Ab-initio coupled-cluster method for open-shell nuclei

I. Breaking symmetries

Thomas DUGUET

CEA, Service de Physique Nucléaire, Saclay, France
NSCL, Michigan State University, East Lansing, USA

NORDITA program on Computational Challenges in Nuclear and Many-Body Physics

Sept. 15th- Oct. 10th 2014, Stockholm
I. Introduction: how does this fit with the rest?

II. Breaking $U(1)$ symmetry ("trivial" for $SU(2)$) (today)

Bogoliubov coupled-cluster method

III. Restoring $SU(2)$ or $U(1)$ symmetries (next thursday)

Angular-momentum-restored coupled-cluster formalism

Particle-number-restored Bogoliubov coupled-cluster formalism

[T. Duguet, in preparation (2014)]
Introduction
Non-perturbative *ab-initio* many-body theories

Ab-initio many-body theories
- Effective structure-less nucleons
- $2N + 3N + \ldots$ inter-nucleon interactions
- Solve A-body Schrödinger equation
- Thorough assessment of errors needed

Inter-nucleon interactions
- Link to QCD – χEFT
 [E. Epelbaum, PPNP67, 343 (2012)]
- Soften through RG
 [S.K. Bogner et al., PPNP65, 94 (2010)]

Input
- 16_8^O
- $22,24_8^O$
- 40_{20}^{Ca}
- 48_{20}^{Ca}
- 56_2^{Ni}

Comp data
- 100_{50}^{Sn}
- 112_{50}^{Sn}

1980-2014
- FY, GFMC, NCSM
- All nuclei $A<12$

2003-2014
- CC, Dy-SCGF, IMSRG
- Near doubly-magic nuclei $A<132$

Based on expansion scheme
- Systematic error
- Cross-benchmarks needed

[Carlson, Pieper, Wiringa]
[Barrett, Vary, Navratil, Ormand]
[Dean, Hjorth-Jensen, Piecuch, Hagen, Papenbrock, Roth]
[Barbieri, Dickhoff]
[Tsukiyama, Bogner, Schwenk, Hergert]
Towards *ab-initio* methods for open-shell nuclei

First objective: generalize many-body methods to study complete isotopic/isotonic chains
- Go from a few 10s of nuclei to several 100s of nuclei

Nuclear structure at/far from β stability
- Magic numbers and their evolution?
- Limits of stability beyond Z=8?
- Mechanisms for nuclear superfluidity?
- Role and validation of AN forces?

Option 1: single-reference extensions
- **Gorkov-SCGF**
 [V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]
- **Bogoliubov CC**
 [A. Signoracci, T. Duguet, G. Hagen, unpublished (2014)]

Option 2: multi-reference extensions
- **MR-IMSRG**
 [H. Hergert *et al.*, PRL 110, 242501 (2013)]
- **IMSRG-based valence shell model**
- **CC-based valence shell model**
Breaking and restoring symmetries

Expansion around a single reference state

\[|\Psi_0\rangle = \Omega_0 |\Phi_0\rangle \]

A-body ground state

\(E_0 = \frac{\langle \Phi_0 | \hat{H} | \Psi_0 \rangle}{\langle \Phi_0 | \Psi_0 \rangle} \)

Ground-state energy

Target state

\begin{align*}
\text{Wave operator} & \quad \Rightarrow \\
\text{Reference state} & \quad \Rightarrow
\end{align*}

Expand \(\Omega_0 \) such that \(E_0 \) is size extensive

Closed shell

- RHF reference
 - conserves \(A, J^2, M \)
 - Dy-SCGF CC

Singly/doubly open shell

- UHF(B) reference
 - breaks \(A / J^2 \) and \(M \)
 - Go-SCGF
 - Today BCC

- Contamination from other \(A / J^2 \) and \(M \)
 - ph degeneracy \(<\rightarrow\>
 - Goldstone mode

Singly/doubly open shell

- UHF(B) manyfold
 - restores \(A / J^2 \) and \(M \)
 - AMR-CC & PNR-BCC
 - Next thursday

Multi-reference character

- Finite inertia
 - \(<\rightarrow\>
 - Resolve Goldstone mode

Today

Next thursday
Bogoliubov coupled-cluster formalism
for singly open-shell nuclei

Hartree-Fock-Bogoliubov reference

Nuclear Hamiltonian

\[
H \equiv \frac{1}{(1!)^2} \sum_{pq} t_{pq} c_p^\dagger c_q + \frac{1}{(2!)^2} \sum_{pqrs} v_{pqrs} c_p^\dagger c_q^\dagger c_r c_s + \frac{1}{(3!)^2} \sum_{pqrs} w_{pqrs} c_p^\dagger c_q^\dagger c_r^\dagger c_s c_t c_s
\]

