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What is the Wigner energy?

Myers, Swiatecki, Nucl. Phys. 81, 1 (1966):
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Their "liquid-drop binding" has (N–Z)-quadratic symmetry energy.



Explanations of the Wigner energy

Myers and Swiatecki cite (hence name):

Wigner, Phys. Rev. 51, 947 (1937)
(twelve years before the discovery of the nuclear spin-orbit
splitting):
Spin-isospin SU(4) symmetry
⇒ INTERACTION part of symmetry energy ∝ T (T + 4).
T = isospin, in N,Z even ground states = Tz = |N − Z |/2.
KINETIC part ∝ T 2 (Thomas-Fermi approximation).

Neergård, Phys. Rev. C 80, 044313 (2009):
Redoes Wigner’s derivation but for isospin SU(2) symmetry.
Gets interaction part ∝ T (T + 1).
⇒ TOTAL symmetry energy ∝ T (T + X ), X < 1.

Many attempts of explanation by Myers and Swiatecki and others.
Review in Neergård, op. cit.



Superfluid isorotation

Duflo, Zuker, Phys. Rev. C 52, R23 (1995):
Semi-empirical mass formula with symmetry terms ∝ T (T + 1).

Frauendorf, Sheikh, Nucl. Phys. A 645, 509 (1999);
Phys. Scr. T 88, 162 (2000):

This looks like axially symmetric rotor spectrum.
What deformation? Answer: superfluidity. Measured by gaps ∆n,p.
Isovector ~∆:

∆x + i∆y =
√
2∆p , ∆x − i∆y = −

√
2∆n ,

∆z ∝ 〈sum of np pair annihilators〉 .
〈~T 〉

~∆

In a product of n and p BCS states, 〈Tx〉 = 〈Ty 〉 = ∆z = 0.
Thus isorotation on an axis perpendicular to ~∆.

NOTE: ~∆ is a complex vector.
Its real and imaginary parts may have different directions.
~∆∗ ∝ 〈isovector of sums of pair creators〉.



Hartree-Bogolyubov + Random Phase model

Neergård, Phys. Lett. B 537, 287 (2002); 572, 159 (2003);
op.cit. (2009):

Hamiltonian: H =
∑

i hi − G ~P†· ~P + κ
∑

i<j
~ti ·~tj .

i = nucleon label.
~t = single-nucleon isospin .
h = single-nucleon Hamiltonian, [h, ~t ] = 0 .
~P = isovector of such sums of pair annihilators that

~∆ = G 〈~P〉 in the quasinucleon vacuum.

Routhian: R = 〈
∑

i hi 〉 − G |〈~P〉|2 + 1
2κ|〈 ~T 〉|

2 − λn〈N〉 − λp〈Z 〉 .

No exchange terms! That is, Hartree-Bogolyubov without “Fock”.

Minimised with Bogolyubov quasinucleon vacuum.
〈N〉, 〈Z 〉 identified with N,Z . Result: BCS.



Ground state energy. Goldstone modes
RPA corresponding to small oscillations about the
Hartree-Bogolyubov minimum. Ground state energy:

E =
∑

v2ε− |~∆|2/G + 1
2κT

2 + c + 1
2

(∑
ω −

∑
ω0

)
.

ε = eigenvalue of h, counted with multiplicity.
v2 = BCS occupancy, possibly different for neutrons and protons.
c = constant containing omitted exchange terms.

T -independent.
ω/ω0 = perturbed/unperturbed RPA frequency.

Goldstone and quasi-Goldstone modes:

ω = 0 from conservation of N,Z . (Only for ∆n,p > 0.)

IMPORTANT: ω = |λn − λp| from [−λnN − λpZ ,T−] = (λn − λp)T− .
(Only for T > 0 or T = 0 and ∆n = ∆p > 0.)

This gives energy contribution essentially linear in T .



The symmetry force

Symmetry force: κ
∑

i<j
~ti ·~tj .

