
T. Mizusaki,              Nordita, Sep. (2014) Computational Challenges in Nuclear and Many-Body Physics

A new approach for  
large-scale shell-model calculations and  
large-scale complex scaling calculations

Nordita, Stockholm!
 Sep. (2014)!

Takahiro Mizusaki  !
(Senshu Univ.)



T. Mizusaki,              Nordita, Sep. (2014) Computational Challenges in Nuclear and Many-Body Physics

Nordita, Stockholm!
 Sep. (2014)!

Takahiro Mizusaki  !
(Senshu Univ.)

A new approach for  
large-scale shell-model calculations and  
large-scale complex scaling calculations

Reference!
[1]T. Mizusaki, K. Kaneko, M. Honma, T. Sakurai, Phys. Rev. C82 024310 (2010).!
[2] T. Mizusaki, Bulletin of the Institute of Natural Sciences, Senshu Univ. No.43, p23-40 (2012) in 
Japanese.!
[3] T.Mizusaki, T.Myo, K.Kato, Prog. Theor. Exp. Phys. (2014) 091D01.

Computational Challenges in Nuclear and Many-Body Physics

http://journals.aps.org/prc/abstract/10.1103/PhysRevC.82.024310
http://ptep.oxfordjournals.org/content/2014/9/091D01.full.pdf+html


T. Mizusaki,              Nordita, Sep. (2014) Computational Challenges in Nuclear and Many-Body Physics

1  Introduction:  basic issue

New diagonalization method on two kinds of nuclear structure calculations
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For shell model calculations, we solve 
energy of low-lying states. Eigen-
energies are real.

For complex-scaling calculations, we solve 
resonance states. Eigen-energies are complex.

Hamiltonian matrix is real symmetric.
Hamiltonian matrix is complex symmetric, but is 
not Hermitian. 
no good method for large-scale calculations 
obstacle for many-body resonance study

Lanczos method is useful for low-
lying states for large-scale shell 
model calculations.
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Lanczos iteration
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1.  Introduction:  outcome of my talk

large-scale shell model calculations

SS method has almost the same 
performance as Lanczos method for 
large-scale shell-model calculations.

large-scale complex scaling calculations

SS method is superior in the 
calculations with isospin symmetry 
breaking.

There is no good diagonalization 
method.

SS method becomes a unique 
diagonalization method.

We found, the SS method  can 
easily solve especially resonance 
states!!
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Breakthorugh !!

Up to now, max 50,000  with super computer

Hereafter, 200,000 and more  with single PC!!
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2.  SS method: eigenvalues from moments

target eigenvalue

Cauchy’s integral contour
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We define the following moments as

Center of Cauchy’s integral contour

By expanding the complete sets,   
we can rewrite the moment above.

We would like to extract ek !

SS method = Sakurai - Sugiura method  
                   T. Sakurai and H. Sugiura, J. Comput. Appl. Math. 159, 119 (2003).

http://www.sciencedirect.com/science/article/pii/S037704270300565X
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2.  SS method: eigenvalues from the Hankel Matrix

For simplicity, let us consider the 2x2 case with                      andak = ek � " bk = ckdk

N =

✓
µ0, µ1

µ1, µ2

◆

=

✓
b1 + b2, a1b1 + a2b2

a1b1 + a2b2, a21b1 + a22b2

◆

=

✓
1, 1
a1, a2

◆✓
b1, 0
0, b2

◆✓
1, a1
1, a2

◆

DV V T

M =

✓
µ1, µ2

µ2, µ3

◆

=

✓
a1b1 + a2b2, a21b1 + a22b2
a21b1 + a22b2, a31b1 + a32b2

◆

=

✓
1, 1
a1, a2

◆✓
b1, 0
0, b2

◆✓
a1, 0
0, a2

◆✓
1, a1
1, a2

◆

⇤DV V T

M � �N = V D(⇤� �I)V TTherefore, 

Then,                  is  an eigenvalue of � = ak Mx = �Nx

This relation holds for any dimension then by diagonalizing 
we can obtain energy eigenvalues.

