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1 Introduction: basic issue

New diagonalization method on two kinds of nuclear structure calculations

For shell model calculations, we solve
energy of low-lying states. Eigen-

energies are real.
bound state

1dim.

@ o—00-0- 0000000080

Imag z
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low lying states

Real z

Hamiltonian matrix is real symmetric.

Lanczos iteration
initial vector |¢0>

b0), H|po), H|¢o), - -

Diagonalization by Krylov subspace
Lanczos method is useful for low-
lying states for large-scale shell
model calculations.

For complex-scaling calculations, we solve
resonance states. Eigen-energies are complex.
weakly bound
and unbound
state

Imaginary part

Real part

Hamiltonian matrix is complex symmetric, but is
not Hermitian.
no good method for large-scale calculations

obstacle for many-body resonance study

New diagonalization

method!

SS method
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. Introduction: outcome of my talk

large-scale shell model calculations

SS method has almost the same
performance as Lanczos method for
large-scale shell-model calculations.

SS method is superior in the
calculations with isospin symmetry
breaking.

Imaginary part

large-scale complex scaling calculations

There i1s no good diagonalization
method.

SS method becomes a unique
diagonalization method.

We found, the SS method can
easily solve especially resonance
statesl!!

Up to now, max 50,000 with super computer

l

Hereafter, 200,000 and more with single PC!!

Breakthorugh !l
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2. SS method: eigenvalues from moments

SS method = Sakurai - Sugiura method

1. Sakurai and H. Sugiura, J. Comput. Appl. Math. 159, 119 (2003).

We define the following moments as
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Formally moments can be rewritten.
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Cauchy’s integral contour
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target eigenvalue

( - )
— er — &) erd. .
Hp Z( 5 ) AL Center of Cauchy’s integral contour
By expanding the complete sets,
we can rewrite the moment above.
We would like to extract ex!
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2. SS method: eigenvalues from the Hankel Matrix

For simplicity, let us consider the 2x2 case with ax = €x — € and b, = cpdg

N — < Ho, H1 ) )
1, e Py = E (er. — €)Perdy

_ b1 + b2, a1b1 + asbs kel
N a1by + azba, aiby + a3bs
B (1, 1)((71,0)(1, a1> ap = € — ¢
B ap, a 07 b2 1) a bk — dek
V D vt
M = ( M1, M2 )
H2, U3

factorization of Hankel matrix

B aiby + asbe, aiby + a3bs
Cb%bl -+ a%bg, ai’bl -+ a%bg

= () (o) (5 0 o)
1% D A v

Therefore,

M — AN =VD(A - XV
Then, A = @y, is aneigenvalue of M1 = ANx

This relation holds for any dimension then by diagonalizing M x = AN x
we can obtain energy eigenvalues.
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2. SS method: Hankel matrix

To extract ek, we solve the following small-scale generalized
eigenvalue problem with the Hankel matrices.

[moments j Mp_i (1|

(2 —€)P

|¢)dz,

/

2w z—H

I
GYTY P ( po, M1, 0 Hp-—1 \ m
M2, M3, Hn+1 M1, H2y - M ™ e
M= . N = . . . S 0 P
- - - N e,
\ Hns HUn+1, Hon—1 \ Mn—15 Hn, T Han—2 / Real z
Mz = ANz A=ep—¢
4 ] )
basic strategy small-scale generalized
eigenvalue problem
moments < target eigenvalues
\. J
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2. SS method: how to evaluate the moments and COCG method

In respective problems, we have to evaluate the moments by the numerical
Integrations as

The numerical integration along Cauchy’s
contour is carried out by discretization.

No: number of mesh points

‘ Solve linear equation.
No—1 p+1

) ~ 1 Z (zk—_e)H ‘/4
= CT > . {\,

Zk—€—|—’l"€ No

Imag. z

5 (k+3)

Denominator needs to solve linear equations.

