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Computational Challenges 

in Nuclear and 
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Motivation 
“Take-home-message” 

 Scenario 1: A quantum wire described by a Heisenberg 𝑋𝑌𝑍 

chain in an external field 

 

𝐻 𝑋𝑌𝑍 =  𝐽𝑥𝜎 
𝑥
𝑖𝜎 

𝑥
𝑖+1 + 𝐽𝑦𝜎 

𝑦
𝑖𝜎 

𝑦
𝑖+1 + 𝐽𝑧𝜎 

𝑧
𝑖𝜎 

𝑧
𝑖+1 + ℎ𝜎 𝑧𝑖𝑖 . 

 

Local perturbation/quench. How is entanglement building up? 

 

 DMRG and MPS is doing the job for us… Up till some point! 

After that….  
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Motivation 
“Take-home-message” 

 Scenario 2: Map out the phase diagram of the 3D Heisenberg 

𝑋𝑌𝑍 model in an external field. Determine the critical exponents! 

 

 𝑁 sites → Hilbert space dimension 𝐷 = 2𝑁. 𝑁 = 1000 gives 

𝐷 = 300000000000000000000000000000000! 
 

Exponential growth of memory resources! 

(Record 2007: 𝑁 = 36) 
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FORGET 

IT!!! 



Motivation 
“Take-home-message” 

 Scenario 3: Ground state of the Fermi-Hubbard model in 2D 

and 3D. ”Sign problem” causes a mess for Monte-Carlo. 
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Motivation 
“Take-home-message” 
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Think twice which quantum problem you tell your 

student to solve/simulate! 



Motivation 
“Take-home-message” 
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”Let the computer itself be built of quantum 

mechanical elements which obey quantum 

mechanical laws.” 

Richard Feynman 

[1] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 



Motivation 
“Take-home-message” 
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 ”Quantum simulators” outrun classical computers (today!). 

 

 We will learn ”new physics” thanks to quantum simulators 

(soon). 

 

 ”There’s more to the picture than meets the eye”. There are not 

only quantum simulators that will result from this story… 

 

 

 

 
 

 

 

 



Outline 

1. Quantum computers. 

 

2. Quantum simulators.  

 

3. Realizations – State-of-the-art. 

 

4. Proposal for simulating spin models. 
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Quantum 

computers 

10 



The idea 

Digital quantum computer 
 

 Bits ”0” and ”1” → qubits |0  and |1 . 
 

”01001100101110…” → |ψ =  𝑐𝑖|𝑖1𝑖2…𝑖𝑁 𝑖 =0,1  
 

 Logic gates → quantum logic gate operations  
 

|ψ𝑜𝑢𝑡 =  𝑈 (𝑖)𝑖 |ψ𝑖𝑛 . 
 

Analog (continuous) quantum computer 
 

ψ𝑜𝑢𝑡 𝒙 , 𝑡𝑓 = 𝑈 𝒙 , 𝒑 , 𝑡𝑓 ψ𝑖𝑛 𝒙 , 0 = 𝑒−𝑖𝐻
 𝑡𝑓ψ𝑖𝑛 𝒙 , 0 . 

 

Adiabatic quantum computer 
 

𝜓0 𝑡 ;          
 

𝐻 𝑡 𝜓0 𝑡 = 𝐸0 𝑡 𝜓0 𝑡 ,         𝐻 𝑡 = 𝑡𝐻 1 + (1 − 𝑡)𝐻 2. 
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What we need 

Loss-DiVencezo criteria 
 

i. Well-defined  qubits, 

ii. State preparation, 

iii. Low decoherence/scaleability, 

iv. Gate operations, 

v. Measurement protocols. 
 

When does it become practical? 
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Factorizing 

(Shor) 

Classical computer 

(laptop) 

Quantum 

computer 

193 digits few months. 0.1 second 

500 digits 1012 years 2 minutes 

2048 digits Supercomputer; size of 

Sweden, 106 trillion $, 

consumes world’s supply of 

fossil fuels in on day. 10 

years.  

16 hours 

(106 qubits, 108 $) 



What we need 

Loss-DiVencezo criteria 
 

i. Well-defined  qubits      – Quantum dots, ions,…        

ii. State preparation – questionable. 

iii. Low decoherence/scaleability – No! Ions: 8-14 qubits (Blatt), 

Qdots: 5 qubits (Martinis). 

iv. Gate operations      (to some degree).  

v. Measurement protocols – questionable. 

 

 Quantum error correction. Encode the qubit in collective 

states of many ”phyical” qubits. → Increasing number of qubits. 

 

 Fault tolerance. How much errors do we afford and still achieve 

the goal? (> 99% gate fidelities). 
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Never say never 

14 

 Topological 

quantum 

computing. 

 

 Topological 

quantum 

computing. 

 

 Circuit QED. Fault 

tolerance single 

gates. 

 



Quantum 

simulators 
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Digital quantum computers → 

quantum simulators 
 Seth Lloyd:  
 

Any (local) Hamiltonian many-body evolution can be effectively simulated 

on a digital quantum computer via Trotter-decomposition. 
 