Mx = �Nx

ak = ek � "
bk = ckdk

factorization of Hankel matrix  
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2.  SS method: Hankel matrix

To extract ek, we solve the following small-scale generalized 
eigenvalue problem with the Hankel matrices.
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basic strategy small-scale generalized  
eigenvalue problem

� = ek � "
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2.  SS method: how to evaluate the moments and COCG method

In respective problems, we have to evaluate the moments by the numerical 
integrations as

N0: number of mesh points

The numerical integration along Cauchy’s  
contour is carried out by discretization.
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Solve linear equation.

Denominator needs to solve linear equations.

This linear equations can be solved by the COCG(Complex Orthogonal Conjugate 
Gradient) method, which is an iteration method with Krylov subspace as will be 
explained in the next slide.
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2.  SS method: Krylov subspace and shifted COCG method

Ax = b

How to solve linear  equation 
where A is complex and symmetric.

Complex Orthogonal Conjugate 
Gradient (COCG) method 

xk, rk, pkFor                       vectors, 

9

The n£ n Vandermonde matrix V and diagonal matrix D are
defined as

VT =

0

BBB@

1, a1, · · · an°11
1, a2, · · · an°12
...

. . .
...

1, an, · · · an°1n

1

CCCA
, (A4)

and

D=

0

BB@

b1, 0, · · · 0
0, b2, · · · 0
...

. . .
...

0, 0, · · · bn

1

CCA . (A5)

Therefore, a following factorization holds as,

N =VDVT . (A6)

Next we consider the matrix Mi j = µi+ j°1, which can be
shown as

M =VDΛVT . (A7)

where

Λ=

0

BB@

a1, 0, · · · 0
0, a2, · · · 0
...

. . .
...

0, 0, · · · an

1

CCA . (A8)

By these factorizations, we can prove [5]

M°λN =VD(Λ°λ I)VT . (A9)

Therefore, eigenvalues of generalized eigenvalue equation,
Mx= λNx, are λ = ak(k = 1,2,3, · · ·).

APPENDIX B: SHIFTED COCGMETHOD

The conjugate gradient (CG) method is an algorithm to nu-
merically solve linear system as

Ax= b (B1)

where A is a matrix and x and b are vectors. We consider the
following quadratic function f (x) defined as

f (x) =
1
2
xTAx° xT b. (B2)

At the stationary point xm, where f 0(xm) = 0, the equation
Axm = b is satisfied. Therefore, we iteratively minimize f (x)
by changing x along negative gradient direction, starting from
x0. A merit of the CG method is that we can handle only
multiplication of matrix A to vector x. During iteration pro-
cess, matrix A is unchanged and sparseness of matrix A al-
ways holds. In the application of quantum systems, it is very
useful for conservation of quantum numbers.

The complex orthogonal conjugate gradient (COCG)
method [9] is a generalization of the CG method for com-
plex, symmetric, but non-hermitian matrices. Its algorithm
is shown in iterative relations among xk,rk and pk vectors
(k = 1,2,3 · · · ) as,

xk+1 = xk +αk pk (B3)

rk+1 = rk°αkApk (B4)

pk+1 = rk+1+βk pk, (B5)

where αk = rTk rk/p
T
k Apk and βk = rTk+1rk+1/r

T
k rk ( Note that

αk 6= r†k rk/p
†
kApk and βk 6= r†k+1rk+1/r

†
k rk). Initial conditions

are α0 = 1, β0 = 0, x0 = 0 and r0 = b. As iteration number
k increases, the norm |rk| of residual vector rk decreases. The
convergence criterion is given for |rk|/|b|. If this convergence
condition is fulfilled, we can obtain numerically approximated
solution x.
Next we consider a series of shifted linear equations as