6) = (2= H)|x) 1
— (Y| ——19) = (V)

This linear equations can be solved by the COCG(Complex Orthogonal Conjugate
Gradient) method, which is an iteration method with Krylov subspace as will be
explained in the next slide.
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2. SS method: Krylov subspace and shifted COCG method

How to solve linear equation Ar = b Complex Orthogonal Conjugate

where A is complex and symmetric. > Gradient (COCG) method
For Lk, Tk, Pk vectors, COCG method
g e ) —1 —0 —0 d _ H.A. van der Vorst and J. B.
Inltlal COndlthnS. &0 ’ [30 ’ XQ : -an . ’fO - M. Melissen, IEEE Trans.
: Magn.2 1990).
lteration : Xpp1 = X + Oy P agn.26, 706 (1990)
where . .
Frae1 = Fy — QA pg OCk:I"kl"k/pkApk
Pi1 = kw1 + PP Pr = ”1{+1”k+1/”/{”k

lteration generates the Krylov subspace span{b,Ab,A%b,---}

Shifted linear equations . (A— ol)x° =b,

shift algorithms

R. Takayama, T. Hoshi, T.

without matrix-vector calculations,

1 o o PBr-1, o . Sogabe, S.-LL. Zhang, and T.
”l? = —T%. Ty = (1+oo)m + 1 (% =), Fujiwara, Phys. Rev. B 73,
w 20 165108 (2006).
o = cf Ol
i1
g 2
. _ o
It Is easy to solve it ! B = (n,gﬂ) B

span{b,(A— ol)b, (A—Gl)zb,---}. is the same as Span{b,Ab,A2b,--~}
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2. SS method: summary

Imag. z

1) We choose Cauchy’s contour and initial
wave functions.

2) We compute moment by numerical
integration with shifted COCG method.

3) We make Hankel matrices.

4) We solve the small-size generalized
eigen-value problem.

Solve linear equation.
r A/4 l
€ €, Real z
—4§ ¢

y
€o €4

| — zr — H
M1, M2, T Hn Mo, M1,
M= /L:2, M3, /Ln:—i—l N — M.l, K2,
N;”m Hn+1, - MQr;—l /an.—la Hn s
Mx = ANx
A= EL — &

Hn—1
Hn

Hon—2
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3. Example of the SS method : benchmark test in pf-shell model calculations

As a benchmark test, we take 48Cr with pf shell.
Yrast states can be easily solved (M-scheme, 2M dim).

Test for off-yrast states with J=0

We solve off-yrast states

1 . 1 . 1 . 1 . ] .
-34 -32 -30

with different size of circles
Real z (MeV)
(a)
1 (z — €)P Sl | s | -
Z —_ 6 [ o o o o o
50 [ o R
= 5— | (] 9)dz, fote ¥n e oed e
P omi Jr — H S
_1_' N | ]
(b) -32 -28
2- I I I
total angular momentum w | . ]
Although we use M-scheme for large-scale éb OF . = .= « o &« oo
shell model calculations, total angular | ]
momentum can be easily handled if we use the | D D D D o
wave functions with good total angular -2r Tee e’ L S e
momentum. 37 o8 T o4

Real z (MeV)
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3. Example of the SS method : large-scale pf-shell calculations

Energy [MeV]

As a benchmark test, we take
56Ni with pf shell. Three 0+
can be easily solved (M-
scheme, 1 billion dim) by PC.

Convergence pattern of Lanczos
method for three O+ states

T T . T T T T T T T T T

-200

-205¢

0 50 100
Lanczos step

Large-scale Shell Model codes in the world

Strasbourg codes
MSU codes

Oslo code

IOWA code

MSHELL

KSHELL

Energy [MeV]

At every step of COCG calculations,
we evaluate wave function and then
we evaluate the energy.

: 1019 dim for PC cluster

: 1010 dim for PC cluster ?

: 1010 dim for super computer
: 1010 dim for super computer

: several 10°dim only for PC

: beyond 1010 dim for super computer K

convergence patterns of Lanczos and SS
method for two Ot states
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[ (a) 01 ] _ (b). 02
| =201 © o -
L O i
_© e O
®oe —202F ©_ **esevessssese
ClCICICICIOICICIO R 0O YOO 00000000
@)
L | ®)
_206 1 1 1 1 1 1 1 _203 Y N NN TN TN NN NN (NN N N TR B
O 4 8 12 0 10 20

step
Filled circles

step

: Lanczos method

open circles : SS method
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3. Example of the SS method : large-scale pf-shell calculations

Technique for off-yrast states in SS method

_200 I I I I I I I I I _198 L L | UL L L L
(@) 0, | - (b) 03
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0 10 20 0 20 40
step step

In Lanczos method, off-yrast states needs too much computations because there is
no good way to use wave function obtained in smaller truncated subspace.

