Clustering and response functions of light nuclei in explicitly correlated Gaussians (ECG)

Y. Suzuki (Niigata, Riken)

Motivation: Unified description of nuclear states with different character e.g. particle-hole excitation, spatially localized clustering
Solving problems relevant to continuum e.g. resonance, response functions

We show our recent works for light nuclei performed in few-body approach:
Spectrum of 4He, E1 and spin-dipole responses of 4He
(4-body calculation with realistic force)
E1 response of a halo nucleus 6He
(6-body calculation with effective central force)
Coexistence of shell-model and clustering states in 16O
(12C+n+n+p+p 5-body calculation)

ECG describes correlations and asymptotics properly
Complex scaling method (CSM) converts continuum problems to those of L^2 basis

Nordita workshop ‘Computational challenges in nuclear and many-body physics’
Sept. 15 – Oct. 10, 2014 Stockholm
ECG basis

Spherical Gaussian: \[
\exp \left(-\sum_{i<j} \frac{1}{2b^2_{ij}}(r_i - r_j)^2 \right) \rightarrow \exp \left(-\frac{1}{2} \tilde{x} A \tilde{x} \right)
\]

\[\tilde{x} A \tilde{x} = \sum_{i,j} A_{ij} x_i \cdot x_j \quad A_{ij} = A_{ji}\]

N-particle system: \(N-1\) relative coordinates \(\tilde{x} = (x_1, x_2, \ldots, x_{N-1})\)

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{N-1}
\end{pmatrix}
\]

Non-spherical motion: Global vector \(\tilde{u} \tilde{x} = u_1 x_1 + u_2 x_2 + \ldots + u_{N-1} x_{N-1}\)

(angular part)

\([\mathcal{Y}_L_1(\tilde{u} \tilde{x}) \times \mathcal{Y}_L_2(\tilde{u} \tilde{x})]_{LM}\)

\(\mathcal{Y}_\ell(r) = r^\ell Y_\ell(\hat{r})\)

General form:

\[
\Phi_\alpha = \mathcal{A} \left\{ \exp \left(-\frac{1}{2} \tilde{x} A \tilde{x} \right) \left[\left[\mathcal{Y}_{L_1}(\tilde{u} \tilde{x}) \times \mathcal{Y}_{L_2}(\tilde{u} \tilde{x}) \right]_{L} \times \chi^{(\text{Spin})}_{S_1 S_2 S_3 \ldots S} \right]_{J M} \eta^{(\text{Isospin})}_{T_1 T_2 T_3 \ldots T_M} \right\}
\]

Variational parameters: Continuous \(A, u, v\) Discrete \(L_1, L_2, L, S, \ldots\)

\(\pi = +: L=\text{even} (L_1=L, L_2=0), \quad L=\text{odd} (L_1=L, L_2=1)\)

Trial function \[
\Psi = \sum_{\alpha} C_\alpha \Phi_\alpha
\]

\[
H = \sum_{i=1}^{N} T_i - T_{\text{c.m.}} + \sum_{i<j} v_{ij} + \sum_{i<j<k} v_{ijk}
\]
Main features

- Fully microscopic
- No spurious c.m. motion
- Adaptable to arbitrary N-particle system
- Analytic evaluation of matrix elements

Invariance under a linear coordinate transformation

\[y = T x \]

\[\exp(-\tilde{y} B y) \mathcal{V}_{LM}(\tilde{y} y) = \exp(-\tilde{x} A x) \mathcal{V}_{LM}(\tilde{u} x) \]

\[A = \tilde{T} B T, \quad u = \tilde{T} v \]

ECG is flexible in describing various correlations and asymptotics in a single scheme

Recent applications of ECG: J. Mitroy et al., RMP 85 (2013)

Basis selection

Stochastic variational method (SVM)

Four-nucleon system: 4He

Simultaneous description of both 0_1^+ and 0_2^+ states that have quite different structure

AV8’ + 3NF
Central, Tensor, LS
Strong short-range repulsion

Energy convergence

The first 1000 bases: $(0 < b_{ij} < 16 \text{ fm})$
Beyond 1000: 3N+N type bases

One-body density

3H+p spectroscopic amplitude

Kamada et al., PRC64 (2001)
Spectrum of ^4He

Realistic force well reproduces spectrum
Level sequence: $T=0$: $0^-, 2^-, 1^-$
$T=1$: $2^-, 1^-, 0^-, 1^-$