(A°σ I)xσ = b, (B6)

where σ is a complex number and I is a unit matrix. If we
start above iteration from x0 = 0, the k-th residual vector rσk
of the COCGmethod for Eq. (B6) can be proven to be propor-
tional to the k-th residual vector rk of the COCG method [7]
for Eq. (B1) (i.e., Eq. (B6) with σ = 0);

rσk =
1
πσk

rk, (B7)

where πσk is a proportional coefficient and satisfies following
iterative relations as,

πσk+1 = (1+αkσ)πσk +
αkβk°1
αk°1

(πσk °πσk°1), (B8)

ασ
k =

πσk
πσk+1

αk, (B9)

βσk =
µ
πσk
πσk+1

∂2
βk. (B10)

These iterative relations can be derived [7] from an
invariance property of two Krylov subspaces concerning
Eqs.(B1) and (B6). The former Krylov subspace is gener-
ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)

By shifting A as A° σ I, the latter Krylov subspace be-
comes,

span{b,(A°σ I)b,(A°σ I)2 b, · · ·}. (B12)

This subspace is the same as that defined in (B11).
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start above iteration from x0 = 0, the k-th residual vector rσk
of the COCGmethod for Eq. (B6) can be proven to be propor-
tional to the k-th residual vector rk of the COCG method [7]
for Eq. (B1) (i.e., Eq. (B6) with σ = 0);

rσk =
1
πσk

rk, (B7)

where πσk is a proportional coefficient and satisfies following
iterative relations as,

πσk+1 = (1+αkσ)πσk +
αkβk°1
αk°1

(πσk °πσk°1), (B8)

ασ
k =

πσk
πσk+1

αk, (B9)

βσk =
µ
πσk
πσk+1

∂2
βk. (B10)

These iterative relations can be derived [7] from an
invariance property of two Krylov subspaces concerning
Eqs.(B1) and (B6). The former Krylov subspace is gener-
ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)

By shifting A as A° σ I, the latter Krylov subspace be-
comes,

span{b,(A°σ I)b,(A°σ I)2 b, · · ·}. (B12)

This subspace is the same as that defined in (B11).
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By these factorizations, we can prove [5]

M°λN =VD(Λ°λ I)VT . (A9)

Therefore, eigenvalues of generalized eigenvalue equation,
Mx= λNx, are λ = ak(k = 1,2,3, · · ·).

APPENDIX B: SHIFTED COCGMETHOD

The conjugate gradient (CG) method is an algorithm to nu-
merically solve linear system as

Ax= b (B1)

where A is a matrix and x and b are vectors. We consider the
following quadratic function f (x) defined as

f (x) =
1
2
xTAx° xT b. (B2)

At the stationary point xm, where f 0(xm) = 0, the equation
Axm = b is satisfied. Therefore, we iteratively minimize f (x)
by changing x along negative gradient direction, starting from
x0. A merit of the CG method is that we can handle only
multiplication of matrix A to vector x. During iteration pro-
cess, matrix A is unchanged and sparseness of matrix A al-
ways holds. In the application of quantum systems, it is very
useful for conservation of quantum numbers.

The complex orthogonal conjugate gradient (COCG)
method [9] is a generalization of the CG method for com-
plex, symmetric, but non-hermitian matrices. Its algorithm
is shown in iterative relations among xk,rk and pk vectors
(k = 1,2,3 · · · ) as,

xk+1 = xk +αk pk (B3)

rk+1 = rk°αkApk (B4)

pk+1 = rk+1+βk pk, (B5)

where αk = rTk rk/p
T
k Apk and βk = rTk+1rk+1/r

T
k rk ( Note that

αk 6= r†k rk/p
†
kApk and βk 6= r†k+1rk+1/r

†
k rk). Initial conditions

are α0 = 1, β0 = 0, x0 = 0 and r0 = b. As iteration number
k increases, the norm |rk| of residual vector rk decreases. The
convergence criterion is given for |rk|/|b|. If this convergence
condition is fulfilled, we can obtain numerically approximated
solution x.
Next we consider a series of shifted linear equations as

