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Outline 

Self-consistent lattice tight-binding Bogoliubov-de Gennes 
method for nonhomogeneous superconductivity: 

 

•  SNS Josephson junctions in graphene 

•  Enhancing intrinsic pairing using an external superconductor 
–  (Proposed) chiral d-wave state in doped graphene 

 

•  Majorana fermions in vortex cores 
 



SNS Junctions in Graphene 
 
Can we accurately model a SNS junction? 
 

•  Self-consistent lattice tight-binding Bogoliubov-de Gennes (TB-BdG) method 

•  Current-phase relation 



Inducing superconductivity in a non-superconducting material (N) 
by close contact to an external superconductor (S) 

Proximity-Induced Superconductivity 

Graphene SNS (Josephson) junction: 
Pair amplitude: 

[1]: Heersche et al. Nature 446, 56 (2007), [2]: Linder, AMBS et al. PRB 80, 094522 (2009) 

[1] 

[2] 

S 

S 
N 



dV/dI≠ 0 

Supercurrent 

SNS Graphene (Josephson) Junctions 

Uniform supercurrent even at 
the Dirac point  

 
[1]: Heersche et al. Nature 446, 56 (2007) 

[1] 

[1] 

SNS graphene junction: 



Continuum Dirac-BdG Modeling 

Assume Δ-profile (no self-consistency) 
–  Solve in S and N, match solutions at 

boundaries: Dirac-BdG formalism 
–  Current assumed to be carried by Andreev 

bound states 

At Dirac point: 

Traditional Josephson junction: I = Icsin(φ) 

[1]: Titov et al., PRB 74 041401 (2006)  

[1] 

Neglects inverse 
proximity effect and 

current depairing  



Pairing amplitude (                     ): 

Tight-Binding BdG Formalism 

Tight-binding band structure s-wave pairing 

Self-consistent TB-BdG on a lattice: 

Mean-field 
theory 

AMBS and Doniach, PRB 78, 024504 (2008) 



Current-Phase Relation (CPR) 
Short junctions 

[1]: English et al., arXiv:1305.0327, [2]: Hagymasi et al., PRB 82, 134516 (2010),  
[3]: AMBS and Linder, PRB 82, 184522 (2010) 

Long junctions 

Experiment (quasi-ballistic limit) [1] 

DBdG results [2] 

Self-consistent results [3] 

[1] 

Self-consistent CPR less skewed than 
DBdG results 
•  Inverse proximity effect (IPE) 

•  Current depairing in short junctions 



IPE and Current Depairing 
Inverse proximity-effect (IPE): Current depairing: 

No current 

Maximum current 

Current causes an overall loss of  
superconductivity 
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Loss of  superconductivity on the 
S side of  the junction, worse with 

increasing T 

Need a self-consistent approach to capture IPE and current depairing 
AMBS and Linder, PRB 82, 184522 (2010) 



Intrinsic Pairing in Graphene 
 
Interaction-driven chiral d-wave superconductivity in doped graphene 
 

Can we enhance the intrinsic pairing using external superconductors? 
•  d-wave cuprate contacts 
•  Doubly quantized vortices in s-wave superconductors 
 

 



Intrinsic Pairing in Graphene 
 
Interaction-driven chiral d-wave superconductivity in doped graphene 
 

Can we enhance the intrinsic pairing using external superconductors? 
•  d-wave cuprate contacts 
•  Doubly quantized vortices in s-wave superconductors 
 

 



Electronic Correlations in Graphene 

Nearest neighbor hopping t ~ 2.5 eV 
On-site repulsion U ~ 6 - 10 eV [1] 

Intermediate 
coupling regime 

Electronic correlations should be important in graphite and graphene: 

Pauling’s Resonance 
Valence Bond (RVB) idea 

pπ-bonded planar organic molecules: 
Nearest neighbor spin-singlet bonds (SB) 
encouraged compared to polar configurations  
 
 

Give good estimates for:  
Cohesive energy, C-C bond distance, singlet-
triplet exciton energy differences etc. 