Only contributes to E :

E = E (κ = 0) + 1
2κ

(
T (T + 1)− 3A

4

)
(the exact eigenvalue).

No influence on BCS state or composition of RPA modes except
the quasi-Goldstone mode.

⇒ Corresponding term in E may be added a posteriori.

NOTE: The symmetry force is attractive in the T = 0 two-particle
and two-hole channels (though acting here in the particle-hole
channel):

~t1 ·~t2 =

{
−3

4 , T = 0
1
4 , T = 1

This is how isoscalar attraction enters this model.



Equidistant case

Equidistant four-fold degenerate ε:

E = E (T = 0) + 1
2(D + κ)T (T + 1) , D = level spacing ,

(in a very good approximation).

The term 1
2DT requires the spontaneous breaking of the isobaric

invariance by the pairing force.

Absent for G = 0.
Weakened for G < Gcrit = lower limit for ∆ > 0:
First order perturbation theory: Linear term 1

2GT .
Note: Gcrit ≈ D

/(
2 + log (Ω/2)

)
� D , Ω = number of levels .

(Neergård, op. cit. 2003.)



Deformed case
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Quasi-Goldstone mode

Kinetic symmetry energy
Symmetry force (HB)

+ = empirical Coulomb reduced relative mass.
— = E − E (T = 0). Broken line = individual term.
Kinetic symmetry energy =

∑
v2ε relative to T = 0,

Symmetry force (HB) = 1
2κT

2.
Quasi-Goldstone mode = 1

2 |λn − λp| .
For T = 2, the latter/(E − E (T = 0)) ≈ 1/3 = T/(T (T + 1)).
Neutron Woods-Saxon levels, β = 0.342 (from E2+(80Zr)), Ω = 40,
G = 0.264 MeV (from ∆n,p(T = 0) = 12 MeV/

√
A), κ = 1.1 MeV.



Doubly magic case

Yet another mechanism!
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Kinetic symmetry energy
BCS pairing

× × × ×
× × × ×

n p

BCS pairing = −|~∆|2/G relative to T = 0.
β = 0,Ω = 41 (one more major shell),
G = 0.2 MeV (⇒ ∆n,p(T > 0) ≈ 12 MeV/

√
A), κ = 0.8 MeV.



Conclusions of the Hartree-Bogolyubov + Random Phase
analysis

I On average, represented by the equidistant case, superfluid
isorotation gives a symmetry energy ∝ T (T + 1).

I Shell structure modifes this average behaviour.

The analysis in terms of Goldstone modes is inspired by Marshalek,
who did it for spatial rotation, Nucl. Phys. A 275, 416 (1977).
Marshalek cites Ginocchio, Wesener, Phys. Rev. 170, 859 (1968),
whose model and analysis is the same as the present one except for
the symmetry force.



Exact minimisation of the Hamiltonian

Bentley, Frauendorf, Phys. Rev. C 88, 014322 (2013):

Concerned with the accuracy of the RPA for G ≈ Gcrit.
Relevant to medium mass nuclei.
Therefore: Exact minimisation of the Hamiltonian for each
A,T ,Tz .

Only feasible for small Ω.
The authors include Ω = 7 neutron-proton average Nilsson levels
about the Fermi level.

Individual deformations for each N,Z are taken from a
Nilsson-Strutinsky calculation.
This is unlike Neergård, op. cit., who keeps the Hamiltonian
constant for each A.
Breaks insignificantly the isobaric invariance in T = 1 multiplets.



Analysis in the case of exact minimisation
The following combinations of empirical and calculated E (A,T ,Tz)
are considered. The empirical E (A,T ,Tz) is the mass reduced by
the Coulomb energy relative to Tz = 0:

I T = 0 doubly odd-doubly even mass differences:
“ 2∆” = E (A, 0, 0)−

(
E (A− 2, 0, 0) + E (A + 2, 0, 0)

)
/2,

odd A/2.
I Isospin splitting in the doubly odd N = Z nuclei:

E (A, 1, 0)− E (A, 0, 0), odd A/2.