Three lowest negative-parity states have $3N+N$ cluster structure with P-wave relative motion:
Parity-inverted partner of the 0^+_2 state

Most of the negative parity states are broad resonances

Distribution of HO quanta Q

1p-1h is largest for 0^- and 2^-
Large P_Q for high Q
Response (strength) function

\[S(E) = \mathcal{S}_{\mu_f} |\langle \Psi_f | \mathcal{M}_{1\mu} | \Psi_0 \rangle|^2 \delta(E_f - E_0 - E) \]

\[= -\frac{1}{\pi} \text{Im} \sum_{\mu} \langle \Psi_0 | \mathcal{M}_{1\mu}^\dagger | \mathcal{M}_{1\mu} | \Psi_0 \rangle \frac{1}{E - H + E_0 + i\epsilon} \]

Continuum discretization with CSM

\[U(\theta) : \quad r_j \rightarrow r_j e^{i\theta}, \quad p_j \rightarrow p_j e^{-i\theta} \]

\[e^{ik \cdot r} \rightarrow e^{ik \cdot r} (i \cos \theta - \sin \theta) \quad \text{damp at large } r \]

Eigenvalue problem of complex-scaled Hamiltonian \[H(\theta) = U(\theta) H U^{-1}(\theta) \]

\[H(\theta) \Psi_{\lambda}^{JM\pi}(\theta) = E_\lambda(\theta) \Psi_{\lambda}^{JM\pi}(\theta) \quad \text{can be solved with } L^2 \text{ basis within suitable } \theta \]

\[\Psi_{\lambda}^{JM\pi}(\theta) = \sum_i C_i^\lambda(\theta) \Phi_i(x) \]

\[S(E) = -\frac{1}{\pi} \text{Im} \sum_{\mu} \langle \Psi_0 | \mathcal{M}_{1\mu}^\dagger U^{-1}(\theta) R(\theta) U(\theta) \mathcal{M}_{1\mu} | \Psi_0 \rangle \]

\[= -\frac{1}{\pi} \sum_{\mu} \text{Im} \frac{\tilde{D}_{\mu}(\theta) D_{\mu}(\theta)}{E - E_\lambda(\theta) + i\epsilon} \]

\[D_{\mu}(\theta) = \langle (\Psi_{\lambda}^{JM\pi}(\theta))^* | \mathcal{M}_{1\mu}(\theta) | U(\theta) \Psi_0 \rangle \]
The contribution of eigenstate λ to $S(E)$
\[E_\lambda(\theta) = E_c - \frac{i}{2} \Gamma_c \]
\[
\frac{1}{\pi} \frac{1}{(E - E_c)^2 + \frac{1}{4} \Gamma_c^2} \sum_\mu \left[\frac{1}{2} \Gamma_c \text{Re} \tilde{\mathcal{D}}^{\lambda}_{\mu}(\theta) \mathcal{D}^{\lambda}_{\mu}(\theta) - (E - E_c) \text{Im} \tilde{\mathcal{D}}^{\lambda}_{\mu}(\theta) \mathcal{D}^{\lambda}_{\mu}(\theta) \right]
\]
Lorentz distribution

θ dependence of $H(\theta)$

kinetic energy
\[T \rightarrow T e^{-2i\theta} \]

potential energy
- exponential
 \[e^{-r/\mu} \rightarrow e^{-r(\cos \theta + i \sin \theta)/\mu} \quad \mu \rightarrow \mu/\cos \theta \]
- Gaussian
 \[e^{-r^2/\mu^2} \rightarrow e^{-r^2(\cos 2\theta + i \sin 2\theta)/\mu^2} \quad \mu \rightarrow \mu/\sqrt{\cos 2\theta} \]

$0 < \theta < 45^\circ$

Continuum energy scales as $k^2 e^{-2i\theta}$

Bound states and resonances should be stable against θ

Useful check

Two-body photoabsorption cross section and radiative capture cross section
\[\gamma + C \leftrightarrow A + B \]