 A digital quantum computer with a universal set of gates → 

Universal digital quantum simulator (unitary Hamiltonian 

evolution). 
 

 Quantum error correction possible but costly (number of gate 

operations increases and simulations become slow, state-of-the 

art systems can imply time-scales of years!). 
 

 Non-local interactions problematic. 
 

 Generalizations to non-universal digital and open quantum 

simulators. Error corrections? 

 

 

 
 

 

 

 

16 S. Lloyd, Science 1996. 



Definition - quantum simulators 

Relevance – Simulated systems/models should have physical 
applications. Address open questions. 

Controllability – System parameters tunable, contol of 
preparation/initialization, evolution/manipulation and detection. 

Reliability – Measured results should be trustworthy. 

Efficiency – The solved problem should be difficult to solve on 
a classical computer.  

17 P. Hauke et al., Rep. Prog. Phys. 2012. 



Analog quantum simulators 

 Simulate time-evolution: 𝜌 (0) → 𝜌 (𝑡). 
 

 Closed quantum system, engineer 𝐻  such that |ψ(𝑡) =

𝑒−𝑖𝐻 𝑡|ψ(0) .  
 

 Continuous time-evolution, no Trotter-decomposition but also no 

error correction. 

 

 Note, we imagine also ground-state simulations 𝑡 → −𝑖𝑡. 
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Realizations – 

State-of-the-art 
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Trapped ions 

 Singled trapped ion, dressed with a laser 
 

𝐻 𝐼𝑜𝑛 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑒−𝑖𝜂 𝑎 ++𝑎 + 𝜎 −𝑒𝑖𝜂 𝑎 ++𝑎  

 

 Single out certain transions (Lamb-Dicke regime, 𝜂 ≪ 1) 

 

i. 𝐻 𝐽𝐶 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑎 + 𝑎 +𝜎 − ,    Red sideband 

ii. 𝐻 𝑎𝐽𝐶 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑎 + + 𝜎 −𝑎 ,   Blue sideband 

iii. 𝐻 𝑐𝑎𝑟 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 + + 𝜎 − ,      Carrier. 

 

 

 Enormous control! Gate fidelities of 99.9%. 
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Trapped ions 

 Quantum simulators → many ions. 

 

 Paul trapps → linear ion chains. 

 

 

 

 

 

 

 

 Blatt’s Insbruck-group. Controlled entanglement generation of 

up to 14 qubits! Full state tomography of 8 qubits (600 000 

experimental repetitions!). 
 

 

 

 
21 H. Häffner et al., Nature 2005. 



Trapped ions 

 Coloumb interaction → collective vibrational modes. 
 

 Eliminate vibrational modes: 
 

𝐻 𝑒𝑓𝑓 =  𝐽𝛼𝑖𝑗𝜎 
𝛼
𝑖𝜎 

𝛼
𝑗

𝛼,𝑖,𝑗

,                𝐽𝛼𝑖𝑗 ∝
1

𝑞𝑖 − 𝑞𝑗
𝛾 

 

 The power 0 ≤ 𝛾 ≤ 3 is in general controlable. 
 

 Monroe group: Frustration and signatures of phase transitions in 

3-16 ion chains (𝛾 = 1).   
 

 

 

 

22 D. Porras and I. J. Cirac., PRL 2004. 

Relevance – Probably. 

Controllability – Not fully. 

Reliability – Yes. 

Efficiency – No.  



Trapped ions 

 NIST group: ~300 ions in a Penning trap, 0 ≤ 𝛾 ≤ 1.4. 

 

 

 

 

 

 

 Coherent evolution by measuring 𝑀 =  𝜎 𝑧𝑖𝑖 . 

 

 

 
 

 

 

 

23 J. W. Britton et al, Nature 2013. 

𝛾 = 0 𝛾 = 3/2 𝛾 = 3 

Relevance – Probably. 

Controllability – No. 

Reliability – Yes. 

Efficiency – No.  



Cold atoms in optical lattices  

 Optical lattices: 
 

a. Ultracold atoms, bosons, fermions or mixtures. 

b. Standing wave laser fields → dipole coupling → periodic Stark 

shift potentials. 

c. Single-band approximation: atoms populate one energy band. 

d. Tight-binding approximation: tunneling to nearest neighbour. 

e. Onsite atom-atom interaction. 

 

 

 

 

 
 

 

 

 

24 I. Bloch et al., Rev. Mod. Phys. 2008. 

p-band 

𝑈 𝑡 

𝐻 𝐵𝐻 = −𝑡 𝑎 +𝑖𝑎 𝑗 + ℎ. 𝑐.

