

Peking University

Furong Xu

B.S. Hu, W.G. Jiang, W.J. Chen (Peking University)

James Vary (Iowa State University)

Ab-initio calculations of nuclear structure with MBPT

Nordita Program on "Computational Challenges in Nuclear and Many-Body Physics" AlbaNova, Stockholm, Sept. 17, 2014

Outline

Preliminary

I. Introduction

What is *ab-initio* ? Is *ab-initio* enough?

II. Many-Body Perturbation Theory (MBPT)

starting from realistic NN interactions

(e.g., N3LO, JISP16).

III. Summary

I. Introduction

What is *ab-initio* calculation?

$$H_{\text{int}} = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i < j} V(|\vec{r_i} - \vec{r_j}|) - \frac{P^2}{2Am} \qquad \vec{P} = \sum_{i=1}^{A} \vec{p_i}$$

$$\hat{\mathsf{H}}_{int} = \sum_{i < j}^{A} \frac{(\vec{p}_i - \vec{p}_j)^2}{2mA} + \sum_{i < j}^{A} V_{NN,ij} + \sum_{i < j < k}^{A} V_{NNN,ijk}$$

1) Realistic nuclear force !

Reproduce experimental two-body *NN* scattering phase shifts .

2) A "good enough" theoretical approach to solve the Hamiltonian and all the symmetries should be preserved!

Realistic nuclear forces:

Chiral EFT (N³LO), CD Bonn, AV18, JISP16 (bare) ... Renormalization G-Matrix, UCOM, V_{low-k}, Okubo-Lee-Suzuki (OLS), SRG

ab-initio methods

In coordinate space: Greens Function Monte Carlo (GFMC)

In basis space:

- No Core Shell Model (NCSM)
- No Core Full Configurations (NCFC)

Coupled Cluster (CC)

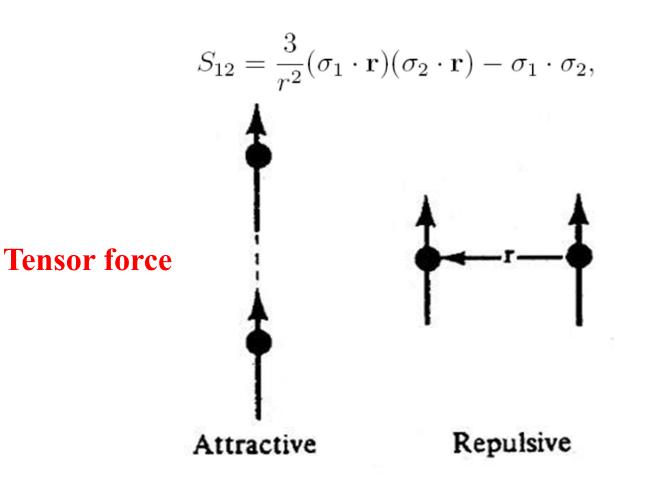
Many-Body Perturbation Theory (MBPT)

Lattice Nuclear Chiral EFT

• • •

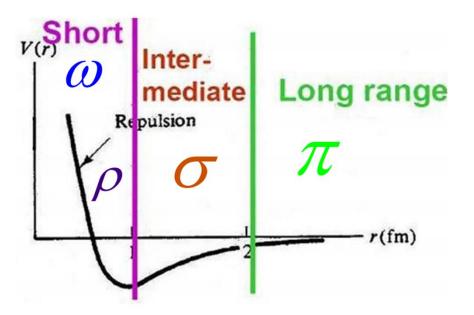
Phenomenological Nuclear Force

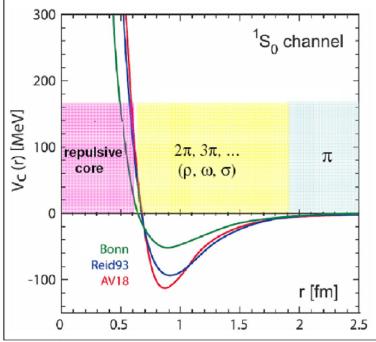
In a simple form $V = V_c + V_{LS}(\mathbf{L} \cdot \mathbf{S}) + V_T S_{12},$



Nuclear force in meson picture

 $V_{\text{OBEP}} = \sum_{\alpha = \pi, \sigma, \rho, \omega, \eta, a_0, \dots} V_{\alpha}$





From T. Hatsuda (Oslo 2008)

One-pion exchange by Yukawa (1935)

Multi-pions by Taketani (1951)

Repulsive core by Jastrow (1951)

Bonn NN potential

- 70's-80's, University of Bonn.
- CD Bonn is a charge-dependent one-boson-exchange NN potential.
- All mesons with masses below nucleon mass are included $(\pi, \rho, \omega, \sigma)$
- Fit about 6000 data (proton-proton, neutron-proton scattering phase shifts) and deuteron binding energy.

