Odd frequency pairing in hybrids and muliband superconductors

A. V. Balatsky

http://theory.lanl.gov

Outline

- Introduction to odd-frequency pairing
- Odd-frequency pairing in Dirac Materials: e.g. topological insulators (TIs)-SC hybrid structures
- Odd-frequency pairing in multiband superconductors
- Odd frequency BEC

Symmetry of the Order
Parameter
The superconducting anomalous pairing
function is
$$\Delta_{\alpha\beta}(k,\tau) = \langle Tc_{\alpha}(\tau)c_{\beta}(0) \rangle$$
. Due to Fermi
statistics
 $\Delta_{\alpha\beta}(\mathbf{k}) = -\Delta \phi_{\alpha}(-\mathbf{k})$

$$\Delta_{\alpha\beta}(\mathbf{k}) = -\Delta_{\beta\alpha}(-\mathbf{k})$$
orbital

$$\Delta_{\alpha\beta}(\mathbf{k}) = \Delta_0 e^{i\varphi} \eta(\mathbf{k}) \chi_{\alpha\beta}$$

spin

spin-singlet s-wave $\Delta_{\alpha\beta}(\mathbf{k},\omega) = -\Delta_{\beta\alpha}(-\mathbf{k},-\omega)$

The pair function can also be odd in time/frequency: 11

[1]: Berezinskii, JETP Lett. 20, 287 (1974)

• P. Coleman

• A. Tsvelik

Y. Tanaka •

M. Eschrig •

V. Emery

T. Kirkpatrick

S. Kivelson

K. Efetov

D.Belitz

Bifurcating symmetries of SC
order: odd frequency classV. L. Berezinskii, JETP Lett. 20, 287(1974)

 $\Delta_{\alpha\beta}(\tau,k) = \langle T_{\tau}c_{\alpha,k}(\tau)c_{\beta,-k}(0)\rangle,$

 $\vec{\Delta}(\tau,k) = (i\hat{\sigma}\vec{\sigma})_{\alpha\beta}\Delta_{\alpha\beta}(\tau,k).$

 $\Delta(k,\tau) = \Delta(-k,-\tau), S = 0$ $PT\Delta(k,\tau) = \Delta(k,\tau)$ PT = 1

 $\vec{\Delta}(k,\tau) = -\vec{\Delta}(-k,-\tau), S = 1$

BCS class: P =+1 T =+1 (even parity singlet) Odd-frequency SC P = -1 T = -1 (odd parity singlet) EA, AVB PRB45, p13125 (1992)

Classification $PT[\Delta(\mathbf{r},\tau)] = \Delta(\mathbf{r},\tau)$ PT = +1S=0P = -1, T = -1P = +1, T = +1p-waves - wavetime odd *time* even odd-frequency pairing BCS pairing

$$PT[\vec{\Delta}(\mathbf{r},\tau)] = \vec{\Delta}(\mathbf{r},\tau)$$

$$PT = -1$$

$$S = 1$$

$$P = -1, T = +1$$

$$P = +1, T = -1$$

$$S = wave$$
time even
$$S = wave$$
time odd triplet
odd-frequency pairing

Possible symmetries

In simple terms

 Exists: spin singlet p-wave, oddfrequency

 Exists: spin triplet s-wave, odd frequency

Two layer(band) SC: parity vs spin

Layer index a,b = 1,2

A.Leggett, ~1995

One always needs another index: 1.extra neutral boson 2.orbital or band 3. or time

Mechanism - e-boson interaction

Odd frequency

$$\mathcal{D}\left(\vec{k},\omega\right) = \int \frac{A_{\vec{k}}\left(\tilde{\omega}\right)d\,\tilde{\omega}}{\tilde{\omega}^{2}+\omega^{2}}$$
$$A_{\vec{k}-\vec{k}'}(\omega) = J_{0}\omega_{D}^{2}\delta(\omega-\omega_{D}) + J_{1}\hat{k}\cdot\hat{k}'\omega_{D}^{2}\delta(\omega-\omega_{D})$$

