Neutrino-Nucleus Interactions at Low Energies

Jouni Suhonen

Department of Physics University of Jyväskylä

Computational Challenges in Nuclear and Many-Body Physics, Stockholm, Sweden, Sept. 15 - Oct. 10, 2014

Contents:

- Neutrino-nucleus interactions at Supernova Energies
- Low *Q* Values for Neutrino Mass Measurements
- Highly-Forbidden Beta Decays
- Double Beta Decays

Supernova Neutrinos

Low Q Values

Beta Decays

Double Beta Decays

Part I: Supernova Neutrinos

Supernova neutrinos: Theory background and motivation

Beta Decays

Double Beta Decays

Supernova neutrinos

Important probes of:

- Unknown supernova mechanisms, ν and $\bar{\nu}$ energy profiles
- Neutrino physics beyond the Standard Model, e.g. neutrino oscillations in (dense) matter and the neutrino mass hierarchy
- Only observations so far from SN1987a

Neutrino-nucleus interactions are crucial in supernova explosions and for the nucleosynthesis of heavy elements

Isospin and spin-isospin properties of excitations of ¹¹⁶Cd

Basic formalism for the ν -nucleus scattering

• Donnelly-Walecka method:

•
$$Q^2 = -q_\mu q^\mu \ll M_W^2 \implies \langle f | H_{\text{eff}} | i \rangle = \frac{G}{\sqrt{2}} \int d^3 x \langle e | j_\mu^{\text{lept}} | \nu \rangle \langle f | \mathcal{J}^\mu | i \rangle$$

- Multipole expansion of $\langle f | \mathcal{J}^{\mu} | i \rangle$
- Nuclear-structure dependence contained in $(J_f || T_J || J_i)$, $T_J = T_J^V T_J^A$ (V-A theory). T_J one-body operator

 $\Rightarrow \sigma(E_{\nu})$

• Need flux-averaged cross section:

$$\langle \sigma_{\nu} \rangle = \int dE_{\nu} E_{\nu}^2 F_{\nu}(E_{\nu}) \sigma(E_{\nu}) = \frac{1}{T_{\nu}^3 F_2(\alpha_{\nu})} \int \frac{dE_{\nu} E_{\nu}^2 \sigma(E_{\nu})}{1 + \exp(E_{\nu}/T_{\nu} - \alpha_{\nu})}$$

(Folding with the energy profile $F(E_{\nu})$ of the ν and $\bar{\nu}$ flavors)

Flavor	$\nu_{\rm e}$	$\bar{\nu}_{\mathrm{e}}$	$ u_{\mu}, u_{ au}$	$ar{ u}_{\mu},ar{ u}_{ au}$
T (MeV)	2 - 4	4 - 5	6 - 8	6 - 8
$\alpha_{ u}$	0 - 3	0 - 3	0 - 3	0 - 3

Table: Flavor Fermi-Dirac parameters (M.T. Keil and G.G. Raffelt, Astrophys.J. 590 (2003) 971)

Progress thus far and prospects

The Bonn-A interaction

- CC and NC scattering on ^{92,94,96,98,100}Mo studied by the QRPA
- CC and NC scattering on ^{95,97}Mo studied by the MQPM (Microscopic Quasiparticle-Phonon model)
- Important for the MOON (Mo Observatory Of Neutrinos) experiment

The Bonn-A interaction

- CC and NC scattering on ^{106,108,110,112,114,116}Cd studied by the QRPA
- CC and NC scattering on ^{111,113}Cd studied by the MQPM (Microscopic Quasiparticle-Phonon model)
- Interesting for the COBRA (cadmium-telluride experiment)

The Skyrme interactions

- CC scattering on ¹¹⁶Cd studied by the HOSPHE (pnQRPA)
- CC scattering on ^{204,206,208}Pb studied by the HOSPHE (future work, important for the HALO experiment)

Nuclear-structure ingredients

- Even-even nuclei: QRPA (NC), pnQRPA (CC)
- Odd nuclei: MQPM (microscopic quasiparticle-phonon model)¹:
 - Even-even (A 1) nucleus used as reference nucleus
 - MQPM basis (neutron-odd nucleus): |n; jm⟩, |nω; jm⟩, which form a non-orthogonal and over-complete basis set for the MQPM diagonalization.
 - Schematically: ${}^{95}Mo = {}^{94}Mo \otimes n$, etc.
 - After diagonalization the states of an odd-*A* nucleus are linear combinations of one-quasiparticle states and quasiparticle-phonon states, i.e.

$$\Gamma_k^{\dagger}(jm) = \sum_n X_n^k a_{njm}^{\dagger} + \sum_{a\omega} X_{a\omega}^k [a_a^{\dagger} Q_{\omega}^{\dagger}]_{jm} .$$
⁽¹⁾

• Question: How large a quasiparticle-phonon basis is required to describe states with $E_{exc} \lesssim 15-20$ MeV?