Bogoliubov transformation

\[
\beta_\alpha^\dagger = \sum_p U_{p\alpha} c_p^\dagger + V_{p\alpha} c_p
\]

\[
\beta_\alpha = \sum_p U_{p\alpha}^* c_p + V_{p\alpha}^* c_p^\dagger
\]

Bogoliubov vacuum

\[
|\Phi\rangle \equiv C \prod_{\alpha} \beta_\alpha |0\rangle
\]

\[
\beta_k |\Phi\rangle = 0 \quad \forall k
\]

Density matrices

\[
\rho_{qp} = \frac{\langle \Phi | c_p^\dagger c_q | \Phi \rangle}{\langle \Phi | \Phi \rangle}
\]

\[
\kappa_{qp} = \frac{\langle \Phi | c_p^\dagger c_q | \Phi \rangle}{\langle \Phi | \Phi \rangle}
\]

Grand potential

\[
\Omega \equiv H - \lambda A
\]

Minimization under constraint

\[
\delta \frac{\langle \Phi | \Omega | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 / \langle \Phi | A | \Phi \rangle = A
\]

HFB equation

\[
\begin{pmatrix}
 h & \Delta \\
 -\Delta^* & -h^*
\end{pmatrix}
\begin{pmatrix}
 U_k \\
 V_k
\end{pmatrix} = E_k
\begin{pmatrix}
 U_k \\
 V_k
\end{pmatrix}
\]

Quasi-particle excitations

\[
|\Phi^{a\beta\ldots}\rangle \equiv \beta_{a\alpha}^\dagger \beta_{\beta}^\dagger \ldots |\Phi\rangle
\]

\[
\tilde{\delta}_{\alpha} = \sum_l |V_{l\alpha}|^2
\]

Spectroscopic factors

\[
\beta_{\alpha}\beta_{\beta}^\dagger
\]

Binding energy

\[
E_0 = \frac{1}{2} \left[\sum_{pq} t_{pq} \rho_{qp} - \sum_{\alpha} (E_{\alpha} - \lambda) \tilde{\delta}_{\alpha} \right] - \frac{1}{6} \left[\sum_{pq} \Gamma_{pq}^3 \rho_{qp} + \Delta_{pq}^3 \kappa_{qp}^* \right]
\]

* m-scheme code
* Benchmarked against J-coupled
[V. Somà et al.]
Bogoliubov CC ansatz

Wave-function ansatz

\[|\Psi\rangle \equiv e^{\mathcal{T}} |\Phi\rangle \]

Quasi-particle cluster operator

\[\mathcal{T} \equiv \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 + \ldots \]

\[[\mathcal{T}_n, \mathcal{T}_m] = 0 \]

Connected n-tuple excitation

\[\mathcal{T}_1 \equiv \frac{1}{2!} \sum_{k_1 k_2} t_{k_1 k_2} \beta^\dagger_{k_1} \beta^\dagger_{k_2} \]

\[\mathcal{T}_2 \equiv \frac{1}{4!} \sum_{k_1 k_2 k_3 k_4} t_{k_1 k_2 k_3 k_4} \beta^\dagger_{k_1} \beta^\dagger_{k_2} \beta^\dagger_{k_3} \beta^\dagger_{k_4} \]

Action of n-tuple excitation on the HFB vacuum

\[|\Phi\rangle \]

\[\mathcal{T}_1 |\Phi\rangle \rightarrow |\Phi^{\alpha\beta}\rangle \]

\[\mathcal{T}_2 |\Phi\rangle \rightarrow |\Phi^{\alpha\beta\gamma\delta}\rangle \]

HFB vacuum

1) Handles Cooper instability = grasps key static correlations
2) Opens gap in excitations = makes dynamic correlations safe

- Exponential generates connected + disconnected n-tuple excitations
- No distinction between particles and holes
- Fully anti-symmetric

CC theory in qp basis with no breaking of U(1)
[L. Stolarczyk, H. Monkhorst, MP108, 3067 (2010)]

BCC theory restricted to BCS and simple geometry
[K. Emrich, J. G. Zabolitzky, PRB30, 2049 (1984)]
[W. A. Lahoz, R. F. Bishop, ZPB73, 363 (1988)]
Normal-ordered grand potential