(A°σ I)xσ = b, (B6)

where σ is a complex number and I is a unit matrix. If we
start above iteration from x0 = 0, the k-th residual vector rσk
of the COCGmethod for Eq. (B6) can be proven to be propor-
tional to the k-th residual vector rk of the COCG method [7]
for Eq. (B1) (i.e., Eq. (B6) with σ = 0);

rσk =
1
πσk

rk, (B7)

where πσk is a proportional coefficient and satisfies following
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πσk+1 = (1+αkσ)πσk +
αkβk°1
αk°1

(πσk °πσk°1), (B8)

ασ
k =

πσk
πσk+1

αk, (B9)

βσk =
µ
πσk
πσk+1

∂2
βk. (B10)

These iterative relations can be derived [7] from an
invariance property of two Krylov subspaces concerning
Eqs.(B1) and (B6). The former Krylov subspace is gener-
ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)

By shifting A as A° σ I, the latter Krylov subspace be-
comes,

span{b,(A°σ I)b,(A°σ I)2 b, · · ·}. (B12)

This subspace is the same as that defined in (B11).

Initial conditions:

Iteration :
where
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following quadratic function f (x) defined as

f (x) =
1
2
xTAx° xT b. (B2)

At the stationary point xm, where f 0(xm) = 0, the equation
Axm = b is satisfied. Therefore, we iteratively minimize f (x)
by changing x along negative gradient direction, starting from
x0. A merit of the CG method is that we can handle only
multiplication of matrix A to vector x. During iteration pro-
cess, matrix A is unchanged and sparseness of matrix A al-
ways holds. In the application of quantum systems, it is very
useful for conservation of quantum numbers.
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method [9] is a generalization of the CG method for com-
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are α0 = 1, β0 = 0, x0 = 0 and r0 = b. As iteration number
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convergence criterion is given for |rk|/|b|. If this convergence
condition is fulfilled, we can obtain numerically approximated
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where σ is a complex number and I is a unit matrix. If we
start above iteration from x0 = 0, the k-th residual vector rσk
of the COCGmethod for Eq. (B6) can be proven to be propor-
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invariance property of two Krylov subspaces concerning
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ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)
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are α0 = 1, β0 = 0, x0 = 0 and r0 = b. As iteration number
k increases, the norm |rk| of residual vector rk decreases. The
convergence criterion is given for |rk|/|b|. If this convergence
condition is fulfilled, we can obtain numerically approximated
solution x.
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(A°σ I)xσ = b, (B6)
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ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)

By shifting A as A° σ I, the latter Krylov subspace be-
comes,

span{b,(A°σ I)b,(A°σ I)2 b, · · ·}. (B12)

This subspace is the same as that defined in (B11).

9

The n£ n Vandermonde matrix V and diagonal matrix D are
defined as

VT =

0

BBB@

1, a1, · · · an°11
1, a2, · · · an°12
...

. . .
...

1, an, · · · an°1n

1

CCCA
, (A4)

and

D=

0

BB@

b1, 0, · · · 0
0, b2, · · · 0
...

. . .
...

0, 0, · · · bn

1

CCA . (A5)

Therefore, a following factorization holds as,

N =VDVT . (A6)

Next we consider the matrix Mi j = µi+ j°1, which can be
shown as

M =VDΛVT . (A7)

where

Λ=

0

BB@

a1, 0, · · · 0
0, a2, · · · 0
...

. . .
...

0, 0, · · · an

1

CCA . (A8)

By these factorizations, we can prove [5]

M°λN =VD(Λ°λ I)VT . (A9)

Therefore, eigenvalues of generalized eigenvalue equation,
Mx= λNx, are λ = ak(k = 1,2,3, · · ·).