In SS method, wave function obtained in smaller truncated subspace can be used through the
moment expression.

1 (z —€)P

Hp = 5= (Y|

— d
211 Jp z— H $)dz,
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. Convergence property of Lanczos and SS methods

Lanczos method

initial vector | )
Lanczos iteration

b0), H|bo), H?|po), - - -

Diagonalization by Krylov subspace

l

Lower energies are converged faster.

Higher energies are converged slower.

This is quite natural and ordinary.

SS method
Initial vector \¢0>

lteration in COCG
‘X0>7 (Z _ H)‘X0>7 (Z _ H)z‘XO>7 T

lteration number depends on z.

30 60
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Imag. 7
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-32 28 —24
Real 7 (MeV)

low level density area : fast convergence
high level density area : slow convergence

This nature is quite important in
complex-scaling calculations.

S
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5. Complex scaling calculations with the SS method: Cluster orbital shell model

Complex scaling resonance

Cluster Orbital shell model + _
" method il spectroscopy

Cluster orbital shell model (CQ§M)

(=Y "
Cluster orbital 7 € TT Ylm(r) $ QV’

rn: @ geometrical progression
Cluster orbital basis with angular momentum J

‘ ¢k (J) > non-orthogonal basis

Hamiltonian and Norm kernel ‘He+3p ‘He+4p
k’ k — <¢k?/( )|H9|¢k7('])> ‘He+ N, p system
Taken from Phys. Rev. C85 034338 (2012).
Nk’,k — <¢k’(J)’¢k(J)>
W. f. can be determined by solving Cluster orbital w. f. with angular momentum J
Hea‘] 6 N 0 |\Ij6 Z l%¢k
K kT = EpiVi 1Tk K

scaling angle
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5. Complex scaling calculations with the SS method: What is complex scaling

Complex scaling + Cluster orbital shell model + SS method

We consider orthogonalized basis function.

Bk (J))

We solve the following eigenvalue problem as
J ~0 6 ~06

0
Hk’ kxk = E,,T},

K\ Hamiltonian matrix in terms of orthogonal basis
complex and symmetric ( non-hermitian )

Complex scaling method

Hamiltonian
N,+1
H =
1=1

Complex Scaling r; — T;€

—

Complex Scaled Hamiltonian

H — HY

10

Taken from Phys. Rev. C85 034338 (2012).

where £; and T are the kinetic energies of each particle
(p and *He) and of the center of mass of the total system,
respectively. The operator p; is the relative momentum
between p and *He. The reduced mass p is 4m/5 using a
nucleon mass m. The ‘He-p interaction V°? is given by
the microscopic KKNN potential [27, 34] for the nuclear
part, in which the tensor correlation of “*He is renormal-
ized on the basis of the resonating group method in the
4‘He+N scattering. For the Coulomb part, we use the
folded Coulomb potential using the density of *He having
the (0s)* configuration. We use the Minnesota potential
[35] as the nuclear part of VPP in addition to the Coulomb
interaction. These interactions reproduce the low-energy
scattering of the *He-N and the N-N systems, respec-
tively.
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5. Complex scaling calculations with the SS method: Continuum and resonance states

Eigenvalue distribution as a function of scaling angle by taking “He for example

4
Hem{'n‘m 5He(3/2 )+n+n

- |3/21

Im(Energy) [MeV]
N
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|
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FIG. 3:

with the cut lines.

0

1

2

3 4

Re(Energy) [MeV]

(Color online) Energy eigenvalues for the “He reso-
nances (solid circles) in the complex energy plane. The con-
tinuum states rotated down by 260 are schematically displayed

Taken from Phys. Rev. C76 054309 (2007)

continuum states

Various continuum states are alighed
along straight lines with 20.

Resonance states

O T—

Resonance states do not move
against the scaling angle.

CSM, we obtain all the energy eigenvalues E of bound
and unbound states on a complex energy plane, governed
by the ABC- theorem|2 . In this theorem, it is proved
that the boundary condition of the Gamow resonances
is transformed to the damping behavior at the asymp-
totic region. This condition enables us to use the same
theoretical method to obtain the many-body resonances
as that for the bound states. For a finite value of @, the
Riemann branch cuts are rotated down by 26, and con-
tinuum states such as of the “He+n *He+2n and ‘He+3n
channels are obtained on these cuts with the 20 depen-
the contrary, bound states and
of
" Hence they are located separately from the many-
B’édy continuum spectra on the complex energy plane,|
Taken from Phys. Rev. C76 054309 (2007)

dence Seég | 3) ‘

esnances are discrete and obtained 1ndeendentl
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5. Complex scaling calculations with the SS method: Eigenvalue distribution on complex plane

Eigenvalue distribution of 8C by direct diagonalization

_ a— by Zgeev in the LAPACK
oF %;:7[\\ dimension : 22582
= 5 [{ SN scaling angle : 20°
= S
o In the SS method, we solve the following linear
£ equation by the COCG method.