I Constants θ,X in E (A,T ,T ) = constant +
T (T + X )

2θ
from:

T = 0, 2, 4 for even A/2. T = 1, 3, 5 for odd A/2.

Parameters fitted to the T = 0 doubly odd-doubly even mass
differences and the isospin splittings:

G = 13.9A−3/4 MeV , κ = 119.8A−1 MeV .



Results of exact minimisation

1

40Ca
56Ni

100Sn

30P: nucleon excitations across the 2s1/2 shell.
24Mg, 48Cr: T=0 is deformed,
                    T=2,4 are essentially spherical.

24Mg
30P

48Cr

Doubly magic nuclei and doubly odd neighbours 
have practically equal effective shell gaps.

The calculations are consistently above
the data. This is attributed to the small
valence space.



Comparison with HB + RPA
Bentley, Neergård, Frauendorf, Phys. Rev. C 89, 034302 (2014):
The exact minimisation allows a test of HB+RPA.
Found good except in a narrow region about Gcrit.
The plot in the middle shows the origin of the singularity:

××××××××××××

ε

12-tuplets

Similar results for one type of nucleon:
Hung, Dang, Phys. Rev. C 76, 054302 (2007).

The singularity can be remedied by interpolation.
The case shown is the most extreme one among those studied;
configuration on the right.



Nilsson-Strutinsky + HB + (interpolated) RPA (1)

Bentley, Neergård, Frauendorf, op. cit.:

Strutinsky energy expression:

E = ELD + Es.p. − Ẽs.p. + P − P̃ .

ELD = deformed liquid drop energy.
Es.p. = sum of occupied single-nucleon levels.
P = pairing energy.
Ẽs.p., P̃ = smooth counterterms.



Nilsson-Strutinsky + HB + (interpolated) RPA (2)

ELD = −
(
av − avt

T (T + 1)

A2

)
A +

(
as − ast

T (T + 1)

A2

)
A2/3Bs

+ ac
Z (Z − 1)

A1/3 Bc , Bs ,Bc are functions of the deformation.

This absorbs the symmetry force.

Es.p. + P from HB + (interpolated) RPA, Ω = A/2.

In doubly odd T = 0 states the Fermi level is blocked to the pairing
force.

h as in Bentley, Frauendorf, op. cit., except that states with equal
T , “isobaric analogues”, are assumed to have the same deformation,
the one calculated for Tz = T . Thus, except for the liquid drop
Coulomb term, the last term in ELD, we now have exact isobaric
invariance also for T = 1.



Nilsson-Strutinsky + HB + (interpolated) RPA (3)
Ẽs.p. by standard Strutinsky smoothing:
3rd order. Smoothing parameter 41A−1/3 MeV.

P̃ by replacing sums with integrals:
P̃ = P̃BCS + P̃RPA, where:

P̃BCS = −
∑
n,p

Ω∆̃

2 exp a
,

P̃RPA =
∑
n,p,np

2∆̃

π

∫ ∞
0

log
(

1
2a

log
cosh (x + a)

cosh (x − a)

)
cosh x dx

+ |λ̃n − λ̃p|/2 ,

∆̃ =
Ω

2g̃(λ̃) sinh a
, a =

1
g̃(λ̃)G

, n, p, np .

g̃(ε) = smooth level density. λ̃n, λ̃p, λ̃np correspond to N,Z ,A/2.
The last term in P̃RPA cancels the kinetic contribution to the
T -linear term in ELD so that the actual kinetic contribution is due
to the quasi-Goldstone term in PRPA.