SB  =  

[1]: T. Wehling et al,. PRL 106, 236805 (2011) 



Modeling Correlation Effects 

[1]: Baskaran, PRB 65, 212505 (2002) 

Tight-binding 
band structure 

Favoring singlet 
bonds (SB) 

Effective model with SB pairing: [1] 

a1

a2

a3



Mean-Field Approach 

[1]: Baskaran, PRB 65, 212505 (2002), ABS and Donaich, PRB 75, 134512 (2007)  
 

Tight-binding 
band structure 

Favoring singlet 
bonds (SB) 

Effective model with SB pairing: [1] 

a1

a2

a3

Mean-field order parameters in the 
Cooper pairing channel: 

Expectation value of 
SB pair creation 



Gap Symmetries 
s-wave: 
•    	


	


	

	


•  Δ ∈ A1g of  D6h 

 

Δα = (1,1,1) 

extended s-wave 

1 

1 
1 + 

d-waves: 
•    

 
 

•   	


	

•  Δ ∈ E2g of  D6h 

-  Below Tc: d(x2-y2)+id(xy)  

Δα  = (2,-1,-1) 

Δα = (0,1,-1) 
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d(x2-y2)-wave 

d(xy)-wave 

Chiral, time-reversal 
symmetry breaking state ABS and Donaich, PRB 75, 134512 (2007)  



ABS and Donaich, PRB 75, 134512 (2007), [1]: McChesney et al., PRL 104, 136803 (2010),  [2]: Efetov et al., PRL 105, 256805 (2010)     
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Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
a, d+ id pairing exhibiting phase winding around the hexagonal Fermi surface, which breaks TRS and parity (⌃ = 2⇡/3). b, Conduction band for monolayer
graphene1. At 5/8 filling of the ⇡ band, the Fermi surface is hexagonal, and the DOS is logarithmically divergent (c) at three inequivalent saddle points of
the dispersion Mi (i= 1,2,3). Their locations are given by ±ei, where 2ei is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory

L =
3⇤
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 †
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where summation is over patch labels�,⇥=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being ⇤ ,⌅,⌅,⇤ , where ⇤ and ⌅ label the spin up
and down states. Here ⇧k is the tight binding dispersion, expanded
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Logarithmic diverging DOS 

Mean-Field Results 
Zero doping: 
•  QCP at J/t = 1.91 
•  s- and d-wave solutions degenerate 

 

Finite doping: 
•   Tc(d) >> Tc(s) 

Heavy doping can approach van 
Hove singularity (δ = 0.25, µ = t ): 
•   Ad-atom deposition [1] 

•     Electrolyte gating [2]  

 

Transition temperature as a function of  
doping (δ) for coupling parameters 

J/t = 0.8, 1.0, 1.2: 

Increasing 
J/t 



RG Calculations at the van Hove point 
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Chiral superconductivity from repulsive
interactions in doped graphene
Rahul Nandkishore1, L. S. Levitov1 and A. V. Chubukov2*
Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly
sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity
can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of
states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using
a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak
repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that
the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4⇡
around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from
electron–electron repulsion, and will open the door to applications of chiral superconductivity.

The simplicity of the electronic properties of graphene1 is
both a blessing and a curse. On one hand, it singles
out graphene as a material of choice for applications.

On the other hand, the difficulty of modifying the electronic
spectrum severely limits the available functionality2. However, the
effects of electron–electron interactions gain more prominence
when the electron concentration is adjusted so that the carrier
dispersion at the Fermi level becomes quadratic rather than
linear. This is the case in graphene bilayer at the Dirac point,
where a variety of new correlated states have been predicted3.
This is also the case in graphene monolayer doped to the
saddle point, where the density of states (DOS) has a Van Hove
singularity. Although a number of interesting states have been
considered in this system4–8, the competition between these states
is at present poorly understood. In this Article, we argue that
generic repulsive interactions favour a superconducting d + id
state with the d(x±iy)2 gap structure and broken time-reversal
symmetry (TRS). Our renormalization group analysis indicates that
superconductivity dominates over competing density-wave orders,
and also indicates that interactions select the chiral d+ id state over
TRS-preserving d-wave states.

Chiral superconductors are interesting because they feature
pairing gaps that wind in phase around the Fermi surface
in multiples of 2⇡, breaking the TRS and exhibiting many
other fascinating properties9–11. The non-trivial topology of the
d+ id state is analogous to that studied in other systems with
chiral pairing, such as the two-dimensional 3He (ref. 9) and
the fractional quantum Hall state at 5/2 filling12,13. Interest
in chiral superconductivity has intensified greatly in the past
few years with the advent of topological superconductivity14–16.
The non-trivial topological properties manifest themselves in
exceptionally rich phenomenology, in particular the Majorana
states in vortex defects17 and the gapless modes bound to the edge
by Andreev scattering that can carry quantized particle current and
spin current18. Similar phenomena have been predicted for the
hypothetical d+ id state in cuprate superconductors19–22 and other
chiral superconducting states23,24.