IR theory

Absence of conventional ODLRO

 $\left\langle \psi_{\uparrow}^{\dagger}(r_{1}t_{1})\psi_{\downarrow}^{\dagger}(r_{2}t_{2})\psi_{\uparrow}(r_{3}t_{3})\psi_{\downarrow}(r_{4}t_{4})\right\rangle \sim \left\langle \psi_{\uparrow}^{\dagger}(r_{1}t_{1})\psi_{\downarrow}^{\dagger}(r_{2}t_{2})\right\rangle - \left\langle \psi_{\uparrow}(r_{3}t_{3})\psi_{\downarrow}(r_{4}t_{4})\right\rangle$

$$\Delta(r,t)=0$$
 at $t=0$

No Cooper wave function

Why odd frequency state is interesting: Satisfies no double occupancy constraints

$$\left\langle \psi_{\uparrow}^{+}(r_{1}t)\psi_{\downarrow}^{+}(r_{1}t)\right\rangle = \sum_{k,\omega}\Delta(k,\omega) = 0$$

Insensitive to pseudo Coulomb μ^* In gap equation in contrast to standard BCS Swave

Experimental Evidence: examples

R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature (London) 439, 825 (2006).

Experimental Evidence: examples 2

N. Birge etal, PRL 104, 137002 (2010)

Low-Field Superconducting Phase of (TMTSF)2CIO4

F. Pratt, T. Lancaster, S. Blundell, and C. Baines

Phys. Rev. Lett. 110 107005 (2013)

3He Superfluid example

PRL 110, 175301 (2013)

PHYSICAL REVIEW LETTERS

week ending 26 APRIL 2013

Magnetic Response of Odd-Frequency s-Wave Cooper Pairs in a Superfluid Proximity System

Singlet SCFMImage: Singlet SCImage: Sin

Spin-singlet s-wave pairing in the SC converted into

[1]

odd-frequency spin-triplet s-wave pairing in the FM

- Requires magnetic inhomogeneity or interface magnetization
- Long-range superconducting proximity effect in the FM
- s-wave = robust against impurities

SIN Interface

Spin-singlet s-wave pairing in the SC converted into

odd-frequency spin-singlet p-wave pairing

- Interface generates *p*-wave pairing
- Only high-transparency junctions
- *p*-wave = only in ballistic systems

[1]: Tanaka et al, PRL 99, 037005 (2007)

Remaining and unexpected puzzles: known and unknown unknowns

Remaining issues, absent in the discussion

- Any observed phase transition typically triggers the questions:
- Order parameter of odd-frequency SC, equal time expectation value
- Wave function and GL functional

[1]: Abrahams et al, PRB 52, 1271 (1995) [2]: Dahal et al, NJP 11, 065005 (2009),

Odd-frequency Pairing Order Parameter BCS order parameter:

$F(\mathbf{r},t;\mathbf{r}',t'\to t) = \langle \psi(\mathbf{r},t)\psi(\mathbf{r}',t'\to t)\rangle$

Equal-time odd-frequency order composite operator : pair+Boson_[1,2] is an order parameter: $\frac{dF(\mathbf{r},t;\mathbf{r}',t')}{dt}\Big|_{t=tt'}$

Theory proposals for odd-frequency bulk superconductors exists (e.g. composite boson condensate: Cooper pair + magnon [1,2]) but most interest have been focused on interfaces

[1]: Abrahams et al, PRB 52, 1271 (1995) [2]: Dahal et al, NJP 11, 065005 (2009) [3] Coleman Tsvelik 1994, [4] Tanaka Golubov 2007

Order parameter in oddfrequency SC- composite boson

Thus we can take time derivative to obtain equal time expectation value

$$|K = \partial_{\tau} \Delta(\tau)|_{\tau \to 0} = \langle T_{\tau} \partial_{\tau} c_{\uparrow}(\tau) c_{\downarrow}(0) \rangle = \langle T_{\tau} [H, c_{\uparrow}], c_{\downarrow} \rangle|_{\tau = 0}$$

$$[H, c_{\alpha i}] = -t_{ij}c_{\alpha j} + J\vec{S}\vec{\sigma}_{\alpha\beta}c_{\beta i}$$

Janes Bonca+ AVB, PRB (95)

Composite boson condensate

$$i\frac{\partial F_{\mathbf{k}}}{\partial \tau}\bigg|_{\tau=0} = \langle i\dot{c}_{\mathbf{k}\uparrow}c_{-\mathbf{k}\downarrow}\rangle = \sum_{n=-\infty}^{\infty} \omega_n F_{\mathbf{k}}(\omega_n)$$