NO 3NF

• 38 parameters

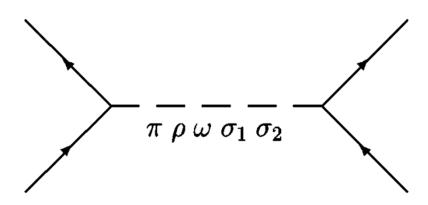


FIG. 1. One-boson exchange Feynman diagrams that define the CD-Bonn *NN* potential.

R. Machleidt, PRC 63, 024001 (2001)

Chiral EFT (N²LO, N³LO...)

From QCD to nuclear physics via chiral EFT

- QCD at low energy is strong. **Perturbation is inapplicable !**
- Quarks and gluons are confined into colorless hadrons.
- Nuclear forces are residual color forces (similar to van der Waals forces)

From R. Machleidt, "Nuclear Forces - Lecture 4: NF from EFT (CNSSS13)"

QCD=quarks + gluons (symmetries: spin, isosipn, parity, chiral symmetry broken spontaneously)

Weinberg (1990's)

Chiral EFT=nucleons+pions (symmetries: spin, isosipn, parity, chiral symmetry broken spontaneously)

At low energy, the effective degrees of freedom are nucleon and pion, rather than quark and gluon!

Starting point is an effective chiral πN Lagrangian:

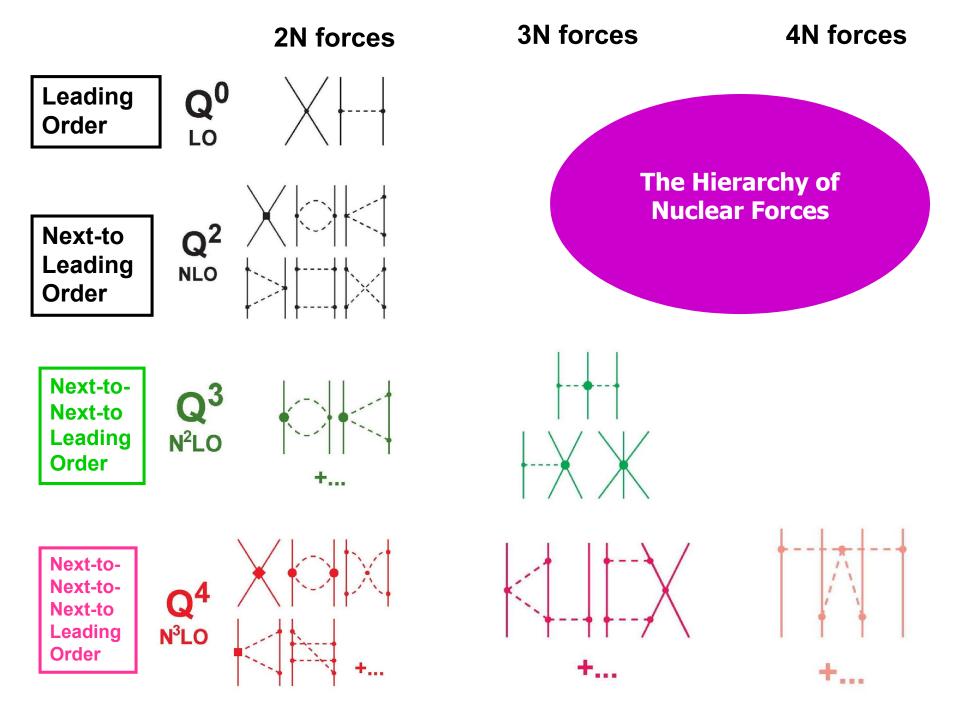
$$L_{\pi N} = L_{\pi N}^{(1)} + L_{\pi N}^{(2)} + L_{\pi N}^{(3)} + \dots$$