¹J. Toivanen and J. Suhonen, Phys. Rev. C 57 (1998) 1237

Example: NC and CC scattering off the Mo isotopes

NC and CC scattering off the stable Mo isotopes

Neutral-current scattering off the Mo isotopes

Incoherent NC scattering off the stable Mo isotopes at supernova energies

Neutral-current (NC) neutrino-nucleus scattering:

hadron current \mathcal{J}_{μ}

Isospin and spin-isospin properties of excitations of ¹⁰⁰Mo

NC results for $\nu_{\rm e}$ scattering off ⁹⁴Mo (QRPA)

NC results for $\nu_{\rm e}$ scattering off ⁹⁵Mo (MQPM)

- 3/2⁺ mainly a one-quasiparticle state (ν1d_{3/2})
- Inclusion of high-lying QRPA excitations crucial in computations of ν-scattering off odd open-shell nuclei

Large-scale MQPM calculations for ⁹⁵Mo (NC)

NC $\nu_{\rm e}$ scattering results for the Mo isotopes

- Results similar for ^{92,94,96}Mo. Cross sections slightly smaller for ^{98,100}Mo
- The 1⁺ distributions are not known experimentally for $E_{\text{exc}} > 5.0$ MeV. Future experiments?

NC scattering results for the Mo isotopes (all flavors)

flavor	$\langle \sigma \rangle^{92}$	$\langle \sigma \rangle^{94}$	$\langle \sigma \rangle^{95}$	$\langle \sigma \rangle^{96}$	$\langle \sigma \rangle^{97}$	$\langle \sigma \rangle^{98}$	$\langle \sigma \rangle^{100}$
$ u_{\rm e}$	11.6	11.8	15.9	12.1	16.4	9.94	8.59
$\bar{\nu}_{e}$	17.3	17.6	23.0	17.9	23.7	15.1	13.1
$ u_{\mu}, u_{ au}$	25.5	25.3	31.5	25.6	32.3	22.1	19.9
$\bar{ u}_{\mu}, \bar{ u}_{ au}$	22.7	22.7	28.6	23.0	29.4	20.0	17.7

Table: Averaged incoherent cross sections for the stable molybdenum isotopes in units of 10^{-42} cm²

• Results qualitatively similar for all flavors.

Charged-current scattering off the Mo isotopes

CC scattering off the stable Mo isotopes at supernova energies

Charged-current (CC) neutrino-nucleus scattering:

Isospin and spin-isospin properties of excitations of ¹⁰⁰Mo

Multipole contributions: $CC \nu$ -scattering

SN-ν cross sections dominated by allowed transitions (0⁺ and 1⁺).
Axial-vector transitions most important

Multipole contributions: CC $\bar{\nu}$ -scattering

- 0^+ and 1^+ transitions suppressed (Pauli blocking). Note N Z = 16 for ¹⁰⁰Mo!
- 1⁻ and 2⁻ transitions important

Inclusion of neutrino-flavor conversion effects

 SN-neutrino detectors based on CC ν-nucleus scattering detect only ν_e and ν
_e (E_ν ≤ 100 MeV).

$$\langle \sigma_{\nu_{\rm e}} \rangle = \int \mathrm{d}E_{\nu} E_{\nu}^2 F_{\nu_{\rm e}}^{\rm osc}(E_{\nu}) \sigma(E_{\nu})$$

• Due to interactions with the matter of the star the energy profile for the detected neutrinos (antineutrinos) is a superposition of the initial ν_e ($\bar{\nu}_e$) and ν_x ($\bar{\nu}_x$) spectra, i.e.

$$F_{\nu_{e}}^{\rm osc}(E_{\nu}) = p F_{\nu_{e}} + (1-p) F_{\nu_{x}} \quad ; \quad F_{\bar{\nu}_{e}}^{\rm osc}(E_{\nu}) = \bar{p} F_{\bar{\nu}_{e}} + (1-\bar{p}) F_{\bar{\nu}_{x}}$$

$$p = \begin{cases} \sin^2 \theta_{13} & \text{Normal hierarchy} \\ \sin^2 \theta_{12} & \text{Inverted hierarchy} \end{cases} \quad \bar{p} = \begin{cases} \cos^2 \theta_{13} & \text{Normal hierarchy} \\ \cos^2 \theta_{12} & \text{Inverted hierarchy} \end{cases}$$