For the spin-fermion Hamiltonian

$$H = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \eta_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} J_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \cdot \sigma_{\alpha\beta} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}-\mathbf{q},\beta}$$

one has

$$i\dot{c}_{\mathbf{k}\uparrow} = \varepsilon_{\mathbf{k}}c_{\mathbf{k}\uparrow} + \sum_{\mathbf{q}} J_{\mathbf{q}}\mathbf{S}_{\mathbf{q}} \cdot \sigma_{\uparrow\beta}c_{\mathbf{k}-\mathbf{q},\beta}$$

Therefore,

$$\begin{pmatrix} i \frac{\partial}{\partial \tau} - \varepsilon_{\mathbf{k}} \end{pmatrix} F_{\mathbf{k}} = \bar{\lambda}_{\mathbf{k}}(\tau) \equiv \sum_{\mathbf{q}} J_{\mathbf{q}} \langle \mathbf{S}_{\mathbf{q}} \cdot \sigma_{\uparrow \beta} c_{\mathbf{k}-\mathbf{q},\beta} c_{-\mathbf{k}\downarrow} \rangle$$

2e pair + boson

K

2e pair + 2 boson

Bonca PRB'92 J R Schrieffer et al, J Superconductivity '95

In simple terms

 Exist: spin singlet p-wave, oddfrequency

• Exist: spin triplet s-wave, odd frequency

Equal-time operator (oddfrequency) (t-J model case) OSO (odd-frequency spin-singlet oddparity) $\Delta^{odd}_{singlet} \propto (\vec{S}_{i-1} + \vec{S}_{i+2})(\sigma^y \vec{\sigma})_{\alpha\beta} c_{i,\alpha} c_{i+1,\beta}$ Berezinskii (odd-frequency spin-triplet even-parity) $\Delta^{odd}_{triplet,Sz=0} \propto (\vec{S}_{i-1}(\sigma^x \vec{\sigma})_{\alpha\beta} - \vec{S}_{i+2}(\sigma^x \vec{\sigma})_{\beta\alpha})c_{i,\alpha}c_{i+1,\beta}$ $\Delta^{odd}_{triplet,Sz=\pm1} \propto (\vec{S}_{i-1}(\sigma \pm \sigma^z \vec{\sigma})_{\alpha\beta} - \vec{S}_{i+2}(\sigma \pm \sigma^z \vec{\sigma})_{\beta\alpha})c_{i,\alpha}c_{i+1,\beta}$

Balatsky Bonca PRB 48 7445 (1992)

BCS case $\mathbf{1} = g \log \frac{\hbar \omega_{c} + \sqrt{\Delta^{2} + \hbar \omega_{c}^{2}}}{1}$ $1 = V \int p^2 dp \left\langle S^- S^+ \right\rangle_p \log \frac{\varepsilon_c(p) + \sqrt{K^2 + \varepsilon_c(p)^2}}{f(p) + \sqrt{K^2 + f(p)^2}}$ $\mathcal{E}_{C}(p) = \frac{\varepsilon_{k+\frac{q}{2}} + \varepsilon_{k-\frac{q}{2}}}{2} + \frac{\omega_{q} \left\langle S^{-}S^{+} \right\rangle_{q}}{2}$ $\mathcal{M}(\mathbf{K}) = \mathcal{M}(\mathbf{V}) \mathcal{M}(\mathbf{K})$

Integral over momentum corresponding to this extra diagram softens the BCS log-divergence.

Coherent state

$$\left| \Psi_{ODD,S=0} \right\rangle = \prod_{kq} \left(u_{kq} + v_{kq} c_{k+\frac{q}{2}\downarrow}^{+} c_{-k+\frac{q}{2}\downarrow}^{+} S_{q}^{+} \right) \left| 0 \right\rangle$$
$$\left| 0 \right\rangle = \left| vac_{fermion} \right\rangle \left| PM_{spin} \right\rangle$$

Coherent state that describes condensate 2e and spin triplet

$$\left\langle \Psi_{odd,S=0} \left| c^{+}_{k+\frac{q}{2}\downarrow} c^{+}_{-k+\frac{q}{2}\downarrow} S^{+}_{q} \right| \Psi_{odd,S=0} \right\rangle = K \quad \text{ODLRO}$$

е

е

Composite K order (No Cooper) Instability

Takes three particles to form A condensate e

BCS (Cooper)