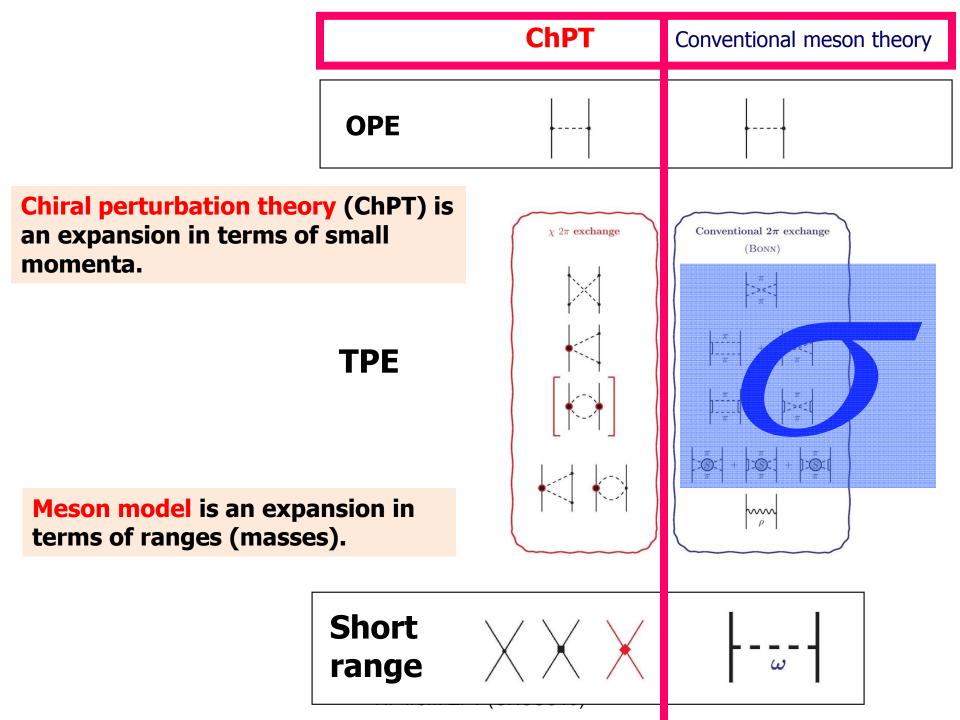
Obeys QCD symmetries (spin, isospin, chiral symmetry breaking)

To develop a low-momentum expansion for chiral EFT (low energy) (Chiral perturbation theory, power counting).

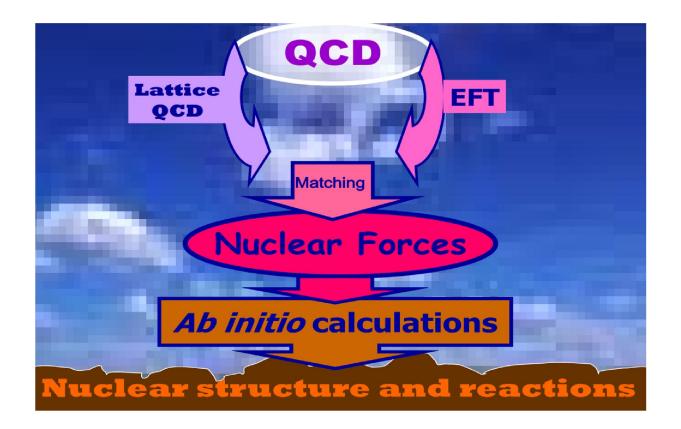
Advantages:

- 1. Gives hierarchy of nuclear force
- 2. Naturally generates 3NF, 4NF...
- **3.** Provides possibilities to analyze the uncertainties of each hierarchy.





After 80 years of struggle, we have now a proper theory (ChPT) for nuclear force that is based upon the fundamental theory of strong interactions, QCD.



R. Machleidt

Nuclear Forces - Lecture 4 NF from EFT (CNSSS13)

Our *ab-initio* calculations

Many-Body Perturbation Theory (MBPT) with realistic *NN* force.

Hatree-Fock state is chosen as a reference state.

MBPT:

$$\begin{split} \hat{H}_{int} &= \sum_{i < j}^{A} \frac{(\vec{p}_{i} - \vec{p}_{j})^{2}}{2mA} + \sum_{i < j}^{A} V_{NN, ij} \quad ; \qquad H_{int} = \sum_{i=1}^{A} \frac{p_{i}^{2}}{2m} + \sum_{i < j} V(|\vec{r}_{i} - \vec{r}_{j}|) - \frac{P^{2}}{2Am} \quad , \quad \vec{P} = \sum_{i=1}^{A} \vec{p}_{i} \\ \hat{H} &= \hat{H}_{0} + (\hat{H} - \hat{H}_{0}) = \hat{H}_{0} + \hat{V} \\ H_{0} &= \sum_{l_{1}l_{2}} \left(\sum_{i} \langle l_{1}i|T + V|l_{2}i\rangle \right) a_{l_{1}}^{\dagger} a_{l_{2}} \quad ; \quad H_{0} = \sum_{l_{1}l_{2}} \left(\langle l_{1}|T|l_{2}\rangle + \sum_{i} \langle l_{1}i|V + Tcor|l_{2}i\rangle \right) a_{l_{1}}^{\dagger} a_{l_{2}} \end{split}$$