𝑖𝑗

+
𝑈

2
 𝑛 𝑖 𝑛 𝑖 − 1

𝑖

− 𝜇𝑁  Bose-Hubbard 

model 

s-band 

𝜇 = chemical potential 



Cold atoms in optical lattices  

 ”Mott-superfluid phase transition”. Ground state: 
 

𝑈 ≫ 𝑡   →    |ψ0(𝜇) ≈ |𝑛, 𝑛, … , 𝑛        ”Mott-insulator state” 
 

𝑡 ≫ 𝑈   →    |ψ0(𝜇) ∝ 𝑎 +𝑘=0
𝑁|0        ”Superfluid state” 

 

 “Time-of-flight”  measurements. 
 

 

25 M. Greiner et al., Nature 2002. 

Relevance – Maybe. 

Controllability – Yes. 

Reliability – Yes. 

Efficiency – No.  



Cold atoms in optical lattices  

 Initialize 

 

 

 

 

 
 

 Single-site-addressing – population of every even site. 
 

 DMRG calculations, no fitting parameters! 
 

 

 

26 A. Flesch et al., Nature 2012. 

|ψ(0) = |1,0,1,0,1,…   

Relevance – Maybe. 

Controllability – Yes. 

Reliability – Yes. 

Efficiency – Yes.  



Proposal for 

simulating spin 

models 
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Cold atoms in excited bands  

 Spin models → we need quasi degenerate (atomic) levels. 
 
 

1) Internal Zeeman levels (L.-M. Duan et al., PRL 2003). Typically 

𝑋𝑋𝑍–models. 
 

2) Tilted lattices. Transverse Ising-model (J. Simon et al., Nature 

2011). One dimension. 
 

3) Polar molecules in optical lattices (A. Micheli et al., Nature 

2006). Inherently “long-range”. 

 

 Use the quasi degenerate states of excited bands, p-bands. 
 

 

 

28 F. Pinheiro et al., PRL 2013. 

p-band 

𝑡 

s-band 



Cold atoms in excited bands  

 Two dimensional square isotropic lattice, bosons. 

 

 p-band: Two degenerate atomic orbitals, 𝑝𝑥-orbital and 𝑝𝑦-

orbital.  
 

 

 

 

 

 

 

 

 

 

 

 

 Tunneling anisotropic due to orbital shape. 
 

 29 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Kinetic part 

 

𝐻 𝑘𝑖𝑛 = −  𝑡𝛼𝛽𝑎 
+
𝛼𝑖𝑎 𝛼𝑗𝑖𝑗𝛼,𝛽 . 

 

 Interaction parts 

 

𝐻 𝑑𝑒𝑛𝑠 =   
𝑈𝛼𝛼

2
𝑛 𝛼𝑖 𝑛 𝛼𝑖 − 1𝑖𝛼 +   𝑈𝛼𝛽𝑛 𝛼𝑖𝑛 𝛽𝑖𝑖𝛼≠𝛽 , 

 

𝐻 𝑜𝑐 =   
𝑈𝛼𝛽

4
𝑎 +𝛼𝑖𝑎 

+
𝛼𝑖𝑎 𝛽𝑖𝑎 𝛽𝑖 + ℎ. 𝑐.𝑖𝛼≠𝛽 . 

 

 𝐻 𝑜𝑐 - “orbital changing term” (Two 𝛼-orbital atoms scatter into 

two 𝛽-orbital atoms). 
 

 

30 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Recepie: 

 
1) Mott-insulator (𝑛𝑖 = 1). 

2) Perturbation theory in 𝑡 𝑈 . 

3) Schwinger spin-boson mapping. 

 

 Result: Heisenberg 𝑋𝑌𝑍-model 

 
𝐻 𝑋𝑌𝑍 = 𝐽 1 + 𝛾 𝜎 𝑥𝑖𝜎 

𝑥
𝑗 + 1 − 𝛾 𝜎 𝑦𝑖𝜎 

𝑦
𝑗 +𝑖𝑗 ∆ 𝜎 𝑧𝑖𝜎 

𝑧
𝑗𝑖𝑗 + ℎ 𝜎 𝑧𝑖𝑖 . 

 

 Non-integrable in the general case → promising quantum simulator. 
 

 

31 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Comments: 

 
1. Phase diagram in 1D fairly known. 

 

2. Beyond tight-binding → 

Dzyaloshinskii-Morya terms. 
 

3. Different lattice configurations → 

Dzyaloshinskii-Morya terms. 
 

4. Three dimensions → 𝑆𝑈(3) models. 
 

5. Spinor atoms  →  𝑆𝑈(𝑛) × 𝑆𝑈(𝑚) 
models. 
 

6. d-band →  spin-1 models (also for 

𝑛 = 2 Mott on the p-band). 
 

7. Including s-band atoms → disordered 

models (many-body localization). 

 

 
32 F. Pinheiro et al., PRL 2013. 



Summary 

 Classical vs. Quantum choas. 
 

 Possibilities to study closed quantum dynamics. 
 

 Equilibration and thermalization. 
 

 Not well understood: 
i. Criteria for equilibration/thermalization. 

ii. Mechanism behind thermalization. 

iii. Definition for “Quantum integrability”. 

iv. Open systems… 

33 

Thanks! 