Detailed balance
\[\sigma_\gamma^{AB}(E_\gamma) = \frac{k^2(2J_A + 1)(2J_B + 1)}{2k_\gamma^2(2J_0 + 1)} \sigma_{\text{cap}}^{AB}(E_{\text{in}}) \quad E_{\text{in}} = E_\gamma - E_{\text{th}} \]

σ_{cap}^{AB} can be calculated in a standard reaction theory: serve as a test of CSM
Photoabsorption of 4He

$$\sigma_\gamma(E_\gamma) = \frac{4\pi^2}{\hbar c} E_\gamma \left(\frac{1}{3}S(E_\gamma)\right)$$

Physics motivation:
Experimental discrepancy in low-energy σ_γ E1 sum rule

Basis functions for E1 excitation:
sum rule, 2- and 3-body decay channels
(cluster model)

$$\Psi_{f}^{\text{sp}} = A\left[\Phi_{0}^{(4)}(i)\chi_{1}(r_{1} - x_{4})\right]_{1M}$$
Important for sum rule

$$\Psi_{f}^{3\text{N}+\text{N}} = A\left[\Phi_{J_{3}}^{(3)}(i) \exp\left(-a_{3}x_{3}^{2}\right)\chi_{1}(x_{3})\chi_{2}^{(4)}\right]_{1M}$$

$$\Psi_{f}^{d+p+n} = A\left[\Phi_{J_{3}}^{(dN)}(i) \exp\left(-a_{3}x_{3}^{2}\right)\chi_{0}(x_{3})\chi_{2}^{(4)}\right]_{1M}$$

$$\Phi_{J_{3}}^{(dN)}(i) = \left[\Psi_{J_{2}}^{(2)}(i) \exp\left(-a_{2}x_{2}^{2}\right)\chi_{1}(x_{2})\chi_{2}^{(3)}\right]_{J_{3}}$$

coordinates acted by E1 operator

AV8’ + 3NF
Comparison with experiment

θ dependence

Check of CSM

(Microscopic R-matrix calculation)
Sum rule

\[m_k(E_{\text{max}}) = \int_0^{E_{\text{max}}} E_\gamma \sigma_\gamma(E_\gamma) \, dE_\gamma \]

NEWSR \[m_{-1}(\infty) = G \left(Z^2 \langle r_p^2 \rangle - \frac{Z(Z-1)}{2} \langle r_{pp}^2 \rangle \right) \]

EWSR \[m_0(\infty) = G \frac{3N Z \hbar^2}{2Am_N}(1 + K) \]

Enhancement factor \[K = \sum_q K_q \quad V_{2\text{NF}} = \sum_q V_q \]

\[K_q = \frac{2Am_N}{3NZ\hbar^2 e^2} \frac{1}{2} \sum_\mu \langle \Psi_0 | [\mathcal{M}_{1\mu}^\dagger, [V_q, \mathcal{M}_{1\mu}]] | \Psi_0 \rangle \]

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\langle V_q \rangle)</th>
<th>(K_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.39</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(\sigma_i \cdot \sigma_j)</td>
<td>-9.59</td>
</tr>
<tr>
<td>3</td>
<td>(\tau_i \cdot \tau_j)</td>
<td>-5.22</td>
</tr>
<tr>
<td>4</td>
<td>(\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j)</td>
<td>-59.42</td>
</tr>
<tr>
<td>(\tau_i \cdot \tau_j)</td>
<td>(-12.51)</td>
<td>(0.187)</td>
</tr>
<tr>
<td>5</td>
<td>(S_{ij})</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>(S_{ij} \tau_i \cdot \tau_j)</td>
<td>-70.93</td>
</tr>
<tr>
<td>((L \cdot S)_{ij})</td>
<td>(-68.65)</td>
<td>(0.667)</td>
</tr>
<tr>
<td>7</td>
<td>((L \cdot S)_{ij} \tau_i \cdot \tau_j)</td>
<td>-15.93</td>
</tr>
<tr>
<td>Total</td>
<td>-131.9</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Major contribution by one-pion exc. force
Spin-dipole excitations of 4He

SD operator

$$\sum_{i=1}^{N} [\rho_i \times \sigma_i]_{\lambda\mu} T_i^p$$

$$\rho_i = r_i - x_N$$

$$T_i^p = \begin{cases}
1 & \text{Isoscalar (IS)} \\
t_z(i) & \text{Isovector (IV0)} \\
t_{\pm}(i) & \text{Charge-exc. (IV\pm)} \quad (^4\text{H}, ^4\text{Li})
\end{cases}$$