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 2Department of Physics, University of
Wisconsin-Madison, Madison, Wisconsin 53706, USA. *e-mail: chubukov@physics.wisc.edu.

The search for solid-state realization of chiral superconductivity
has a long history. Spin-triplet p-wave chiral superconductivity
(px ± ipy state) has probably been found in Sr2RuO4 (ref. 25), which
represents an analogue of superfluid 3He (ref. 9), but the spin-
singlet d+ id state has not yet been observed experimentally. Such
a state was once proposed as a candidate state for high-Tc cuprate
superconductors19, but later gave way to a more conventional
TRS-preserving d-wave state. The key difficulty in realizing a d+ id
state is that the interactions that favour a d-wave state usually
have strongmomentumdependence and hence distinguish between
dx2�y2 and dxy pairing. However, in graphene the dx2�y2 and dxy
pairing channels are degenerate by symmetry4,26, opening the door
to formation of a d+id superconducting state.

How can superconductivity be induced in graphene? Existing
proposals for superconductivity in undoped graphene rely on the
conventional phonon-mediated BCS mechanism27, which leads
to an s-wave superconductivity with low Tc values for realistic
carrier densities owing to the vanishing density of states of
relativistic particles. However, there is an alternative route to
superconductivity, wherein repulsive microscopic interactions give
rise to attraction in a d-wave channel28. This alternative route
becomes viable when graphene is doped to the M point of the
Brillouin zone corresponding to 3/8 or 5/8 filling of the ⇡
band (pristine graphene corresponds to 1/2 filling). At this filling
factor, a logarithmic Van Hove singularity originates from three
inequivalent saddle points, and the Fermi surface also exhibits a
high degree of nesting, forming a perfect hexagon when third-
neighbour (and higher) hopping effects are neglected1,4 (Fig. 1).
The combination of a singular DOS and a near-nested Fermi
surface strongly enhances the effect of interactions29–31, allowing
non-trivial phases to emerge at relatively high temperatures,
even if interactions are weak compared with the fermionic
bandwidth W . Relevant doping levels were recently achieved
experimentally using calcium and potassium dopants32. Also, a
new technique33 that employs ionic liquids as gate dielectrics
allows high levels of doping to be reached without introducing
chemical disorder.
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Figure 3 | Flow of couplings with renormalization group scale y, starting
from repulsive interactions. Note that the coupling g4 changes sign and
becomes attractive, leading to a (superconducting) instability at the energy
scale yc (equation (3)). Inset: Critical couplings Gi (equation (4)) near yc as
a function of the nesting parameter at the ordering energy scale, d1(yc). The
dominance of superconductivity over spin-density-wave order arises
because �G4 >G2 for all values of d1(yc). The renormalization group flow
is obtained by numerical integration of (2) with the initial conditions
gi(0)=0.1 and modelling the nesting parameter as d1(y)= 1/

�
1+y. The

qualitative features of the flow are insensitive to the initial conditions and
to how we model d1. The critical couplings (inset) are universal and
independent of the initial conditions.

Here A is a non-universal number that depends on how we
model d1(y). For d1 = 1 (perfect nesting, corresponding to zero
third-neighbour hopping t3), we obtain A = 1.5. An RPA-type
estimate of g0 is outlined in the Supplementary Information.
Although Tc and E0 are exponentially sensitive to g0, thus
introducing a considerable uncertainty to our estimate, a strong
enhancement of characteristic energy scales relative to the BCS
result is evident from equation (3).

A similar �
g0 dependence arises in the treatment of colour

superconductivity38 and in the analysis of the pairing near
quantum-critical points in 3D (ref. 39). It results in a Tc that
is strongly enhanced compared with the standard BCS result,
Tc ⌅ exp(�A /g0⇤0). It should be noted that the enhancement
of Tc in equation (3) arises from weak-coupling physics. It is
distinct from the high-Tc superconductivity that could arise if the
microscopic interactions were strong26,40–42.

