements necessary Disappearance of antisymmetry at high $n \Rightarrow$ projectile and target factorize Kinetic and Coulomb terms handled with completeness of Berggren basis

<ロ> (日) (日) (日) (日) (日)

Reactions/Coupled Clusters

Many-body projectile treatment (1/2)

Momentum space:

Basis of momentum space cluster wave functions

$$\Psi_p \rangle = |R_{CM}, L_{CM}, J_{int}\rangle_{M_p}^{J_p} \rightarrow |K_{CM}, L_{CM}, J_{int}\rangle_{M_p}^{J_p}$$

Apparent solution: Direct Berggren basis expansion of projectile $|K_{CM}, L_{CM}, J_{int}\rangle_{M_p}^{J_p} = \sum_i c_i |SD_i\rangle$

Operation of the second sec

Dirac delta normalization, center of mass/relative parts separation uncontrolled

- 4 回 2 - 4 □ 2 - 4 □

Reactions/Coupled Clusters

Many-body projectile treatment (2/2)

Solution:

finite-range of Hamiltonian \Rightarrow use of HO basis

$$|K_{CM}, L_{CM}, J_{int}\rangle_{M_p}^{J_p} \to \sum_{N_{CM}} U_{N_{CM}, L_{CM}}^{HO}(K_{CM})|N_{CM}, L_{CM}, J_{int}\rangle_{HO}^{J_p, M_p}$$

(a) CM scattering part: One-body problem \Rightarrow exact Dirac delta normalization $U_{N_{CM},L_{CM}}^{HO}(K_{CM})$ from $H_{CM} = \frac{P_{CM}^2}{2M_p} + U_{CM}(R_{CM})$

Berggren basis expansion:
$$|K_{CM}, L_{CM}, J_{int}\rangle_{HO}^{J_p, M_p} = \sum_i c_i |SD_i\rangle$$

5 Coupled channel equations: similar to one-nucleon problem

・ロト ・回ト ・ヨト ・ヨト

Reactions with GSM

Reactions/Coupled Clusters

Conclusion

Resonating Group Method with GSM (RGM-GSM): Applications

First applications of RGM-GSM

- 1 Nucleon scattering: $|\Phi_{proj}\rangle = |r \ \ell \ j\rangle$
- 2 Reactions of interest: ⁶He(p,p')⁶He and ¹⁸Ne(p,p)¹⁸Ne

3 Differential elastic and inelastic scattering cross sections calculated

Models

Valence particles above ${}^{4}\mathrm{He}/{}^{16}\mathrm{O}$ core, p/sd valence space Modified Surface Gaussian interaction(MSGI): J,T-dependence

・ロト ・回ト ・ヨト ・ヨト

Reactions with GSM

Reactions/Coupled Clusters

$p+^{6}He$ at 21-22 MeV

Reactions with GSM

Reactions/Coupled Clusters

$p+^{18}Ne(1/2)$

Experimental data very well reproduced
 Continuum degrees of freedom less present in targets than in ⁶He.

Gamow	Shell	Model	(GSM)
	00		

Reactions/Coupled Clusters

$p+^{18}Ne(2/2)$

Experimental data also reproduced at large angles

Y. Jaganathen, N. Michel, M. Płoszajczak, Phys. Rev. C 89, 034624 (2014)

Reactions/Coupled Clusters

Radiative capture within GSM-RGM (1/2)

- **Q** Radiative capture cross sections: $\overline{\sigma(E_{CM})}$ function of electro-magnetic (EM) matrix elements
- $\frac{\textbf{9}}{\mathcal{A}\{|\Psi_{T_i}\rangle^{J_i}|u_i \ \ell_i \ j_i \ \tau_i\rangle\}_M^J : \text{ many-body scattering state} }$

Slater determinant expansion with Berggren basis: only for bound and resonant states

Antisymmetry apparently impossible to fulfill

Reactions with GSM 00000000000000

Reactions/Coupled Clusters

Conclusion

Radiative capture within GSM-RGM (2/2)

Solution:

Antisymmetry disappears at large r

 $O^L - O^L_{nas}$ localized \Rightarrow HO expansion of $O^L - O^L_{nas}$ $O^L \simeq O^L_{nas} + [O^L - O^L_{nas}]_{HO}$

2 Treatment of $[O^L - O^L_{nas}]_{HO}$:

Projection of $|u \ell j \tau\rangle$ on HO basis $\Rightarrow \mathcal{A}\{|\Psi_T\rangle^J |u \ell j \tau\rangle^{(HO)}\}_M^J$ localized \Rightarrow Berggren basis expansion with Slater determinants possible

 \Rightarrow Antisymmetry exactly fulfilled

3 Treatment of O^L_{nas}:

 $\langle [\langle \Psi_{T_f} | ^{J_f} \langle u_f \ \ell_f \ j_f \ \tau_f |]^{J'} || O_{nas}^L || [| \Psi_{T_i} \rangle^{J_i} |u_i \ \ell_i \ j_i \ \tau_i \rangle]^{J} \rangle$ $= A_T \langle \Psi_{T_f}^{J_f} || O^L || \Psi_{T_i}^{J_i} \rangle \langle u_f | u_i \rangle + A_p \ \delta_{T_i T_f} \ \langle u_f | O^L | u_i \rangle$

Standard formulas involving GSM matrix elements and one-body radial integrals Tails of many-body wave functions exactly taken into account

Model

Valence particles above 4 He core, p/sd valence space Effective interaction with central, spin-orbit and tensor parts