¢) = (2 — H)|x)

200"

Realz [MeV]

general and gross structure of eigenvalue distribution for complex scaling calculation

eigenvalue distribution = continuum energy region + its boundary

f f

SS method: high density : difficult to solve low density : easy to solve

because the number of needed iteration (dim. of Krylov subspace) depends
on the eigenvalue distribution according to the shell model study.
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5. Complex scaling calculations with the SS method: isolation and search of resonance pole

Resonance pole can be isolated by taking relevant scaling angle.

—— Level density around resonance pole becomes very low.
Therefore, it is quite easy to solve resonance state by SS method.

®  resonance pole \
@

resonance pole

We can search resonance pole with less nhumerical effort by shift algorithm.

N N\
By moving Cauchy’s contour, we can search nce pole
resonance pole.
With shifted COCG, many contour integrals >

can be carried out by a COCG calculation at
single position z.
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5. Complex scaling calculations with the SS method: verification of resonance pole

SS method can easily solve eigenvalue and eigenstate of low level density.

SS method can not guarantee whether obtained

state is resonance or not, even although its
possibility is large.

Direct diagonalization gives no information!

Resonance or not —> Move it as a function of scaling angle

1 (2’ — 6) A variation of wave function is expected not to be

Hp = 27m - <¢| |¢> so large if we change the scaling angle slightly.
resonance state continuum state

Setting a wave function in the @ :
moment by that calculated at a A/ .:/
certain nearby scaling angle,
convergence is expected to scaling angle scaling angle
become fast.

In a direct diagonalization method, all the energies should be
calculated from scratch at each scaling angle.
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5. Complex scaling calculations with the SS method: numerical test

Numerical test in the case of 8C

 T— —

1) First we solve this problem at the scaling angle 21° and obtain several candidates for the resonance state.
2) Next we solve the eigenvalue problem at 18°, starting from these candidate wave functions at 21°.

3) We repeat this procedure up to 3°.

As the scaling angle decreases, energies labelled by B, C, D and E continuously move as an arc, which

shows that these states are continuum ones. On the other hand, energies labelled by A do not substantially
move, which shows that they stand for resonance states.

0 | I I m | 3 | | | $
| resonance /A . *3 .3 .
I VI | We can easily obtain candidates of
21 f ' ' resonance energy and can verify whether

> S [ " these candidates are resonance or not.
2 21 . .
s -2 C |
— o1 / In this example, dimension is 203545 with single PC.

D - This huge complex-scaled COSM calculation has

- . never been carried out before! ‘
- | Breakthrough:

By this approach, we could remove
obstacle of the current limitation in
complex scaling calculation.

Imag. z
i

Realz [MeV]

—> study of many-body resonances
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6. Summary, Perspective and Collaborators

SummaQ/

1) We have successfully applied the SS method to nuclear shell model calculations.

1-1) The SS method is useful as the same as the Lanczos method for large-scale shell model calculations.
1-2) The SS method can utilize the truncation scheme well especially for off-yrast states.

1-3) The SS method plays a unique role for isospin-symmetry-breaking problem (though | skipped this

Issue.)
2) We also have successfully applied the SS method to obtain many-body resonance calculations with

complex scaling calculations.
2-1) The SS method plays a unique role for large-scale many-body resonance calculations.

2-2) We can obtain candidates of resonance states effectively thank to eigenvalue distribution

on the complex plane.
2-3) We can find resonance states among their candidates effectively thank to the moment expression.

Perspective

1) The SS method plays a unique role especially for large-scale complex-scaling calculation.
2) Many-body resonance calculations become possible by complex-scaled COSM with the SS method.

CollaboratoLs

SS method for shell model calculations: K. Kaneko, M. Honma, T. Sakurai
SS method for complex scaling calculations: T. Myo, K. Kato
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