$\lambda=0,1,2$ (multipolarity)

Good correspondence between the peak energy and the resonance energy

SD resonance is narrower than E1 resonance
Resonance parameters

<table>
<thead>
<tr>
<th>$J^\pi T$</th>
<th>E_R</th>
<th>Exp.</th>
<th>Γ</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(\theta)$</td>
<td>$S(E)$</td>
<td></td>
<td>$E(\theta)$</td>
<td>$S(E)$</td>
</tr>
<tr>
<td>0$^-$0</td>
<td>20.42</td>
<td>20.54</td>
<td>21.01</td>
<td>0.96</td>
</tr>
<tr>
<td>2$^-$0</td>
<td>21.67</td>
<td>22.03</td>
<td>21.84</td>
<td>2.12</td>
</tr>
<tr>
<td>2$^-$1</td>
<td>23.63</td>
<td>23.11</td>
<td>23.33</td>
<td>4.99</td>
</tr>
<tr>
<td>1$^-_1$</td>
<td>23.86</td>
<td>23.34</td>
<td>23.64</td>
<td>5.31</td>
</tr>
<tr>
<td>1$^-_0$</td>
<td>24.32</td>
<td>24.44</td>
<td>24.25</td>
<td>5.40</td>
</tr>
<tr>
<td>0$^-_1$</td>
<td>25.67</td>
<td>24.71</td>
<td>25.28</td>
<td>7.60</td>
</tr>
<tr>
<td>1$^-_2$</td>
<td>25.36</td>
<td>25.95</td>
<td></td>
<td>13.24</td>
</tr>
</tbody>
</table>

$E(\theta)$: Stable eigenvalues of $H(\theta)$

$S(E)$: Peaks of strength function

B.A.: Bound-state approximation

Almost no data that can be compared to theoretical SD strength functions

Charge-exc. reaction $^4\text{He}({^7}\text{Li}, {^7}\text{Be}\gamma)$

Spin-nonflip parts \rightarrow E1

Spin-flip parts \rightarrow SD

Nakayama et al., PRC76 (2007)
Electric dipole excitations of halo nuclei

^6He

$\alpha+n+n$ three-body model is fairly good

E1 response of ^6He has so far been studied within the three-body model

E1 strength is calculated in 6-body model that makes it possible to treat **both low- and high-lying strengths**

Minnesota potential fitted to S_{2n} is used ($u=1.05$)

^6He ground state in six-body model
good convergence in a small dimension

Comparison of B(E1) for ^4He

Minnesota

AV8'}
Calculation is continuum discretization taking into account 3-body decay channels of $\alpha+n+n$ and $t+d+n$. Basis dimension used for $J^{\pi}=1^{-}$ ($T=1, 2, 3$) continuum is about 14,000.
Smearing with Lorenzians

\[
\frac{dB(E1,E)}{dE} = \sum_{\nu} N(E_\nu, \Gamma)L(E, E_\nu, \Gamma)B(E1, \nu)
\]

\[L(E, E_\nu, \Gamma) = \frac{\Gamma}{2\pi} \frac{1}{(E - E_\nu)^2 + (\Gamma/2)^2}\]

SDM vs GDR

\[\Gamma = 0.75 - 2.0\,\text{MeV}\]

Aumann et al., PRC59 (1999)

\[u = 1.05\] reproducing \(S_{2n}\) leads to the enhancement of low-lying strength (SDM)

Larger \(u\) leads to stronger binding of neutrons:

SDM shrinks but GDR survives

A few peaks exists between SDM and GDR

SDM peak is much larger than GDR peak

Proton-proton rms distance of the discretized continuum states

\[\tau_{pp}/\tau_{\text{pp}}(\text{He})\]

Sudden rise at about 25 MeV
Proton and neutron transition densities

$$\rho_{p/n}^{\text{tr}}(E_v, r) = \langle \Psi_1(E_v) \| \sum_{i \in p/n} \mathcal{V}_1(r_i - x_6) \delta(|r_i - x_6| - r) \| \Psi_0 \rangle$$

Below 25 MeV:
In-phase oscillation inside the 4He core
Out-of-phase oscillation near the surface
Growing oscillations of halo neutrons with E