Nilsson-Strutinsky + HB + (interpolated) RPA (4)

With the complete expression for the total energy, the liquid drop
parameters were fitted to the 112 measured doubly even masses
with 24 ≤ A ≤ 100, 0 ≤ N − Z ≤ 10. Asymptotic Duflo-Zuker
parameters were considered but miss quite a lot the masses in the
upper part of this region. The parameters in MeV shown below are
insignificantly different from those published due to an improved
RMSD minimisation. The minimum is RMSD = 0.950 MeV. Both
sets are similar to the most recent asymptotic Duflo-Zuker
parameters.

av avt as ast ac

15.15 108.6 16.24 128.3 0.6583

ELD with symmetry energy ∝ T 2: RMSD = 1.193 MeV
ELD with symmetry energy ∝ T (T + 4): RMSD = 1.430 MeV
This confirms the bulk T (T + 1) proportionality.



Nilsson-Strutinsky + HB + (interpolated) RPA (5)

Fitted to the T = 0 doubly odd-doubly even mass differences:

G = 8.6A−4/5 MeV .

Analysis as in Bentley, Frauendorf, op. cit. with the following
modifications.

I Doubly odd-doubly even mass differences are derived from the
empirical and calculated total masses.

I In the calculations of E (A, 1, 0)− E (A, 0, 0), 1/θ and X , the
liquid drop Columb energy is subtracted from both.



Results of Nilsson-Strutinsky + HB + (interpolated) RPA

1

Now, both E (A, 1, 0)− E (A, 0, 0) and 1/θ are reproduced on
average. Shell effects as before.



Remake of a shell model calculation

A = 48. Effective interactions from the literature.
Original calculation in the fp shell: Satuła et al., Phys. Lett. B
407, 103 (1997).
Remake in the 1f 7/2 shell: Bentley, Neergård, Frauendorf, op. cit.

J of included interactions 1/θ (MeV) X X/θ (MeV)
0 1 2 3 4 5 6 7 2.41 1.31 3.17
0 2 3 4 5 6 7 2.23 1.07 2.37
0 2 4 5 6 7 1.86 1.23 2.29
0 2 4 6 7 1.38 1.75 2.42
0 2 4 6 0.25 1.71 0.42

Satuła et al. noticed the drop of X/θ when the T = 0 interaction
is quenched and concluded that the T = 0 interaction is
responsible for the Wigner energy. It is seen that the drop of X/θ is
due to a drop of 1/θ and X increases.



Leaving T ≈ 0
It was a point above to keep the isobaric invariance. In particular,
neutron-proton average Nilsson levels were employed. This cannot
be upheld in moving away from T ≈ 0 towards a general theory.

Modifications to allow different neutron and proton spectra keeping
the calculations simple:

I The difference between the state vectors of a single neutron
and a single proton in orbits with equal ordinal number from
the bottom is neglected. That is, only the energies are
assumed different. Then the formulas for PRPA remain the
same.

I In P̃RPA, the smooth level density g̃(λ̃np) is replaced with
(g̃(λ̃n0) + g̃(λ̃p0))/2, where λ̃n0 and λ̃p0 are the smooth
neutron and proton chemical potentials for T = 0.

I In P̃RPA, the term |λ̃n − λ̃p|/2 is replaced with
|λ̃n − λ̃n0 + λ̃p0 − λ̃p|/2.



Results with different neutron and proton spectra (1)

I Upon refit of the liquid drop parameters, the RMSD of the
previous 112 masses drops from 0.950 MeV to 0.870 MeV.

I The changes in the combinations of masses are invisible in the
plots. See the next slide.



Results with different neutron and proton spectra (2)
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Conclusion of Strutinsky calculations and an outlook
I The Hartree-Bogolyubov plus Random Phase scheme is an

excellent approximation to the exact minimisation of the
paring force Hamiltonian except near the critical values of the
pairing force constant G .

I The singularities at the critical G can be remedied by
interpolation.

I Strutinsky renormalisation of the resulting theory enables an
accurate description of the masses near N = Z and the isospin
splitting in the N = Z doubly odd nuclei including a
microscopic Wigner energy.

I The variation with A of the Wigner X is well understood from
the shell structure.

I Easy modifications allow the theory to be extended to the
entire chart of nuclides and improve the fit to the masses near
N = Z .

I It is conceivable to replace the Strutinsky renormalisation with
a Hartree-Fock approach.