The exact solutions of the A-nucleon system are,

$$\hat{H}\Psi_n = E_n \Psi_n, \qquad n = 0, 1, 2, ...$$

The zero-order part is,

$$\hat{H}_0 \Phi_n = E_n^{(0)} \Phi_n, \qquad n = 0, 1, 2, ...$$

For the ground state:

$$\chi_{0} = \Psi_{0} - \Phi_{0}$$

$$\Delta E = E_{0} - E_{0}^{(0)}$$

$$\Psi_{0} = \sum_{m=0}^{\infty} \left[\hat{R}_{0}(E_{0}^{(0)})(\hat{V} - \Delta E) \right]^{m} \Phi_{0}$$

$$\Delta E = \sum_{m=0}^{\infty} \langle \Phi_{0} | \hat{V} \left[\hat{R}_{0}(E_{0}^{(0)})(\hat{V} - \Delta E) \right]^{m} | \Phi_{0} \rangle$$
where $\hat{R}_{0} = \sum_{i \neq 0} \frac{|\Phi_{i} \rangle \langle \Phi_{i}|}{E_{0}^{(0)} - E_{i}^{(0)}}$ is called the resolvent of \hat{H}_{0}

Rayleigh-Schrodinger method

$$E_{0} = E_{0}^{(0)} + E_{0}^{(1)} + E_{0}^{(2)} + E_{0}^{(3)} + \dots$$

HF energy
$$E_{0}^{(1)} = (\Phi_{0})\hat{V}(\Phi_{0})$$

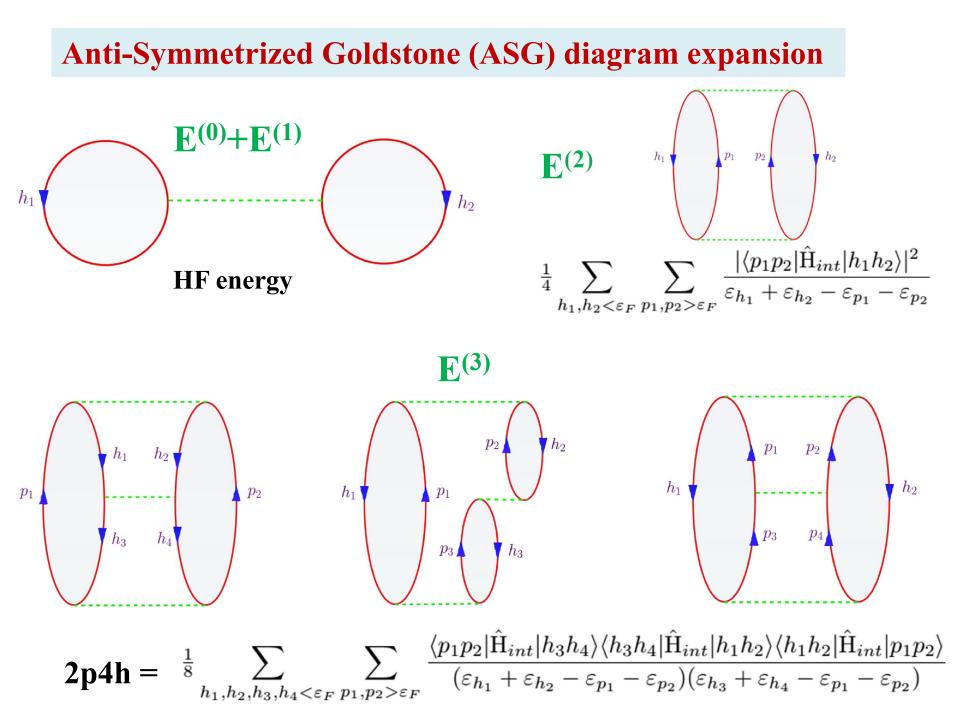
$$E_0^{(1)} = \langle \Phi_0 | \mathsf{V} | \Phi_0 \rangle$$