APPENDIX B: SHIFTED COCGMETHOD

The conjugate gradient (CG) method is an algorithm to nu-
merically solve linear system as

Ax= b (B1)

where A is a matrix and x and b are vectors. We consider the
following quadratic function f (x) defined as

f (x) =
1
2
xTAx° xT b. (B2)

At the stationary point xm, where f 0(xm) = 0, the equation
Axm = b is satisfied. Therefore, we iteratively minimize f (x)
by changing x along negative gradient direction, starting from
x0. A merit of the CG method is that we can handle only
multiplication of matrix A to vector x. During iteration pro-
cess, matrix A is unchanged and sparseness of matrix A al-
ways holds. In the application of quantum systems, it is very
useful for conservation of quantum numbers.

The complex orthogonal conjugate gradient (COCG)
method [9] is a generalization of the CG method for com-
plex, symmetric, but non-hermitian matrices. Its algorithm
is shown in iterative relations among xk,rk and pk vectors
(k = 1,2,3 · · · ) as,

xk+1 = xk +αk pk (B3)

rk+1 = rk°αkApk (B4)

pk+1 = rk+1+βk pk, (B5)

where αk = rTk rk/p
T
k Apk and βk = rTk+1rk+1/r

T
k rk ( Note that

αk 6= r†k rk/p
†
kApk and βk 6= r†k+1rk+1/r

†
k rk). Initial conditions

are α0 = 1, β0 = 0, x0 = 0 and r0 = b. As iteration number
k increases, the norm |rk| of residual vector rk decreases. The
convergence criterion is given for |rk|/|b|. If this convergence
condition is fulfilled, we can obtain numerically approximated
solution x.
Next we consider a series of shifted linear equations as

(A°σ I)xσ = b, (B6)

where σ is a complex number and I is a unit matrix. If we
start above iteration from x0 = 0, the k-th residual vector rσk
of the COCGmethod for Eq. (B6) can be proven to be propor-
tional to the k-th residual vector rk of the COCG method [7]
for Eq. (B1) (i.e., Eq. (B6) with σ = 0);

rσk =
1
πσk

rk, (B7)

where πσk is a proportional coefficient and satisfies following
iterative relations as,

πσk+1 = (1+αkσ)πσk +
αkβk°1
αk°1

(πσk °πσk°1), (B8)

ασ
k =

πσk
πσk+1

αk, (B9)

βσk =
µ
πσk
πσk+1

∂2
βk. (B10)

These iterative relations can be derived [7] from an
invariance property of two Krylov subspaces concerning
Eqs.(B1) and (B6). The former Krylov subspace is gener-
ated by the iteration of the CG method, that is,

span{b,Ab,A2b, · · ·}. (B11)

By shifting A as A° σ I, the latter Krylov subspace be-
comes,

span{b,(A°σ I)b,(A°σ I)2 b, · · ·}. (B12)

This subspace is the same as that defined in (B11).
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2.  SS method: summary

Γ

Real  z 

Im
ag

. z
 

ε

e0 e1

e2

Solve linear equation.

1) We choose Cauchy’s contour and initial 
wave functions. 

!
!
2) We compute moment by numerical 
integration with shifted COCG method. 

!
!
3) We make Hankel matrices. 
!
!
!
4)  We solve the small-size generalized  
eigen-value problem.    

!

� = ek � "
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3.  Example of the SS method : benchmark test in pf-shell model calculations

−34 −32 −30
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Real z

Im
ag
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As a benchmark test, we take 48Cr with pf shell.!
Yrast states can be easily solved (M-scheme, 2M dim).
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We solve off-yrast states !
with different size of circles

Test for off-yrast states with J=0 

    Although we use M-scheme for large-scale 
shell model calculations, total angular 
momentum can be easily handled if we use the 
wave functions with good total angular 
momentum.

total angular momentum 

Benc
hmar

k tes
t
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3.  Example of the SS method :  large-scale pf-shell calculations

    As a benchmark test, we take 
56Ni with pf shell. Three 0+ 
can be easily solved (M-
scheme, 1 billion dim) by PC.

