Controlled healing of graphene nanopore

Konstantin Zakharchenko Alexander Balatsky

Zakharchenko K.V., Balatsky A.V. Controlled healing of graphene nanopore. Carbon (80), December 2014, pp. 12–18. http://dx.doi.org/10.1016/j.carbon.2014.07.085

Introduction – how can we study graphene
 Empirical potential and Monte Carlo simulations
 Graphene nanopores

 Applications and limitations

 Re-growth/healing of nanopores

 Mechanisms
 Quality

Motivation

- Graphene is a material with many exceptional properties:
 - Electronic, optical, structural, mechanical, ...
 - □ Simplest 2D membrane (and also 2D crystal)
 - Natural benchmark of physics in 2D
 - □ etc…

Motivation

Graphene nanopores – practical interest:

- DNA sequencing
- Molecule detection
- Sensing and biosensing
- Water filtration & desalination

Motivation

- Fabrication technologies (electron beam drilling, etc...) limit minimal nanopore size: 2-5 nm
- Different applications require different pore sizes: 0.5-3 nm
- Size of nanopore affects performance of nanodevices
- If fabricated nanopore is too big → healing/re-growth is needed

Garaj et all, Nature 467, 190-194 (2010).

Modelling problems

Numerical simulations

- Many properties can be studied with numerical simulations (Molecular Dynamics, Monte Carlo):
 Structure, transitions, mechanical properties, etc...
- Quantum calculations \rightarrow
 - □ Hundreds of atoms
 - Low temperature
- Empirical potentials to describe interactions between atoms + MC/MD →

□ tens of thousand atoms + any finite temperature!

Monte Carlo simulations

- Monte Carlo computer simulations to find equilibrium structure of 'many' carbon atoms:
 - 1. Take initial configuration
 - 2. Two types of moves
 - 1. move randomly one atom
 - 2. vary the box size (in NPT simulations)

- 3. Recalculate the energy, accept or reject the move according to Boltzmann distribution (Metropolis algorithm)
- 4. Repeat steps 2-3 for a millions of times for averages
- Potential which describes interactions between carbon atoms is needed →

Empirical potentials

Aim of an empirical potential:

enabling fast and sufficiently accurate large scale simulations (MC or MD) of real systems

Specific for carbon:

- □ different equilibrium structures (diamond, graphite, ...)
- □ low coordination (3 graphite and graphene, 4 diamond)
- □ allow changes of coordination
- treat covalent bonding <u>and</u> weak interactions between graphitic planes (van der Waals, dispersive interaction)

Pair potentials favour high coordination

Bond Order Potentials

J. Tersoff, Phys. Rev. B 37, 6991 (1988).

The strength of a bond between two atoms is not constant, it depends on local environment

$$E_{b} = \frac{1}{2} \sum_{i,j}^{N} V_{ij} = \frac{1}{2} \sum_{i,j}^{N} \left(V_{R}(r_{ij}) - B_{ij} V_{A}(r_{ij}) \right)$$

B_{ij} – depends on the environment, and decreases with the number of neighbors

Healing and Control

Modelling

- Monte-Carlo simulations with empirical potential (LCBOPII)
- Graphene sample:
 - ~4k atoms
 - Sample size is about 10x10 nm
 - Periodic boundary conditions
 - □ Temperature: 500–2500K
 - Nanopores diameter: 1–6 nm
 - Free carbon atoms were supplied to simulate healing

How does it work?

- 1. Prepare and relax nanopore
- 2. Add free carbon atoms
 - 1. Let them find their places
 - 2. Wait...
- 3. Repeat

First healing mechanism: Edge healing

- Expected, has analogy in 3D
- Starts at the open edge
- Reconstruction of graphene sample atom-by-atom
- Formation of chains
- Slow speed
- Work as long as open edge exists
- Not affected by temperature

Second healing mechanism: Atoms insertion

- Has no analogy in 3D
- Atom attaches to the plane:
 - Formation of two heptagons
 (R7) instead of hexagons
 (R6) topological defect
 - Slow (Brownian-like) drift of defect towards nanopore
- Temperature affected
 T > 900 K
- Goes everywhere over the sample area

Healing mechanism: Accidents

- Asymmetric healing
- Fingering:
 - Biology, wound healing
- Result of:
 - Statistical event
 - Chain formation at the edge
 - Attachment of floating chain, ring, or small flake
- Is it good or bad?
 - Looks nice
- 5-15% chance of "asymmetry"

Structure of healed area

- T<1500 K
 - □ Hexagons (R6) ~ 40%
 - □ Pentagons (R5) ~ 40%
 - Heptagons (R7) + Octagons (R8) ~
 20 %
 - T>1500 K
 - □ Hexagons (R6) ~ 60%
 - □ Pentagons (R5) ~ 20%
 - Heptagons (R7) + Octagons (R8) ~
 20 %
- Number of pentagons and heptagons are not equal, non zero sample curvature!
- Irregularity is more influential for smaller pores

And distortions outside of the healed area...

- Atom insertion healing in action:
 - Slow drift of defects
 - Significant number heptagons (R7) outside of the healed area
- Higher temperature results in faster migration of defects towards open edge (nanopore or boundary)
- Number of pentagons and heptagons are not equal!

Healing in progress, T=2100 K

• $d_0 = 4 nm$

• $d_F = 3 nm$

Conclusions

- At least two different healing mechanisms
 - Edge healing: works always (any T)
 - □ Insertion healing: works at T>900 K
- Possibility to control the final size of healed pore
- Asymmetries in re-grown pores
- Imperfections in the structure
 - Healed area
 - □ Whole sample is affected

Future

- □ influence of quality of healed area on properties of nanodevices
- water filtration and desalination

Thank you!