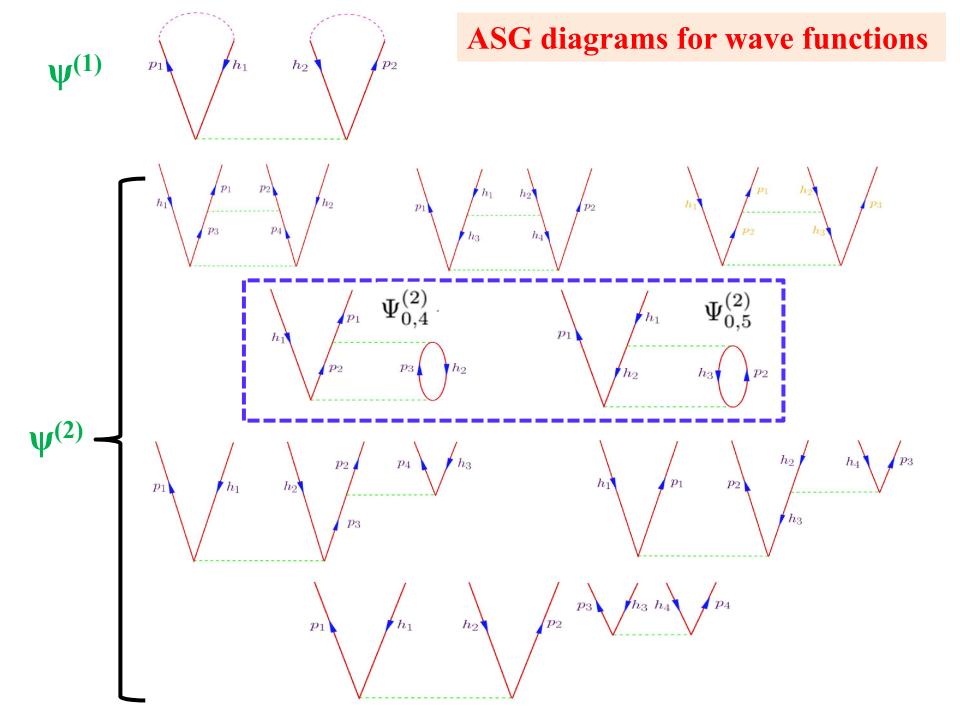
$$E_0^{(2)} = \langle \Phi_0 | \hat{V} \hat{R}_0 \hat{V} | \Phi_0
angle$$

$$E_0^{(3)} = \langle \Phi_0 | \hat{\mathsf{V}} \hat{\mathsf{R}}_0 (\hat{\mathsf{V}} - \langle \Phi_0 | \hat{\mathsf{V}} | \Phi_0
angle) \hat{\mathsf{R}}_0 \hat{\mathsf{V}} | \Phi_0
angle$$

$$\begin{split} \Psi_{0} &= \Phi_{0} + \Psi_{0}^{(1)} + \Psi_{0}^{(2)} + \dots \\ & \\ HF \\ & \Psi_{0}^{(1)} = \hat{R}_{0} \hat{V} | \Phi_{0} \rangle \end{split}$$

$$\Psi_0^{(2)} = \hat{\sf R}_0 (\hat{\sf V} - E_0^{(1)}) \hat{\sf R}_0 \hat{\sf V} |\Phi_0
angle$$





Density

$$\rho(\vec{r}) = \sum_{k=1}^{A} \delta^{3} \left(\vec{r} - \vec{r}_{k} \right) = \sum_{k=1}^{A} \frac{\delta \left(r - r_{k} \right)}{r^{2}} \sum_{lm} Y_{lm}^{*}(\hat{r}_{k}) Y_{lm}(\hat{r})$$

In second quantization with HO basis

$$\rho(\vec{r}) = \sum_{K} \sum_{\substack{n_1, l_1, j_1 \ n_2, l_2, j_2 \ m_j}} \sum_{m_j} R_{n_1, l_1}(r) R_{n_2, l_2}(r) \frac{-Y_{K0}^*(\hat{r})}{\hat{K}} \left\langle l_1 \frac{1}{2} j_1 ||Y_K|| l_2 \frac{1}{2} j_2 \right\rangle$$
$$(-1)^{j_2 + m_j} \left\langle j_1 m_j j_2 - m_j |K0\rangle a_{n_1, l_1, j_1, m_j}^{\dagger} a_{n_2, l_2, j_2, m_j} \right\rangle$$

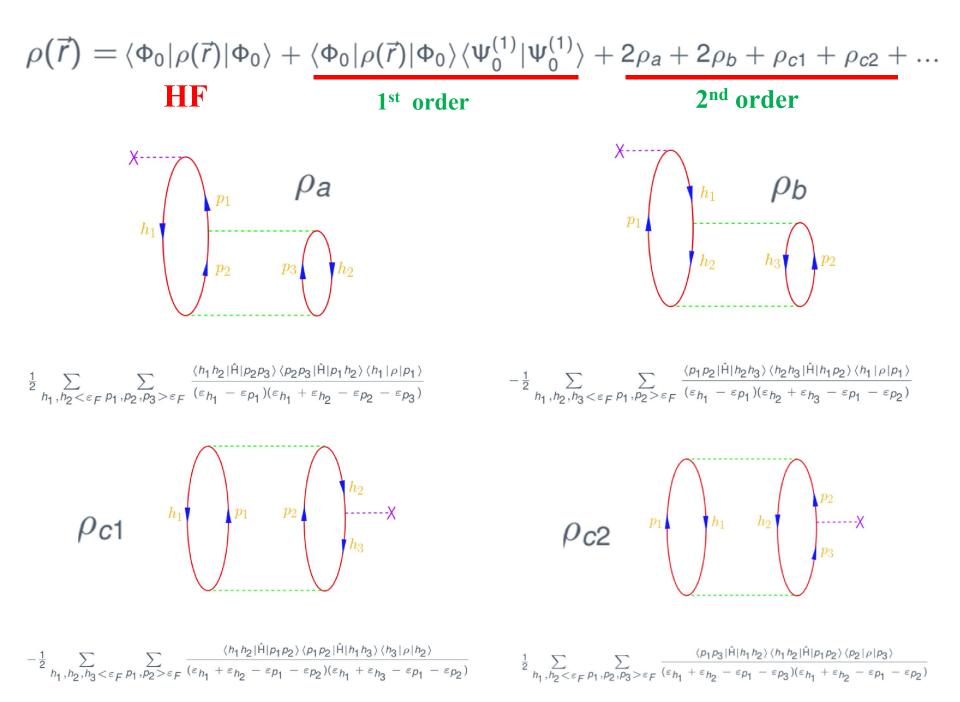
$$\left\langle l_1 \frac{1}{2} j_1 || Y_K || l_2 \frac{1}{2} j_2 \right\rangle = \frac{1}{\sqrt{4\pi}} \hat{j}_1 \hat{j}_2 \hat{l}_1 \hat{l}_2 (-1)^{j_1 + \frac{1}{2}} \left\langle l_1 0 l_2 0 | K 0 \right\rangle \left\{ \begin{array}{cc} j_1 & j_2 & K \\ l_2 & l_1 & \frac{1}{2} \end{array} \right\}$$