Returning to our renormalization group analysis, we note that
near the instability threshold, g1,g2,g3 ⌃ ⌦ and g4 ⌃ �⌦, with
�g4 >g3 >g2 >g1. This observationmay bemade precise by noting
that close to yc, the interactions scale as

gi(y)⇧ Gi

yc �y
(4)

Substituting into equation (2), we obtain a set of polynomial
equations, which may be solved for the coefficients Gi as a
function of d1(yc). The solution is plotted in the inset of
Fig. 3. Note that �G4 > G3 > G2 > G1 for all values of d1(yc)
satisfying 0 ⇤ d1(yc) ⇤ 1. We have verified that any choice of
repulsive bare couplings leads to the same limiting trajectory (see
Supplementary Information).
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Figure 4 | Possible superconducting orders that could develop at the M
point. a, A dx2�y2 or dxy state would be realized if K2 <0 in the Landau
expression for the free energy, equation (10). b, The dx2�y2 and dxy orders
can co-exist if K2 >0 in equation (10). A microscopic calculation indicates
that the states (b) have lower free energy.

Susceptibilities
We now investigate the instabilities of the system by evaluating
the susceptibilities ⌅ for various types of order. To analyse the
superconducting instability, we introduce infinitesimal test vertices
corresponding to particle–particle pairing into the action, L = L0+
⇥L, where L0 is given by equation (1) and

⇥L =
3↵

�=1

�̃ �⇧
†
�,⌥⇧

†
�,� +�̃ ⇥

�⇧�,⌥⇧�,�

one test vertex for each patch. The renormalization of the test
vertices is governed by the equation31
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which can be diagonalized by transforming to the eigenvector basis

�̃ a = �̃�
2

�
0,1,�1

⇥
, �̃ b =

�
2
3
�̃

⇤
1,�1

2
,�1

2

⌅
(6)

�̃ c =
�̃�
3

�
1,1,1

⇥
(7)

Here �̃ c is an s-wave order, whereas �̃ a and �̃ b correspond to
order parameters that vary around the Fermi surface as �̃ cos(2⌃)
and �̃ sin(2⌃), where ⌃ is the angle to the x axis (Fig. 4). Such a
dependence describes d-wave superconducting orders (SCd), as the
gap changes sign four times along the Fermi surface. In 2Dnotation,
the two order parameters �̃ a and �̃ b correspond to dxy and dx2�y2

superconducting orders respectively.
Notably, we find that the s-wave vertex �̃ c, equation (7), has

a negative eigenvalue and is suppressed under renormalization
group flow (equation (5)). This is to be expected, given that we
started out with repulsive microscopic interactions. At the same
time, the d-wave orders �̃ a and �̃ b have the (identical) eigenvalue
g3�g4, whichmay be negative at the bare level but becomes positive
under the renormalization group, indicating an instability in the
d-wave channel. We solve equation (5) for the d-wave orders, by
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d-wave superconductivity = g3-g4 
dominates over CDW, SDW 

SC instability 

Perturbative RG with contact interactions: 

Functional RG: [1,2] 
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Functional renormalization group and variational Monte Carlo studies of the electronic
instabilities in graphene near 1

4 doping

Wan-Sheng Wang,1 Yuan-Yuan Xiang,1 Qiang-Hua Wang,1 Fa Wang,2 Fan Yang,3 and Dung-Hai Lee4,5

1National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China
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We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional
renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and
variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the
anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2−y2 + idxy Cooper pairing becomes
the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point)
the graphene is either a Chern insulator or a topoligical superconductor.

DOI: 10.1103/PhysRevB.85.035414 PACS number(s): 71.27.+a, 81.05.ue, 74.20.Rp, 74.70.Wz

I. INTRODUCTION

Graphene, a single atomic layer of graphite, has been a
focus of interest since the pioneering work of Novoselov and
Geim.1 At the fundamental level the past research activities
on graphene mostly focused on exploring the consequences
of the unique Dirac-like band structure.2 On the experi-
mental side, few exceptions include the observation of the
fractional quantum Hall effect,3,4 the detection of the Fermi
velocity renormalization,5 and the possible observation of
“plasmaron” in angle-resovled photosemission.6 In general
the effects of electron-electron interaction on the properties
of graphene remain a frontier of this field. Previously based
on the resonating-valence-bond7 concept Pathak et al.8 and
Black-Schaffer and Doniach9 proposed that doped graphene
should be a high-temperature superconductor with d + id ′

pairing symmetry. (Henceforth d and d ′ are used to denote
interchangeably dx2−y2 and dxy symmetries, respectively.) In
particular, the possibility of unusual superconductivity and
other orders in doped graphene with van Hove singularities
at (or near) the Fermi level becomes a hot issue.10,11 Most
recently by a perturbative renormalization group calculation
Nandkishore et al. concluded that the van Hove singularities
on the Fermi surface drive chiral d + id ′ superconductivity in
the limit of vanishing interaction strength.12

On a different front, Li recently proposed that due to the
existence of Fermi-surface nesting the 1/4 electron doped
Hubbard model on honeycomb lattice favors the formation of
a magnetic insulating state, which possesses nonzero spin chi-
rality and exhibits the anomalous quantized Hall effect, hence
is a Chern insulator.13 Thus near quarter doping graphene
suddenly becomes a playing ground where either a Chern
insulator or a topological superconductor can potentially be
realized. Because the realization of either phase in heavily
doped graphene will be truly exciting, we feel it is meaningful
to examine this problem using the more realistic band structure
and interaction parameters.