Completely out-of-phase at GDR
E1 NEWSR

\[\sum_{\nu} B(E1, \nu) = e^2 \left(Z^2 \langle r_p^2 \rangle - \frac{Z(Z-1)}{2} \langle r_{ppl}^2 \rangle \right) \quad 7.21 \, e^2 \text{ fm}^2 \]

Full model accounts for 99.9% of NEWSR

Cluster sum rule (CSR) \hspace{1cm} \text{Alhassid, Gai, Bertsch, PRL 49 (1982)}

\[B(E1; NEWCSR) = e^2 \left(\frac{2Z}{A} \right)^2 \langle R^2 \rangle \quad 5.44 \, e^2 \text{ fm}^2 \]

(75% of NWESR)

Maximum excitation energy that exhausts CSR

\[\sum_{\nu=1}^{\nu_{\text{max}}} B(E1, \nu) \quad E_{\nu_{\text{max}}} = 26.8 \text{ MeV} \]

SDM and GDR are well separated
E1 strength below 25 MeV is understood with α+n+n 3-body structure
SDM consists of T=1 states while GDR of T=2 states
Neutron-dripline nucleus
Borromean as $^{20}\text{C}+\text{n}+\text{n}$ system (S-wave 2n halo)
Very large matter radius from reaction cross section; 5.4 ± 0.9 fm
Tanaka et al., PRL104 (2010)

Very small but poorly known S_{2n}: -0.14 ± 0.46 MeV
Gaudefroy et al., PRL109 (2012)

The aim is to study both the ground state properties and low-lying E1 strength without assuming the ^{20}C core
Mean-field approach with Skyrme energy density functionals
Random-phase approximation

Difficult to reproduce 3-body structure
SIII central part is weakened to reproduce the dripline features

$f_0=0.884$: $\varepsilon_F=-0.5$ MeV
rms matter radius=3.89 fm
rms radius of $2s_{1/2}$ orbit=7.20 fm
$2s_{1/2}$ and $1d_{5/2}$ orbits are nearly degenerate
(S_{2n} negative: ^{22}C spherical, ^{20}C oblate)
E1 strength

Large low-lying strength comparable to that of GDR
‘Giant’ low-lying resonance (much larger than usual PDR)
EWS occupies 6 and 15% of TRK sum at $E_{\text{exc}}=5$ and 10 MeV, respectively
EWS exceeds EWCSR at $E_{\text{exc}}=3.3$ MeV
$1d_{5/2}$ orbit excitation is important

$S(E1) [e^2 fm^2/MeV]$ $E.W.S. [%TRK/MeV]$

Excitation Energy [MeV]

FIG. 6. (Color online) Calculated 22C dipole strength function distributions for separation energies $S_{2n} = 50, 100, 200,$ and 400 keV (upper to lower curves). The insert compares dipole strength distributions for $S_{2n} = 10$ keV (upper line) and 50 keV (lower line).

Low-lying strength is very sensitive to S_{2n}
The effect of core excitation makes difference beyond $E_{\text{exc}} > 2$ MeV

$S_{2n}=0.4$ MeV E_T (MeV)

20C+n+n 3-body model
Ershov, Vaagen, Zhukov, PRC86 (2012)
GDR peak: out-of-phase inner oscillation with oscillating extended neutron tail
Low-lying peaks: SDM like pattern
Neutron density extends to 25 fm

Comparison of E1 strength between 6He and 22C
The pattern of the strength is similar, but the origin of the strength between low-lying resonance and GDR is not the same:
- halo-neutron excitation in 6He
- both halo-neutron and 1d$_{5/2}$ orbit excitations in 22C
(may depend on the degeneracy of orbits near Fermi surface)
\[^{12}\text{C} + n + n + p + p \text{ calculation for } 0^+ \text{ states in } ^{16}\text{O} \]

\[^{16}\text{O} \text{ is doubly magic} \]
\[\text{The first excited state is } 0^+ \text{ at 6.05 MeV} \]
\[\text{Contradiction to the shell-model filling of single particle orbits} \]
\[\text{Multiparticle-multihole (esp. 4p-4h) configurations in deformation} \]
\[\text{Shape coexistence} \]