For spherically symmetric system(K=0), we can get a more simple form,

$$\rho(\vec{r}) = \sum_{n_1, n_2} \sum_{I, j, m_j} \left[\frac{R_{n_1, I}(r) R_{n_2, I}(r)}{4\pi} \right] a_{n_1, I, j, m_j}^{\dagger} a_{n_2, I, j, m_j}$$

For the ground state, the 2nd order correction to density is only from the 4th and 5th ASG diagrams of the 2nd-order wave function, others belong to higher-order corrections, i.e.,

$$\Psi_0' = \Phi_0 + \Psi_0^{(1)} + \Psi_{0,4}^{(2)} + \Psi_{0,5}^{(2)}$$



Point-particle distribution radii:

$$\langle r_{pp}{}^2 \rangle = \frac{\int r^2 \rho_p(\vec{r}) d^3 r}{\int \rho_p(\vec{r}) d^3 r} \qquad \langle r_{nn}{}^2 \rangle = \frac{\int r^2 \rho_n(\vec{r}) d^3 r}{\int \rho_n(\vec{r}) d^3 r}$$

Charge radius:

$$\langle r_{ch}^2 \rangle = \langle r_{pp}^2 \rangle + \langle R \rangle_p^2 \qquad (\langle R \rangle_p = 0.8 fm)$$

NCSM with N³LO+SRG S.K. Bogner *et al.*, arXiv0708.3754v2 (2007)

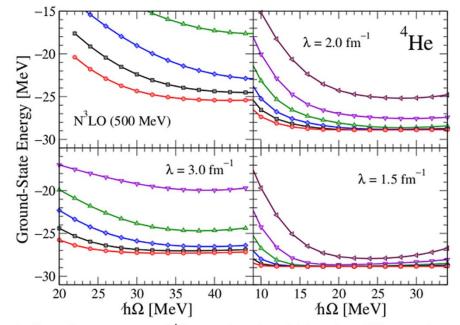
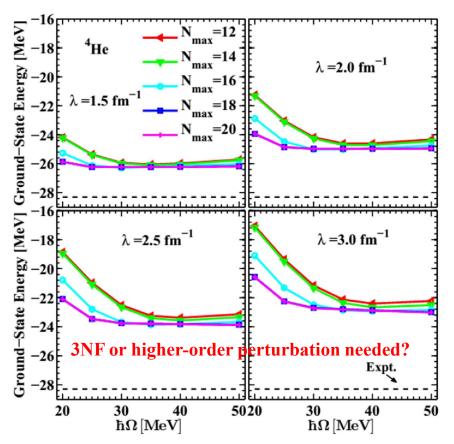