In view of the heavy doping we use the Hubbard interaction
to model the screened Coulomb interaction. We perform
singular-mode functional renormalization group (SM-FRG)14

and variational Monte Carlo (VMC) calculations to address the
possible electronic instabilities. Since the interaction strength
is estimated to be a fraction of the bandwidth, we believe
SM-FRG should yield the qualitatively correct answer. The
VMC is used to further confirm such a belief. The main results
are summarized as follows. At 1/4 electron doping and for
interaction strength appropriate for graphene we found that
the chiral spin density wave (SDW) state is the dominating
instability. When the doping level slightly deviates from 1/4
we find that the d + id ′ pairing instability surpasses that of
the chiral SDW. We propose a schematic phase diagram in
Fig. 6(b). As in pnictides and overdoped cuprates,15 the pairing
mechanism is due to a strong scattering channel shared by the
SDW and pairing.

II. MODEL

The real-space Hamiltonian we used is given by

H = −
∑

(ij )σ

(c†iσ tij cjσ + H.c.) − µNe + U
∑

i

ni↑ni↓

+ 1
2
V

∑

iδ

nini+δ, (1)

where (ij ) denotes bonds connecting sites i and j , σ is the spin
polarity, µ is the chemical potential, Ne is the total electron
number operator, the U term is the on-site Hubbard interaction,
and V is the Coulomb interaction on nearest-neighbor bonds
δ. The honeycomb lattice has two sublattices, which we denote
as A and B henceforth. As suggested in Ref. 2 we take t1 =
2.8 eV, t2 = 0.1 eV, and t3 = 0.07 eV for hoppings between
the first, second, and third neighbors, respectively, and set
U = 3.6t1. As for V , we expect V < U in doped graphene, and
take V = t1 as a typical upper bound. Theoretically, enriched
phases may appear for even larger values of V/U .11,16

III. METHOD

The SM-FRG method14 we used is a modification of
the FRG method17 applied to the cuprates18 and pnictides.19
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale �c � Tc as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), �c drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di�erent band structure param-
eters a�ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di�erent SC phases responds to di�erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di�erent many-body
states and possible phase transitions between them.

Model. We consider the ⇥ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:

H0 =
⇤
t1

⇥

⇤i,j⌅

⇥

�

c†i,�cj,� + t2
⇥

⇤⇤i,j⌅⌅

⇥

�

c†i,�cj,�

+t3
⇥

⇤⇤⇤i,j⌅⌅⌅

⇥

�

c†i,�cj,� + h.c.
⌅
� µn, (1)

where n =
�

i,� ni,� =
�

i,� c
†
i,�ci,�, and c†i,� denotes the

electron annihilation operator of spin ⇤ =⇥, ⇤ at site i.

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di�erent sections of
the Fermi surface for Q = (0, 2⇥/

⌅
3), (⇥,⇥/

⌅
3), and

(⇥,�⇥/
⌅
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a�ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]

Hint = U0

⇥

i

ni,�ni,⇥ +
1

2
U1

⇥

⇤i,j⌅,�,�0

ni,�nj,�0

+
1

2
U2

⇥

⇤⇤i,j⌅⌅,�,�0

ni,�nj,�0 , (2)

where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-

Chiral d-wave superconductivity close to van Hove point in graphene 

[1]: Wang et al., PRB 85, 035414 (2012), [2]: Kiesel et al., PRB 86, 020507 (2012)  



Intrinsic Pairing in Graphene 
 
Interaction-driven chiral d-wave superconductivity in doped graphene 
 

Can we enhance the intrinsic pairing using external superconductors? 
•  d-wave cuprate contacts 
•  Doubly quantized vortices in s-wave superconductors 
 

 



Tight-Binding BdG Formalism 
Effective Hamiltonian for conventional, s-wave contacts: 

Tight-binding 
band structure 

Effective  
s-wave 
pairing 

Intrinsic SB correlations 

Can the SB correlations be enhanced 
by external superconducting contacts? 