Bogoliubov transformation + Wick’s theorem

\[\Omega \equiv \Omega^{[0]} + \Omega^{[2]} + \Omega^{[4]} + \Omega^{[6]} \]

\[= \Omega^{00} + \frac{1}{1!} \sum_{k_1 k_2} \Omega^{11}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta_{k_2} + \frac{1}{2!} \sum_{k_1 k_2} \left\{ \Omega^{20}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} + \Omega^{02}_{k_1 k_2} \beta_{k_2} \beta_{k_1} \right\} \]

\[= E_{k_1} \delta_{k_1 k_2} \quad \text{with HFB reference state} \]

\[+ \frac{1}{(2!)^2} \sum_{k_1 k_2 k_3 k_4} \Omega^{22}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta_{k_3} \beta_{k_4} \]

\[+ \frac{1}{3!} \sum_{k_1 k_2 k_3 k_4} \left\{ \Omega^{31}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta_{k_4} + \Omega^{13}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta_{k_4} \beta_{k_3} \beta_{k_2} \right\} \]

\[+ \frac{1}{4!} \sum_{k_1 k_2 k_3 k_4} \left\{ \Omega^{40}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta^{\dagger}_{k_4} + \Omega^{04}_{k_1 k_2 k_3 k_4} \beta_{k_4} \beta_{k_3} \beta_{k_2} \beta_{k_1} \right\} \]

\[+ \Omega^{[6]} \]

NO2B approximation

Very good in closed shell (1% error)

[S. Binder et al., PRC87 (2013) 021303]
Bogoliubov CC equations

Schrödinger equation

\[
\Omega |\Psi\rangle = \Omega_0 |\Psi\rangle
\]

\[xe^{-T} \quad \Omega |\Phi\rangle = \Omega_0 |\Phi\rangle\]

\[(\Omega e^T)_c |\Phi\rangle = \Omega_0 |\Phi\rangle\]

Energy equation

\[\langle \Phi | (\Omega e^T)_c |\Phi\rangle = \Omega_0\]

Amplitude equation to find \(T_n\)

\[\langle \Phi^{\alpha\beta\ldots} | (\Omega e^T)_c |\Phi\rangle_C = 0\]

Non-hermitian similarity-transformed grand potential

\[\widetilde{\Omega} \equiv e^{-T} \Omega e^T\]

\[\widetilde{\Omega} = \sum_{n=0}^{4} (\Omega T^n)_c\]

Baker-Campbell-Hausdorff + Wick theorem

Size extensive

Expansion naturally terminates

BCC with Singles and Doubles

Incorporates standard single-reference CC as a particular case

Equations to constrain \(\lambda\)

\[\frac{\langle \Psi | A |\Psi\rangle}{\langle \Psi |\Psi\rangle} = A\]

Infinite-order method

Efficient grasp of dynamic correlations

Truncate \(T\) beyond a certain \(T_n\)

Retaining \(T_1\) and \(T_2\) defines BCCSD

\[
\begin{align*}
\Omega_0 &= \langle \Phi | \Omega (1 + T_1 + T_2 + \frac{1}{2} T_1^2) |\Phi\rangle_C \\
0 &= \langle \Phi^{\alpha\beta} | \Omega (1 + T_1 + \frac{1}{2} T_1^2 + \frac{1}{3!} T_1^3 + T_2 + T_1 T_2) |\Phi\rangle_C \\
0 &= \langle \Phi^{\alpha\beta\gamma\delta} | \Omega (1 + T_1 + T_2 + \frac{1}{2} T_1^2 + \frac{1}{2} T_2^2 \\
&\quad + T_1 T_2 + \frac{1}{3!} T_1^3 + \frac{1}{4} T_1^4 + \frac{1}{2} T_1^2 T_2) |\Phi\rangle_C
\end{align*}
\]
Diagrammatic and BCCSD equations (1)

Grand potential at normal-ordered two-body level

\[\Omega^{[2]} = \Omega^{11} + \Omega^{20} + \Omega^{02} \]

\[\Omega^{[4]} = \Omega^{22} + \Omega^{31} + \Omega^{13} + \Omega^{40} + \Omega^{04} \]

Cluster amplitudes at BCCSD level

- Generate all distinct connected diagrams
- Label external lines according to bra
- Sum over all internal lines
- Associate matrix elements to each vertex
 - \((n!)^{-1}\) factor for \(n\) equivalent internal lines
 - \((k!)^{-1}\) factor for \(k\) equivalent cluster vertices
 - \((-1)^n\) factor for \(n\) crossing lines
- Add permutation for inequivalent external lines
Diagrammatic and BCCSD equations (2)

Energy equation

\[\Omega_0 = \langle \Phi | \Omega (\mathcal{T}_1 + \mathcal{T}_2 + \frac{1}{2} \mathcal{T}_1^2) | \Phi \rangle_C \]

Single amplitude equation

No distinction between particles and holes

Fewer diagrams than in CCSD

Similar for double amplitude equation

Can be extended to
(1) residual 3NF \(\Omega_0^{[6]} \)
(2) triples \(\mathcal{T}_3 \)
Pairing Hamiltonian from BCCD

Set up

Attractive pairing grand potential

\[\Omega = \sum_p (\varepsilon_p - \lambda) N_p - G \sum_{pq} P^+_p P_q \]