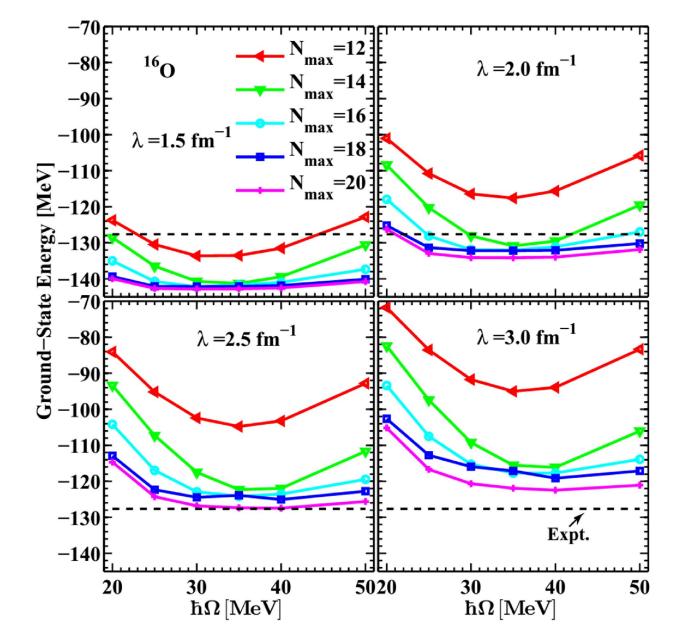
Fig. 3. Ground-state energy of ⁴He as a function of $\hbar\Omega$ at four different values of λ (∞ , 3, 2, 1.5 fm⁻¹). The initial potential is the 500 MeV N³LO NN-only potential from Ref. [13]. The legend from Fig. [1] applies here.

⁴He

Our MBPT with N³LO+SRG



Our MBPT calculations with N³LO+SRG



¹⁶**O**

R. Roth *et al.* (2006) PRC 73, 044312 AV18, UCOM, corrections to 3rd order in energy calculations, 2nd order in radius calculations

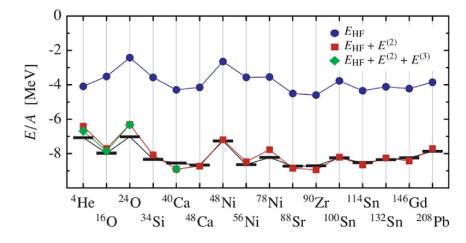


FIG. 5. (Color online) Ground-state energies for selected closedshell nuclei in HF approximation and with added second- and third-order MBPT corrections. The correlated AV18 potential with $I_{\vartheta} = 0.09 \text{ fm}^3$ was used. The bars indicate the experimental binding energies [31].

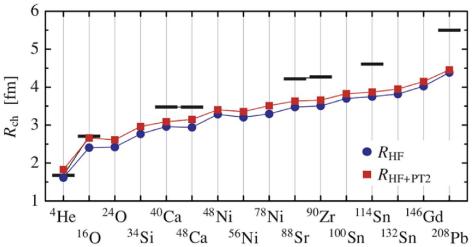


FIG. 8. (Color online) Charge radii for selected closed-shell nuclei in the HF approximation and with added second-order MBPT corrections. The correlated AV18 potential with $I_{\vartheta} = 0.09 \text{ fm}^3$ was used. The bars indicate experimental charge radii [32].

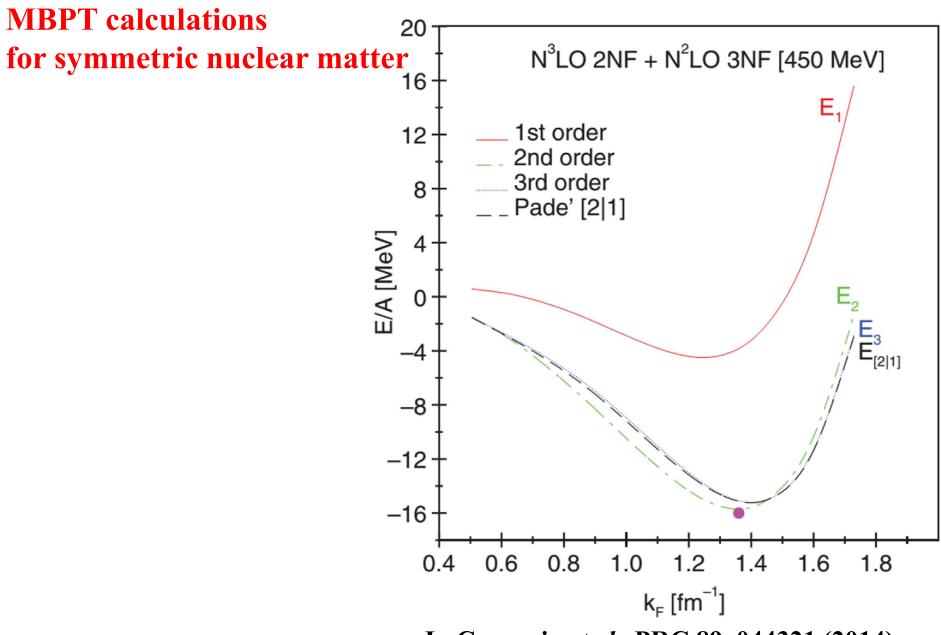
Our calculations and compared with data

 $N^{3}LO[4]$ with SRG for ${}^{4}He$ $(N_{max} = 20, \ \hbar\Omega = 35MeV \text{ and } \lambda = 2.0 fm^{-1})$