Solve self-consistently for  
on-site pair amplitude: 
SB pair amplitude: 



d-wave Josephson Junction 
Proximity effect in a Josephson junction: 

 

–  Josephson junction with s-wave contacts does not enhance the 
intrinsic  chiral d-wave correlations 

–  Josephson junction with d-wave contacts 

J = 0 

t/(kBT) 

ξ 
(Å

) 

Decay length in N: 

ABS and Doniach, PRB 79, 064502 (2009), PRB 81,014517 (2010) 

⇠ ⇠ 1

T � Tc



Double Quantized s-wave Vortex 
–  Doubly quantized vortex in an s-wave superconductor 

•  Force a 4π rotation on the sample edges of the s-wave order parameter 
•  n = 2 vortex winding angular momentum transferred to chiral d-wave state 

ï10 0 10
ï10

0

10

ï10 0 10
ï10

0

10

xx

y

d + id d - idy x

d+id’ (x4) 
s 

�(T ) ⇠ �(T = 0)

1 + (T � Tc)2/E2
g

Temperature dependence:  

0 0.02 0.04
0

0.02

0.04

kBT

|Δ|

T c,J = 0.01T c,U 

T c,J = 0.1T c,U 

ABS, PRB 88, 104506 (2013) 



Majorana Fermion in Vortex Cores 
 
Self-consistent lattice TB-BdG method solution for a vortex in a spin-
orbit coupled semiconductor – superconductor hybrid structure 
 

•  Accurate value of  the superconducting order parameter 
•  Additional phase transition in the vortex core region 



Schrödinger, Dirac, and Majorana 

Schrödinger (1925) 
� ~2
2m

r2 = i~ @
@t
 

4X

µ=0

i~�̃µ@µ = mc 

Dirac (1928) 
relativistically  

correct 

•  Spin-1/2 
•  Electron & positron (hole) 

Majorana (1937) 
4x4 complex 

matrices 

4x4 imaginary matrices 

•  Particle = Antiparticle: 

•  Electron “=“ 2 Majorana fermions: 

real equation 

3X

µ=0

i~�µ@µ = mc 

h e = e = †

M M 
†= 

= M1 +  i M2 e 



Majorana Fermion  
Where do we find Majorana fermions? 

•  Fundamental particle (neutrino?) 

•  Quasiparticle excitations in condensed matter systems 

–  Particle = antiparticle à Zero-energy states in superconductors 
–  No degeneracy à Effectively spinless p+ip’-wave superconductor 

 



Spin-Orbit Coupled Semiconductors – 
Superconductor Hybrid Structures 

Rashba spin-orbit coupled 2D semiconductor 

Conventional s-wave superconductor 

Ferromagnetic insulator  

Vortex 

Rashba SO + s-wave SC + Zeeman field:  
 

à  Effective spinless p+ip’-wave  superconductivity 

à  Majorana fermions at edges and vortices 

Björnson and ABS, PRB 88, 024501(2013)  



Majorana Fermion in a Vortex Core 

2 Majorana = 1 electron 

Probability density of  the lowest 
energy eigenstates: 

Majorana in the 
vortex core 

Majorana on the 
sample edge 

Björnson and ABS, PRB 88, 024501(2013)  



Self-Consistent Solution of Vortex Core 

Self-consistent solution gives: 
•  Accurate value of  Δ	

•  Additional region I’: 

•  Local phase transition in the vortex core 
•  Two low-energy solutions (Majorana) 

inside vortex core  à 1 electron state 

I: Toplogically trivial region, Δ > Vz 
II: Non-trivial region (Majorana), Δ < Vz	

 

Björnson and ABS, PRB 88, 024501(2013)  



Summary 
Self-consistent lattice tight-binding Bogoliubov-de Gennes solution: 
•  Microscopically accurate superconducting state for inhomogeneous systems 

–  SNS graphene Josephson junctions 
•  Proximity effect (leakage of pairing into N) 
•  Inverse proximity effect (loss of pairing in S) 
•  Current depairing (loss of pairing in S due to supercurrent) 

–  Vortex in a spin-orbit coupled semiconductor-superconductor hybrid structure 
•  Local phase transition in vortex core before the formation of the Majorana fermion 

•  Easy to incorporate additional pair correlations 
–  Intrinsic chiral d+id’-wave-wave pairing in graphene proximity-enhanced by 

external superconductors 