(J.Gava and C. Volpe, PRD 78 (2008) 083007 ; A.B. Balantekin and G.M. Fuller, PLB 471 (1999) 195 ; G.G. Raffelt, Prog. Part. Nucl. Phys. 64 (2010) 393 ; G. Martinez-Pinedo *et al.*, Eur. Phys. J. A 47 (2011) 98)

Electron spectra from SN- ν CC scattering off ¹⁰⁰Mo

Number of events significantly increased by flavor conversionsThe produced spectra similar for both mass hierarchies

Positron spectra from SN- $\bar{\nu}$ CC scattering off ¹⁰⁰Mo

- Small number of events
- The difference between the two neutrino-mass hierarchies very clear

Variation of the CC cross section with mass number

Opposite trend for the ν and $\bar{\nu}$ cross sections because of

- Ikeda sum rule $S^{-}(1^{+}) S^{+}(1^{+}) = 3(N Z)$
- Variation of threshold energies

SN- ν detector based on natural Mo could detect both ν_{e} and $\bar{\nu}_{e}$!

Threshold energies and Pauli blocking in the Mo chain

Further example: Number of expected events in a ¹¹⁶Cd detector in a supernova explosion

Number of events/(kiloton of ¹¹⁶Cd) as a function of the distance to the supernova in kPc

Part II: Low Q values for neutrino-mass measurements

What causes the rare weak decays to be so rare?

- Ultra-low *Q* values (Case I)
- Large difference in the angular momenta of the initial and final states (Case II)
- Weak-interaction processes of higher order (Case III)

Supernova Neutrinos

Beta Decays

Double Beta Decays

Ultra-low Q values

Low *Q* Values for Neutrino Mass Measurements

Neutrino Mass Measurements with low *Q* values

The KArlsruhe TRItium Neutrino experiment = KATRIN

 $Q_{\beta^-} = 18.6 \text{ keV}$, Allowed ${}^{3}\text{H}(1/2^+) \rightarrow {}^{3}\text{He}(1/2^+) \beta^-$ decay

The Microcalorimetric Array for a Rhenium Experiment = MARE

 $Q_{\beta^{-}} = 2.469(4) \text{ keV}, \text{ First-forbidden unique}$ $^{187}\text{Re}(5/2^{+}) \rightarrow ^{187}\text{Os}(1/2^{-}) \beta^{-} \text{ decay}$

¹¹⁵In: Beta decay with an ultra-low Q value

First discovered by Cattadori et al. (Nucl. Phys. A 748 (2005) 333)

Suggested as a possible independent experiment to look for the neutrino mass

Experimental results

LNGS (C.M. Cattadori et al.)	first observation
	$b = 1.18(31) \times 10^{-6}$
	$T_{1/2}^{\text{partial}} = 3.73(98) \times 10^{20} \text{ a}$
HADES (J.S.E. Wieslander et al.)	$b = 1.07(17) \times 10^{-6}$
	$T_{1/2}^{\text{partial}} = 4.1(6) \times 10^{20} \text{ a}$
JYFLTRAP (J.S.E. Wieslander et al.)	$Q_{\beta^-} = 0.35(17) \text{ keV}$
Florida StU (B. J. Mount et al.)	$Q_{\beta^-} = 0.155(24) \text{ keV}$

Lowest *Q* value recorded so far! (J.S.E. Wieslander et *al.*, PRL 103 (2009) 122501) Previous record: ¹⁸⁷Re $Q_{\beta^-} = 2.469(4)$ keV ² (first-forbidden unique transition, used in the MARE neutrino-mass experiment)

²M.S. Basunia, Nucl. Data Sheets 110 (2009) 999.

Decays of ¹³⁵Cs (1st and 2nd forbidden unique)

31 / 57

1

Other interesting cases

initial state	final state	E^* in keV	decay type	Q in keV
$^{77}As(3/2^{-})$	77 Se $(5/2^+)$	680.1046(16)	$1^{ m st}$ non-unique eta^-	2.8 ± 1.8
111 In(9/2 ⁺)	$^{111}Cd(3/2^+)$	864.8(3)	2 nd unique EC	-2.8 ± 5.0
	$^{111}Cd(3/2^+)$	866.60(6)	2 nd unique EC	-4.6 ± 5.0
$^{131}\mathrm{I}(7/2^+)$	$^{131}Xe(9/2^+)$	971.22(13)	allowed β^-	-0.4 ± 0.7
$^{146}Pm(3^{-})$	$^{146}Nd(2^+)$	1470.59(6)	1 st non-unique EC	1.4 ± 4.0
$^{149}Gd(7/2^{-})$	$^{149}{ m Eu}(5/2^+)$	1312(4)	1 st non-unique EC	1 ± 6
$^{155}Eu(5/2^+)$	$^{155}Gd(9/2^{-})$	251.7056(10)	$1^{ m st}$ unique eta^-	1.0 ± 1.2
$^{159}\text{Dy}(3/2^{-})$	$^{159}{ m Tb}(5/2^-)$	363.5449(14)	allowed EC	2.1 ± 1.2
$^{161}\text{Ho}(7/2^{-})$	$^{161}\text{Dy}(7/2^{-})$	857.502(7)	allowed EC	1.4 ± 2.7
	$^{161}\text{Dy}(3/2^{-})$	858.7919(18)	2 nd non-unique EC	0.1 ± 2.7