е

Explicit proof of existence of a new class of SC:

$$\begin{aligned} \left| \Psi_{ODD,S=0} \right\rangle &= \prod_{kq} \left(u_{kq} + v_{kq} c_{k+\frac{q}{2}\downarrow}^{+} c_{-k+\frac{q}{2}\downarrow}^{+} S_{q}^{+} \right) \left| 0 \right\rangle \\ \left| \Psi_{BCS,S=0} \right\rangle &= \prod_{k} \left(u_{k} + v_{k} c_{k\uparrow}^{+} c_{-k\downarrow}^{+} \right) \left| 0 \right\rangle \\ \left\langle \Psi_{ODD,S=0} \right\| \left| \Psi_{BCS,S=0} \right\rangle &= \left\langle 0 \left| 0 \right\rangle \prod_{kk'q} \left(u_{k} u_{k'q} \right) \rightarrow 0_{N \to \infty} \right\rangle \end{aligned}$$

Both states are spin singlet S =0 yet they have zero overlap with BCS wf for macrosopic state. This proves that there is a spin singlet state that is qualitatively different then The conventional BSC state! It is an odd frequency S = 0 superconductor with the wave function

$$\Psi_{ODD,S=0} \rangle = \prod_{kq} (u_{kq} + v_{kq} c^{+}_{k+\frac{q}{2}\downarrow} c^{+}_{-k+\frac{q}{2}\downarrow} S^{+}_{q}) |0\rangle$$

How to get BCS results from the current formulation

BCS limit can be recovered at any stage of this analysis if we assume that spin correlators are factorized and have a peak at $\mathbf{q} = 0$. This limit corresponds to the condensation of spin field $\langle S^-S^+ \rangle_{\mathbf{q}} = \langle S^- \rangle_{\mathbf{q}} \langle S^+ \rangle_{\mathbf{q}} \delta_{\mathbf{q},0}$. In this limit additional summation over \mathbf{q} drops out and we recover standard BCS logarithm in selfconsistency equation along with other features of BCS solution. This limit corresponds to the factorizitation of composite boson into product $\langle \psi | c^{\dagger}_{\mathbf{k}+\frac{\mathbf{q}}{2}\uparrow} c^{\dagger}_{-\mathbf{k}+\frac{\mathbf{q}}{2}\downarrow} S^+_{\mathbf{q}} | \psi \rangle \rightarrow \langle \psi | c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} | \psi \rangle \langle \psi | S^+_{\mathbf{q}} | \psi \rangle \delta_{\mathbf{q},0}$.

Composite Fermions

QHE: Composite state of Fermion + Boson (Flux tubes)

Boson attached to pair

Topological Insulator (TI) Surface state of a topological insulator – Dirac Material = nodal spectrum – Momentum locked to spin

Spin-singlet s-wave superconductor + TI: odd-frequency spin-triplet s-wave pairing Symmetry breaking through:

- Dirac surface state
- In-surface gradient in the superconducting gap

Black-Schaffer and Balatsky, PRB 86, 144506 (2012)

Analytic Derivation Anomalous Green's function in the TI:

 $F_{\mathrm{TI},\alpha\beta}(\tau|\mathbf{k},\mathbf{k}') = -i\langle T_{\tau}c_{\alpha}(\tau,\mathbf{k})c_{\beta}(0,\mathbf{k}')\rangle$

$$\hat{F}_{\text{TI}}(\omega_n|i,i) = -|T|^2 \sum_{j,l} \hat{G}^0(\omega_n|i,j) \hat{F}(j,l) \hat{G}^0(\omega_n|l,i)$$

$$\begin{split} \hat{G}^{0}(\omega_{n},\mathbf{k}) &= \frac{\mathbf{k}\cdot\boldsymbol{\sigma} - i\omega_{n}}{\mathbf{k}^{2} + \omega_{n}^{2}} \\ \hat{F}(\omega_{n},\mathbf{k}) &= \frac{\hat{\Delta}(i)}{\omega_{n}^{2} + \varepsilon^{2}(\mathbf{k}) + \hat{\Delta}(i)^{2}} \\ \Delta(\mathbf{k}) &= \Delta_{0}\delta_{\mathbf{k},0} + i\frac{\partial\Delta}{\partial x}|_{0}\partial_{\mathbf{k}_{x}} \end{split}$$