0 50 100

−205

−200

Lanczos step

En
er

gy
   

[M
eV

]
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03

0 4 8 12
−206

−205

0 10 20
−203
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−200

 step

En
er

gy
   

[M
eV

]

01 02(a) (b)

 step

Convergence pattern of Lanczos  
method for three 0+ states

convergence patterns of Lanczos and SS 
method for two 0+ states

Filled circles  :  Lanczos method 
open circles : SS methodAt every step of COCG calculations, 

we evaluate wave function and then 
we evaluate the energy. 

Large-scale Shell Model codes in the world!
      Strasbourg codes  : 1010 dim for PC cluster !
      MSU codes             : 1010 dim for PC cluster ?!
　  Oslo code                : 1010 dim for super computer!
      IOWA code              : 1010 dim for super computer!
      MSHELL                  : several 109 dim only for PC !
      KSHELL                  : beyond 1010 dim for super computer K
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3.  Example of the SS method :  large-scale pf-shell calculations

Technique for off-yrast states in SS method

0 10 20
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0 20 40
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03(b)

6p6h

8p8h

10p10h16p16h 16p16h 10p10h

8p8h

6p6h

In Lanczos method, off-yrast states needs too much computations because there is!
no good way to use wave function obtained in smaller truncated subspace.

In SS method, wave function obtained in smaller truncated subspace can be used through the!
moment expression.
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3.  Convergence property of Lanczos and SS methods

Lanczos method

initial vector 

SS method

|�0i

Lanczos iteration

Diagonalization by Krylov subspace 

initial vector |�0i

|�0i, H|�0i, H2|�0i, · · ·

Iteration in COCG

|�0i, (z �H)|�0i, (z �H)2|�0i, · · ·

Iteration number depends on z.
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 low level density area : fast convergence 
high level density area : slow convergence

Lower energies are converged faster. 

Higher energies are converged slower.

This is quite natural and ordinary.

This nature is quite important in 
complex-scaling calculations.
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5.  Complex scaling calculations with the SS method: Cluster orbital shell model

Cluster orbital shell model (COSM) 

Taken from Phys. Rev. C85 034338 (2012).

rle�(
r
rn
)2Ylm(r̂)Cluster orbital 

rn: a geometrical progression

|�k(J)i
Cluster orbital basis with angular momentum J 

non-orthogonal basis

| J
✓ i =

X
x

✓
k|�k(J)i

Cluster orbital w. f. with angular momentum J 

scaling angle 
H✓,J

k0,kx
✓
k = "✓kN

J
k0,kx

✓
k

H✓,J
k0,k = h�k0(J)|H✓|�k(J)i

NJ
k0,k = h�k0(J)|�k(J)i

W. f. can be determined by solving 

Hamiltonian and Norm kernel

resonance  
spectroscopy

Complex scaling 
 methodCluster Orbital shell model +
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5.  Complex scaling calculations with the SS method: What is complex scaling 

Complex scaling + Cluster orbital shell model + SS method 

We solve the following eigenvalue problem as

H̃✓,J
k0,kx̃

✓
k = "✓kx̃

✓
k

Hamiltonian matrix in terms of orthogonal basis 
complex and symmetric ( non-hermitian )

We consider orthogonalized basis function. |�̃k(J)i

Complex scaling method

Hamiltonian Taken from Phys. Rev. C85 034338 (2012).

ri ! rie
i✓Complex Scaling 

H ! H✓
Complex Scaled Hamiltonian
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5.  Complex scaling calculations with the SS method: Continuum and resonance states

Eigenvalue distribution as a function of scaling angle by taking 7He for example

Various continuum states are aligned  
along straight lines with      .

continuum states

Resonance states
Resonance states do not move  
against the scaling angle.