Beta Decays

Double Beta Decays

Part III: Highly forbidden beta decays

⁹⁶Zr and ⁴⁸Ca: Competition of beta and double beta decays

⁹⁶Zr decay channels calculated by the QRPA

Results and conclusion for ⁹⁶Zr

• Transitions from pnQRPA vacuum to pnQRPA excitations

Jf	Forbiddeness	Q value [keV]	<i>T</i> _{1/2} [a]
6+	6th non-unique	161	$4.9 imes10^{29}$
5^{+}	4th unique	117	$2.6 imes 10^{20}$
4^+	4th non-unique	15	$2.3 imes 10^{23}$

- Calculated total $T_{1/2}^{\beta} = 2.6 \times 10^{20}$ a
- Experimental $T_{1/2}^{\beta\beta} = (2.3 \pm 0.2) \times 10^{19}$ a
- Published in J. Phys. G: Nucl. Part. Phys. 34 (2007) 837.
- Conclusion: The single beta-decay rate is much slower than the double-beta-decay rate!→ single-β decay does not interfere severely with the determination of the time variation of the weak coupling constant)

⁴⁸Ca decay channels calculated by the SHELL MODEL

pf-shell GXPF1A interaction (PRC 69 (2004) 034335)

Beta spectrum shape: access the effective value of g_A

Part IV: Weak processes of higher order

Double Beta Decays

Jouni Suhonen (JYFL, Finland)

Neutrino properties from experiments

Neutrino Properties from Oscillation Experiments:

From solar, atmospheric, accelerator and reactor-neutrino data (SuperKamiokande, SNO, KamLAND, etc.):

- Squared mass differences Δm^2 of neutrinos
- Matrix elements of the neutrino mixing matrix ⇔ flavor eigenstates in terms of mass eigenstates: ν_e → ν_i → ν_μ → ν_j → ν_e → ν_k → ν_μ ···

Complementary experiments:

- Beta decays (absolute neutrino mass): KATRIN, MARE
- **Double beta decays** (nature, absolute mass and hierarchy of neutrinos)

Double beta decay (Isobars A = 76)

Two-neutrino double beta decay

$2\nu\beta\beta$ decay from nuclear-structure point of view

Neutrinoless double β^- decay

$0\nu\beta\beta$ Decay is Able to:

- Reveal if the neutrino is a Majorana particle
- Probe the neutrino effective mass $\langle m_{\nu} \rangle = \sum_{i=\text{light}} \lambda_i^{\text{CP}} |U_{ei}|^2 m_i$
- Probe the degenerate or inverted mass hierarchies (next-generation experiments!)
- Probe possibly the CP phases (nuclear matrix elements are critical!)

 $(\nu_{\tau}) \nu_{3}$ Δm_{G}^{2} $\Delta m_{\rm atm}^2$ $\Delta m^2_{\rm atm}$ $(\nu_{\mu}) \nu_{2}$ Δm^2_{\odot} Normal hierarchy Inverted hierarchy $\Delta m_{\odot}^2 = 7.67^{+0.16}_{-0.19} \times 10^{-5} \,\mathrm{eV}^2$ $\Delta m_{\rm atm}^2 = 2.39^{+0.11}_{-0.08} \times 10^{-3} \, {\rm eV}^2$ [Global 3ν oscillation analysis (2008)]

MASS MODE: $T_{1/2} \propto \langle m_{\nu} \rangle^2$ FINAL NUCLEUS (Z,N-2) helicities 1

$0\nu\beta\beta$ decay from nuclear-structure point of view

Nuclear Matrix Elements and the $0\nu\beta\beta$ Decay

Decay rate:

$$\frac{\ln 2}{T_{1/2}} = g^{(0\nu)}(Q) [\mathbf{M}^{(0\nu)}]^2 \langle m_\nu \rangle^2$$