Observable	p-rms(fm)	$E_{g.s.}(MeV)$	/)	
Expreiment	1.450	-28.296	$\overline{)}$	
HF	1.8380	-9.1657		4**
Second-order correction	n -0.0622	-13.7430)	⁴ He
Third-order correction	_	-2.0587		
C.M. motion correction	n -0.0854	_		
MBPT	1.6903	-24.9675		
	Bare JISP16[10-12] for ⁴	$He (N_{max})$	= 14 and $\hbar\Omega = 10 MeV$)
	Observable		p-rms(fm)	$E_{g.s.}({ m MeV})$
	Expreiment	(1.450	-28.296
	NCSH		_	-28.297
	HF		1.5714	-22.4143
	Second-order	correction	0.0160	-4.3126
	Third-order of	correction	_	-0.8031
	C.M. motion	correction	-0.3695	
	MBPT	(1.2179	-27.5301

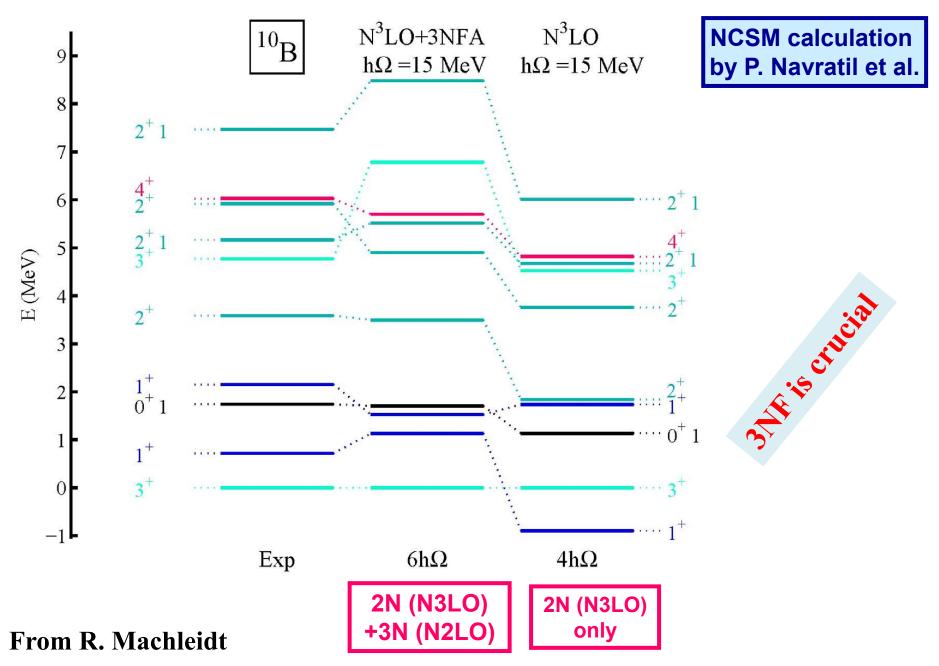
$N^3 LO[4]$ with SRG for ${}^{16}O$ ($N_{max} = 20, \ \hbar\Omega = 35 MeV$	and $\lambda = 2.0 fm^{-1}$)
---------------------------------------	--	-------------------------------

Observable		p-r <u>ms(fm)</u>	$E_{g.s.}(\text{MeV})$				
Expreiment	(2.58	-127.62				
HF		2.3874	-36.6856				
Second-order	correction	-0.0504	-90.0375	16			
Third-order	Third-order correction		-7.4287	100			
C.M. motion	correction	-0.0158					
MBPT		2.3211	-134.1518				
Bare JISP16[10–12] for ¹⁶ O ($N_{max} = 10$ and $\hbar\Omega = 15MeV$)							
	Observabl	e	p-rms(fm)	$E_{g.s.}(\text{MeV})$			
JISP 16 vs N3LO: better in energy, worse in radius, in ⁴ He and ¹⁶ O	Expreiment		2.58	-127.62			
	$\mathrm{NCSH}(N_{max} = 6)$		_	-126.2			
	SHF		1.8693	-70.8461			
	Second-order correction		tion 0.0618	-51.7671			
	Third-order correction		on –	-3.2451			
	C.M. motion correction		-0.0453				
	MBPT		1.8858	-125.8583			



L. Coraggio et al., PRC 89, 044321 (2014)

Calculating the properties of light nuclei using chiral 2N and 3N forces



III. Summary

Ab-initio MBPT calculations based on realistic interactions

1. Why *ab-initio*?

i) To understand the nature of nuclear force;

ii) To develop theories or methods with less assumptions or approximations;

2. Why non *ab-initio*?

i) Calculations easier (simpler),

give chance to calculate most nuclei (heavier) in the nuclear chart

ii) May be quantitatively good

••••

Thank you for your attention

Peking University Campus

Stockholm, Sept. 17, 2014