Pair operators

\[N_p = a^+_p a_p + a^+_p a^+_p \]

\[P^+_p = a^+_p a_p \]

SU(2) algebra

\[[P_p, P^+_q] = +\delta_{pq} (1 - N_p) \]

\[[N_p, P_q] = -2 \delta_{pq} P_p \]

\[[N_p, P^+_q] = +2 \delta_{pq} P^+_p \]

Doubly-degenerate picket fence model

\[\varepsilon_p = p \Delta \varepsilon \]

Model for, e.g., deformed nuclei

Exact ground-state energy

- Diagonalization within seniority-0 subspace
 - [A. Volya, B.A. Brown, W. Zelevinsky, PLB509, 37 (2001)]
- Richardson solution
 - [R.W. Richardson, PL3, 277 (1963), PR141 (1966)]

- Cheaper than full diagonalization (√)
- Still scales exponentially
 - Limited to ~40 levels at half filling

Typical approximate methods

- BCS and projected BCS (before variation)
- Coupled cluster theory with doubles
- Self-consistent RPA
- BCCD

Look for highly accurate many-body methods that

- Scale polynomial with system size
- Can be applied to more realistic Hamiltonians

What about BCCD?

- 100 levels
- Half filling
- \(\Delta \varepsilon = 300 \text{ keV} \)
- \(G_c/\Delta \varepsilon = 0.18 \)

[J. Dukelsky et al., NPA714, 63 (2003)]
Results for 100 levels at half filling

Correlation energy

- High accuracy in normal & superfluid phases
- Superior to PBCS in regime of interest
- Superiority improves with system size
- Doubles reduce symmetry breaking vs BCS
- Conclusions valid away from half filling
- Symmetry restoration crucial near closed shell

[PNR Bogoliubov CC theory, T. Duguet, in preparation (2014)]

Pairing “gap”

- Triples correction will further improve

Phase transition wrongly of first order
Second-order character recovered from singles
Test calculations of semi-magic $N/Z=8$ nuclei

Set up

- NNLO$^{\text{opt}}$ 2NF ($\Lambda = 500$ MeV/c)
 [A. Ekstrom et al., PRL110, 192502 (2013)]
- No 3NF yet
- HO basis
 - $N_{\text{max}} = 6$
 - $hw = 26$ and 50,53,55,58 MeV
- m-scheme code

Ground-state binding energy

Accessible via 2PA-EOM-CCSD
[G. Jansen et al., PRC83 (2011) 054306]
3p-1h on top of 16O

Only accessible via BCCSD
(can do any number of valence nucleons)

18Ne, 18O + 2 nucleons
20Mg, 20O + 4 nucleons

BCCSD = CCSD to the ev level in doubly closed-shell 16O

Infrared extrapolation from $\hbar w=50,53,55,58$MeV

$E(L) = E_\infty + A_\infty e^{-2\kappa_\infty L}$

where

$b = \sqrt{\hbar/(M\omega)}$

$L = \sqrt{2(N+3/2+2)b}$

Extends SR-CC to genuinely open-shells!
- Scales as $(n_h+n_p)^6$
- ~ 1.5 MeV > 2PA-EOM-CCSD in 18O and 18Mg
- Critical to restore A near closed shell
- Storage of T_2 in m scheme beyond $N_{\text{max}} = 8$?
- More involved distribution of T_2
- Use SVD
[T. Kinoshita et al., JCP 119 (2003) 7756]
- Code in J-coupled scheme
Conclusions and perspectives

Conclusions

- Development of Bogoliubov CC theory for genuinely open-shell nuclei
- Parallel effort to Gorkov-SCGF and MR-IMSRG
- m-scheme implementation at the singles and doubles level
 - First proof-of-principle results
 - Allows for the treatment of doubly-open-shell systems
 - Currently limited to $N_{\text{max}} = 8$ due to storage scheme

Future

- Develop option(s) to go to larger bases
- Implementation of 3NF at normal-ordered two-body level
- Extend to Equation-Of-Motion Bogoliubov CC theory
- Wealth of potential applications
 - Problems of experimental interest
 - Cross-benchmarking with Gorkov-SCGF and MR-IMSRG
- Symmetry-restored Bogoliubov CC theory and applications
Appendix

Complementary slides
Diagrammatic and BCCSD equations (3)

Double amplitude equation

\[0 = \langle \Phi | (1 + T_1 + T_2 + \frac{1}{2} T_1^2 + \frac{1}{2} T_2^2 + \frac{1}{4} T_1 T_2 + \frac{1}{4} T_1^2 T_2 + \frac{1}{4} T_2^2 T_1 + \frac{1}{16} T_1^2 T_2^2) | \psi \rangle \]