- $g^{(0\nu)}(Q) \propto Q^5$ is the phase-space factor
- $M^{(0\nu)} =$ NUCLEAR MATRIX ELEMENT
- Effective neutrino mass:

$$\langle m_{
u}
angle = \sum_{j= ext{light}} \lambda_j^{ ext{CP}} |U_{ ext{e}j}|^2 m_j$$

Presently computed by: QRPA (Jyväskylä-La Plata, Chapel Hill, Tübingen-Bratislava-Caltec), ISM (Strasbourg-Madrid), IBA-2 (Yale), Gogny-based EDF+GCM (Darmstadt), Projected HFB (Indian-Mexican collaboration)

Beta Decays

Double Beta Decays

About Experiments

UNDERGROUND LABORATORIES protect from COSMIC RAYS and their secondary particles Canfranc (Spain) Kamioka (Japan) Boulby (England) Gran Sasso (Italy)

Pyhäsalmi (Finland) Baksan (Ukraine) Modane (France-Italy) Sudbury (Canada)

Experiments Searching for $0\nu\beta\beta$ Decays:

Major recent experiments:

- Heidelberg–Moscow (⁷⁶Ge) (ceased, claim of detection by H.-V. K-Kgh, but result still controversial)
- NEMO3 (⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ...) (Just stopped in Modane)
- Cuoricino (^{128,130}Te) (Running in Gran Sasso)
- GERDA (⁷⁶Ge) (Latest result strongly contests the H.-V. K-Kgh claim)
- EXO-200 (¹³⁶Xe)
- Kamland-Zen (¹³⁶Xe)
- COBRA (⁷⁰Zn ^{106,114,116}Cd ^{128,130}Te)

Future Experiments:

SUPERNEMO (⁸²Se ¹⁰⁰Mo...), MAJORANA (⁷⁶Ge), CAMEOII,III (¹¹⁶Cd), CUORE (^{128,130}Te), MOON (¹⁰⁰Mo), EXO-1000 (¹³⁶Xe), **ZORRO** (⁹⁶Zr)

These are in 100 – 1000 kg scale and cost about 100000000 EURO/\$ each!

Beta Decays

Double Beta Decays

The ZORRO Experiment

Complementary experimental probes of $0\nu\beta\beta$ NMEs

Possible Experimental Probes:

- Beta decays (Need more data!) ↔ Measurements of EC branches using the TITAN ion trap facility at TRIUMF (access also the renormalization of g_A!)
- Charge-exchange reactions [β⁺-type (d,²He) reactions at KVI, Groningen; β⁻-type (³He,t) reactions at RCNP, Japan]
- Measurements of occupation numbers of active neutron orbitals

 ↔ (d,p), (α,³He) [add neutron] and (p,d), (³He,α) [remove neutron]
- Measurements of occupation numbers of active proton orbitals ↔ (³He,d) [add proton] and (d,³He) [remove proton]
- Ordinary muon capture (now experimentally feasible)

Examples of available data on beta decays

Beta Decays

(PSI)

Double Beta Decays

Ordinary muon capture as a probe

$$^{76}\text{Se} + \mu^- \rightarrow \,^{76}\text{As} + \nu_\mu$$

Double β^+ / EC decays

Double beta decays on the positron-emitting/electron-capture side

Beta Decays

Double positron/EC decays

 $0\nu\beta^+\beta^+$ Decay

Final nucleus (Z - 2, N + 2)

Initial nucleus (Z, N)

 $0\nu\beta^+$ EC Decay

Initial nucleus (Z, N)

Two-neutrino double electron capture

Initial nucleus (Z, N)

Example: Various $2\nu 2\beta$ decay modes of ⁹⁶Ru

Example: Various $0\nu 2\beta$ decay modes of ⁷⁸Kr

Jouni Suhonen (JYFL, Finland)

Conclusions

Conclusions:

- Knowledge about nuclear responses to supernova neutrinos essential for neutrino detection and applications in astrophysics.
- QRPA (MQPM) + Donnelly-Walecka formalism powerful framework for neutrino-nucleus calculations for even-even (odd) open-shell nuclei.
- Beta transitions with ultra-low Q values can potentially be used in neutrino-mass detection ←→ ATOMIC effects are important
- In the case of ⁹⁶Zr and ⁴⁸Ca decays the single beta-decay rate is much slower than the double-beta-decay rate
- Theoretical and experimental studies of the electron spectra of forbidden non-unique β transitions have potential to probe the effective value of the axial-vector coupling constant g_A
- Double β[−] decays are much studied both theoretically and experimentally ←→ Nature and mass scale of the neutrino
- The double positron emitting/electron-capture modes are less studied (smaller *Q* values, less observational potential)