Order parameter for odd-frequency pairing:

$$\hat{F}_{\mathrm{TI}}(\omega_{n}|i=0) = \sum_{\mathbf{k}} \frac{|T|^{2} \omega_{n} \hat{\sigma} \partial_{x} \hat{\Delta}|_{0}}{2[\omega_{n}^{2} + \varepsilon(\mathbf{k})^{2} + \Delta^{2}(0)](\omega_{n}^{2} + \mathbf{k}^{2})^{2}} \longrightarrow \partial_{\tau} \hat{F}_{\mathrm{TI}}(\tau|i)|_{0} \sim \frac{\partial \Delta}{\partial x} \\ \sim |T|^{2} \omega_{n} \sigma^{z} \partial_{x} \Delta|_{0} / (E_{F}^{2}|\omega_{n}|^{2})$$

Odd-frequency spin-triplet s-wave pairing

For spatially inhomogenous SCs

<u>– 1/ω dependence</u>

Black-Schaffer and Balatsky, PRB 86, 144506 (2012)

SIN Junction in a 2D TI

Kane-Mele 2D TI

10

v

0

Spin-triplet *s*-wave pairing:

 ∂F_s

 ∂x

 $\partial_{\tau} F_t|_0 \sim$

Black-Schaffer and Balatsky, PRB 86, 144506 (2012)

-20

x

0

Odd frequency Multiband Superconductors • Spin-singlet (S = 0) or spin-triplet (S = 1)

- Space parity P (s-, d- or p-wave)
- Even or odd-frequency dependence T
- Orbital parity O (band index permutation)

S = 0	Р	Т	Ο	S = 1	Р	Т	0
$\operatorname{even-}\omega$	+	+	+	even- ω	_	+	+
$\operatorname{even-}\omega$	_	+	—	even- ω	+	+	—
$\mathrm{odd} extsf{-}\omega$	+	_	—	odd- ω	+	—	+
$\mathrm{odd} extsf{-}\omega$	_	_	+	odd- ω	_	_	_

Spin-singlet *s*-wave: TO = +1

Black-Schaffer and Balatsky, arXiv:1305.4593, PRB 2013

Black-Schaffer and Balatsky, PRB 87, 220506(R) (2013), [1]: Rosenberg and Franz, PRB 85, 195119 (2012)

Odd frequency SC in any Generic Two-Band SC? Yes.

Bands (orbitals) a & b with finite interband hybridization/scattering Γ :

$$H_{ab} = \sum_{\mathbf{k}\sigma} \varepsilon_a(\mathbf{k}) a^{\dagger}_{\mathbf{k}\sigma} a_{\mathbf{k}\sigma} + \varepsilon_b(\mathbf{k}) b^{\dagger}_{\mathbf{k}\sigma} b_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma} \Gamma(\mathbf{k}) a^{\dagger}_{\mathbf{k}\sigma} b_{\mathbf{k}\sigma} + \text{H.c.}$$
$$+ \sum_{\mathbf{k}} \Delta_a(\mathbf{k}) a^{\dagger}_{\mathbf{k}\uparrow} a^{\dagger}_{-\mathbf{k}\downarrow} + \Delta_b(\mathbf{k}) b^{\dagger}_{\mathbf{k}\uparrow} b^{\dagger}_{-\mathbf{k}\downarrow} + \text{H.c.}$$

$$\begin{split} H_{cd} &= \sum_{\mathbf{k}\sigma} \varepsilon_{c}(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \varepsilon_{d}(\mathbf{k}) d_{\mathbf{k}\sigma}^{\dagger} d_{\mathbf{k}\sigma} \\ &+ \sum_{\mathbf{k}} \Delta_{c}(\mathbf{k}) c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \Delta_{d}(\mathbf{k}) d_{\mathbf{k}\uparrow}^{\dagger} d_{-\mathbf{k}\downarrow}^{\dagger} + \text{H.c.} \\ &+ \sum_{\mathbf{k}} \Delta_{cd}(\mathbf{k}) (c_{\mathbf{k}\uparrow}^{\dagger} d_{-\mathbf{k}\downarrow}^{\dagger} + d_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}) + \text{H.c.} \end{split}$$

Diagonal bands Intraband pairing Interband pairing = $\Delta_{cd} = \frac{(\Delta_b - \Delta_a)|\Gamma|}{\sqrt{(\varepsilon_a - \varepsilon_b)^2 + 4|\Gamma|^2}}$

Black-Schaffer and Balatsky, arXiv:1305.4593, PRB 2014

Feynman Diagrams

 $F_{cd}(\omega, r) \sim G_c(-\omega, -r)\Gamma F_d(\omega, r) + G_c(\omega, r)\Gamma F_d(-\omega, -r)$ $\sim (-i\omega - \varepsilon_c)\Gamma \Delta_d + (i\omega - \varepsilon_d)\Gamma \Delta_c + \dots \sim i\omega\Gamma(\Delta_d - \Delta_c)$