\[\text{Several recent attempts:} \]
\[\text{Configuration mixing of Slater determinants} \]
\[\text{Bender, Heenen NPA713 (2003)} \]
\[\text{Shinohara et al., PRC74 (2006)} \]

\[\text{Large-scale calculations: NCSM} \]
\[\text{Maris et al., PRC79 (2009)} \]
\[\text{CCT} \]
\[\text{Wloch et al., PRL94 (2005)} \]

\[\text{Semi-microscopic } ^{12}\text{C} + \alpha \text{ 2-cluster model} \]
\[\text{Suzuki, PTP55,56 (1976)} \]
\[\text{Rotation of } ^{12}\text{C} \text{ and Pauli constraint for two-cluster relative motion} \]
\[\text{All } T=0 \text{ levels below } E_{\text{exc}}=15 \text{ MeV but 10.96(0^-) are reproduced} \]
\[\text{Electric transitions and } \alpha \text{-decay widths} \]

\[\text{The aim is to understand the coexisting mechanism by performing 5-body calculation without assuming a preformed } \alpha \text{-cluster} \]
\[^{12}\text{C} \text{ is assumed to remain in its ground state} \]
\[4\text{-nucleon dynamics is solved by excluding the occupied orbits in } ^{12}\text{C} \]
\[H = T_v + T_{cv} + V_v + V_{cv} \]

- **Intrinsic kinetic energy of four valence nucleons**
 \[T_v = \sum_{i=1}^{4} T_i - T_{c.m.} \]

- **Kinetic energy between c-v**
 \[T_{cv} \]

- **Potential energy among valence nucleons**
 \[V_v = \sum_{i<j} v_{ij} \]

- **Potential energy between c-v**
 \[V_{cv} = \sum_{i=1}^{4} U_i \]

Minnesota potential, Woods-Saxon potential to fit ^{13}C (1/2$^-$, 1/2$^+$, 5/2$^+$)

Pauli constraint: \[\Gamma_i |\Psi \rangle = 0 \]

Projection operator onto 0$s_{1/2}$ and 0$p_{3/2}$ HO orbits

Add a pseudo potential $\lambda \sum_{i=1}^{4} \Gamma_i$ to Hamiltonian

λ is taken very large

Basis functions

\[\mathcal{A}\{ e^{-\frac{1}{2} \vec{x}^2} [\mathcal{Y}_L(\hat{u}_1 \vec{x} \mathcal{Y}_L(\hat{u}_2 \vec{x})]_L \chi_L]_{00} \eta_{TM_T} \} \]

$\lambda=0,1,2; \ T=0$

Calculation reproduces the two 0$^+$ states in agreement with experiment

Slow convergence because many bases are needed to eliminate the forbidden states
Energy contents of four nucleons in the 0_2^+ state are similar to that of α-particle.
Summary

We have applied ECG to bound and continuum problems
Two 0^+ states in both 4He and 16O
Photoabsorption cross section of 4He with CSM
(cluster concept is useful to construct basis functions for decay channels)
E1 response of 6He
Resonances of A=4 systems analyzed with help of response functions

The pseudopotential for eliminating Pauli-forbidden orbits makes convergence very slow: other way to accelerate convergence is desired

Future challenges

Non-inert core plus 4-nucleon approach
12C($0^+, 2^+$)+n+n+p+p
1- states (7.12, 9.58) and 2+ (6.92) state
E1 and E2 radiative capture reactions 12C(α, γ)16O at Helium burning stage
Isospin impurity has to be taken into account for E1
208Pb($0^+, 3^-$)+n+n+p+p
α-decay width and enhanced E1 transitions in 212Po

Varga, Lovas, Liotta, PRL 69 (1992); NPA 550 (1992)
Astier et al., PRL 104 (2010)
Collaborators and References:

ECG with realistic forces:

4He:
 W. Horiuchi, Y.S., PRC 78 (2008), PRC 87 (2013), FBS 54 (2013),
 PRC 90 (2014)

6He:
 D. Mikami, W. Horiuchi, Y.S., PRC 89 (2014)

16O:
 W. Horiuchi, Y.S., PRC 89 (2014)

22C:
Enhanced E1 transitions in 212Po

208Pb(18O, 14C)

Astier et al. (2010)

Negative parity states at low excitation!

$B(E1) \sim 10^{-3}$ W.u.

Different centers of mass and charge