Reactions with GSM

Reactions/Coupled Clusters

Conclusion

⁷Be(p, γ)⁸B reaction

1 Astrophysical factor $S(E_{CM}) = E_{CM} \sigma(E_{CM}) \exp(2\pi\eta_{CM})$

- 2 Experimental data well reproduced at low energy, not at high energy
- 3 Effective charge for E1 almost equal to theoretical value
 - 4 Asymptotical reaction at low energy: no antisymmetry
- K. Fossez, N. Michel, Y. Jaganathen, M. Płoszajczak, in preparation

Reactions with GSM

Reactions/Coupled Clusters

⁷Li(n, γ)⁸Li reaction

1 E1 and M1 transitions considered for cross section $\sigma(E_{CM})$

- 2 Experimental data well reproduced for all energies
- 3 Effective charge for E1: 15% larger than theoretical value
- 4 Antisymmetry greatly reduces cross section for all energies
- K. Fossez, N. Michel, Y. Jaganathen, M. Płoszajczak, in preparation

Gamow Shell Model (GSM)	Reactions with GSM	Reactions/Coupled Clusters	Conclusion
0000000	000000000000	0000	

Outline

2 Nuclear reactions with GSM

3 Nuclear reactions with Coupled Clusters

4 Conclusion

回 と く ヨ と く ヨ と

Reactions/Coupled Clusters

Coupled-Cluster theory for closed-shell nuclei

Exponential ansatz for
$$|\Psi\rangle$$

 $|\Phi\rangle$: Hartree-Fock many-body state
 $|\Psi\rangle = e^{\hat{T}}|\Phi\rangle, \ \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$
 $\hat{T}_1 = \sum_{\substack{i < \epsilon_F \\ a > \epsilon_F}} t_i^a \hat{a}_a^{\dagger} \hat{a}_i, \hat{T}_2 = \frac{1}{2} \sum_{\substack{i < j < \epsilon_F \\ \epsilon_F < a < b}} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{$

Coupled-Cluster theory equations $\bar{H} = \exp(-T) \ H \ \exp(T)$ $\langle \Phi_p | \bar{H} | \Phi \rangle = 0$ $\bar{H} | \Phi \rangle = E | \Phi \rangle$

イロン 不同と 不同と 不同と

- Coupled-Cluster theory is fully microscopic and size extensive
- 2 Low computational cost (CCSD scales as $n_o^2 n_u^4$)
- Use of realistic Hamiltonians: N³LO two-body force, three-body force averaged in nuclear matter

i

Nuclei in the vicinity of closed-shell systems only

(G. Hagen, N. Michel, Phys. Rev. C 86, 021602(R) (2012))

Reactions with GSM

Reactions/Coupled Clusters ○●○○ Conclusion

Reactions with Coupled-Cluster theory

Overlap functions and continuum coupling

$$O_A^{A+1}(\ell j;r) = \sum_{\mathcal{I}_n} \langle \Phi_A || L^{A+1} \bar{a}_{n\ell j}^{\dagger} || \Phi_A \rangle u_{n\ell j}(r)$$

1 ℓj : Berggren basis \Rightarrow continuum coupling included in ⁴¹Sc

Q Nuclear correlations (ab-initio calculation), proper asymptotic for O_A^{A+1}(lj;r)
 Q Example: f_{7/2} bound and scattering proton overlap functions

NORDITA, Stockholm N. Michel –

N. Michel - Reaction models with continuum coupling

Gamow Shell Model (GSM)	Reactions with GSM	Reactions/Coupled Clusters	Conclusion
		0000	

⁴⁰Ca(p,p)⁴⁰Ca elastic scattering phase shifts

Phase shifts extracted from overlap functions

- 2 $p_{3/2}, p_{1/2}$ resonances at 1.6 MeV and 3.4 MeV \Leftrightarrow calculated resonant states
- 3 $p_{3/2}$: narrow resonant state at E = 1.61 MeV, $\Gamma = 2$ keV
- (4) $p_{1/2}$: broad resonant state at E = 3.42 MeV, $\Gamma = 400$ keV
- **(5)** $\ell \geq 3$: spurious resonant states appear \Rightarrow suppressed

Reactions with GSM

Reactions/Coupled Clusters ○○○● Conclusion

40 Ca(p,p) 40 Ca elastic scattering cross sections

Gamow Shell Model (GSM)	Reactions with GSM	Reactions/Coupled Clusters	Conclusion

Outline

2 Nuclear reactions with GSM

3 Nuclear reactions with Coupled Clusters

(4回) (4回) (4回)

Gamow	Shell	Model	(GSM)
	00		

Reactions/Coupled Clusters

Conclusion

GSM for reaction calculations

- GSM: Shell model with Berggren basis continuum included at basis level
- 2 Application to ANCs: ⁷Be, ⁷Li, ⁸B, ⁸Li studied in GSM
- Reactions within GSM: Structure fully included in reaction theory with RGM ⁶He(p,p')⁶He, ¹⁸Ne(p,p)¹⁸Ne, ⁷Be(p, γ)⁸B, ⁷Li(n, γ)⁸Li considered
- Elastic and inelastic scattering within CC: ⁴⁰Ca(p,p)⁴⁰Ca
- 5 Good overall reproduction of experimental data

Perspectives

- Ab-initio GSM/CC: Consideration of a larger set of nuclei
- Reactions within GSM and CC: Inclusion of scattering channels and many-body clusters
- $\frac{\textbf{Beactions within GSM:}}{\text{COSM formalism} \Rightarrow \text{GSM close to closed-shell nuclei} }$

イロト イヨト イヨト イヨト