Taken from Phys. Rev. C76 054309 (2007)

2✓

Taken from Phys. Rev. C76 054309 (2007)
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5.  Complex scaling calculations with the SS method: Eigenvalue distribution on complex plane
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  [
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200 500 700 2000
3000

resonance state

Eigenvalue distribution of 8C by direct diagonalization

by Zgeev in the LAPACK 

dimension : 22582 
scaling angle : 20o

In the SS method, we solve the following linear  
equation by the COCG method.

because the number of needed iteration (dim. of Krylov subspace) depends 
on the eigenvalue distribution according to the shell model study.

eigenvalue distribution = continuum energy region + its boundary

continuum energy region

general and gross structure of eigenvalue distribution for complex scaling calculation

high density : difficult to solve low density : easy to solveSS method:
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5.  Complex scaling calculations with the SS method: isolation and search of resonance pole

resonance pole

resonance pole

Resonance pole can be isolated by taking relevant scaling angle.

Level density around resonance pole becomes very low. 
Therefore, it is quite easy to solve resonance state by SS method.

We can search resonance pole with less numerical effort by shift algorithm. 

By moving Cauchy’s contour, we can search 
resonance pole. 
With shifted COCG, many contour integrals 
can be carried out by a COCG calculation at 
single position z.

resonance pole

z
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5.  Complex scaling calculations with the SS method: verification of resonance pole

SS method can easily solve eigenvalue and eigenstate of low level density.

SS method can not guarantee whether obtained 
state is resonance or not, even although its 
possibility is large.

Direct diagonalization gives no information!
Resonance or not ̶> Move it as a function of scaling angle

resonance state

scaling angle

continuum state

scaling angle

A variation of wave function is expected not to be 
so large if we change the scaling angle slightly.

Setting a wave function in the 
moment by that calculated at a 
certain nearby scaling angle, 
convergence is expected to 
become fast.

In a direct diagonalization method, all the energies should be!
calculated from scratch at each scaling angle.
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5.  Complex scaling calculations with the SS method: numerical test
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In this example,  dimension is 203545 with single PC.!
This huge complex-scaled COSM calculation has 
never been carried out before!

1) First we solve this problem at the scaling angle 21◦ and obtain several candidates for the resonance state.!
2) Next we solve the eigenvalue problem at 18◦, starting from these candidate wave functions at 21◦. !
3) We repeat this procedure up to 3◦. !
As the scaling angle decreases, energies labelled by B, C, D and E continuously move as an arc, which 
shows that these states are continuum ones. On the other hand, energies labelled by A do not substantially 
move, which shows that they stand for resonance states.

Numerical test in the case of 8C

We can easily obtain candidates of 
resonance energy and can verify whether 
these candidates are resonance or not.

Comp
utatio

nal 

Chall
enge

s

By this approach, we could remove 
obstacle of the current limitation in 
complex scaling calculation. 

!
̶> study of many-body resonances

Breakthrough!
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6.  Summary, Perspective and Collaborators

Summary
1) We have successfully applied the SS method to nuclear shell model calculations. 
1-1) The SS method is useful as the same as the Lanczos method for large-scale shell model calculations. 
1-2) The SS method can utilize the truncation scheme well especially for off-yrast states. 
1-3) The SS method plays a unique role for isospin-symmetry-breaking problem (though I skipped this 
issue.) 
2) We also have successfully applied the SS method to obtain many-body resonance calculations with 
complex scaling calculations. 
2-1) The SS method plays a unique role for large-scale many-body resonance calculations. 
2-2) We can obtain candidates of resonance states effectively thank to eigenvalue distribution 
       on the complex plane. 
2-3) We can find resonance states among their candidates effectively thank to the moment expression.

Perspective

1) The SS method plays a unique role especially for large-scale complex-scaling calculation. 
2) Many-body resonance calculations become possible by complex-scaled COSM with the SS method.

Collaborators

SS method for shell model calculations:         K. Kaneko, M. Honma, T. Sakurai 
SS method for complex scaling calculations:  T. Myo, K. Kato