Odd frequency means hybridization induced component here

Time-dependent Pairing

Time-ordered s-wave interband pairing:

$$F^{\pm}(\tau) = \frac{1}{2N_{\mathbf{k}}} \sum_{\mathbf{k}} \mathcal{T}_{\tau} \langle c_{-\mathbf{k}\downarrow}(\tau) d_{\mathbf{k}\uparrow}(0) \pm d_{-\mathbf{k}\downarrow}(\tau) c_{\mathbf{k}\uparrow}(0) \rangle$$

$$F^e = F^+(\tau \to 0^+)$$

Even-frequency, even-interband pairing

$$F^o_{\omega} = \frac{\partial F^-}{\partial \tau} \bigg|_{\tau \to 0^+}$$

Odd-frequency, odd-interband pairing

Black-Schaffer and Balatsky, arXiv:1305.4593

Odd-Frequency, Odd-Interband Pairing

LDOS of *p*-wave SCs - Bi₂Se₃ *p*-wave SC in TI surface is gapless: $\varepsilon(\mathbf{k}) = \pm \left[v_F |\mathbf{k}| \pm \sqrt{\mu^2 + |\Delta(\mathbf{k})|^2} \right]_{[1]}$

Superconductor		Even			
Γ	Basis function	J_z	Even-orbital	Odd-orbital	
A _{1u}	$\mathbf{d}=(k_x,k_y,0)$	0	A _{1u} triplet (m _s = ± 1)	A_{1g} triplet (m _s =) Ur	ngapped [2]
A_{2u}	$\mathbf{d}=(k_y,-k_x,0)$	0	A _{2u} triplet (m _s = ± 1),	_	HERE ALL ALL SERVICE
			A_{1g} singlet 9	apped	
B_{1u}	$\mathbf{d}=(k_x,-k_y,0)$	$ \pm 2 $	B_{1u} triplet (m _s = ±1),	B_{1g} triplet (m _s = 0)	
			B_{2g} singlet		
B_{2u}	$\mathbf{d}=(k_y,k_x,0)$	$ \pm 2 $	B_{2u} triplet ($m_s = \pm 10$	dal B_{2g} triplet (m _s = 0)	
			B_{1g} singlet		
$ E_{2u}^+ $	$\mathbf{d} = (0, 0, k_x + ik_y)$	1	$E_{2u}^+ \text{ triplet } (m_s = 0)$	A_{1g} triplet (m _s = 1),	
				$B_{1g} + iB_{2g}$ triplet (m _s = -1)	
$ E_{2u}^- $	$\mathbf{d} = (0, 0, k_x - ik_y)$	-1	$ E_{2u}^- \text{ triplet } (m_s = 0) $	A _{1g} triplet (m _s = -1),	Jungappe
				$B_{1g} - iB_{2g}$ triplet (m _s = 1)	

Black-Schaffer and Balatsky, PRB 87, 220506(R) (2013) [1]: Linder et al PRL 104, 067001 (2010), [2]: Hao and Lee, PRB 83, 134516 (2011) Reciprocity
Odd-f and odd-band
PTO = -1(F) +1(B)

Choose particular P = +1

TO = -1(F) +1(B)
T ->-T implies O->-O

Start with the multicomponent(multilayers, multi band)

Start with the multicomponent (multilayers, multi band) boson gas, b_a(r,t) operators a- flavor, layer, spin , hyperfine state index. Analogous to spin-nematic (Andereev Grischuk 1984)

$$1. < b_a >= 0$$

$$2.D_{ab}(r,t) = < T_t b_a(r,t) b_b(0,0) > \neq 0$$

can be nontrivial function, but as long as it is finite there is a condensate.

$$b_a(r,t) \rightarrow e^{i\theta} b_a(r,t)$$

 $D_{ab}(r,t) \rightarrow e^{i2\theta} D_{ab}(r,t) - boson - nematic order$

similar to fermions

$$D_{ab}(r,t) = D_{ba}(-r,-t)$$

$$PTO = +1$$

$$T P O$$

$$+1 +1 +1$$

$$+1 -1 -1$$

$$-1 +1 -1$$

$$-1 -1 +1$$

Balatsky, arXiv:1409.487 5 Odd-frequency Two Particle Bose-Einstein Condensate

Definition of the order parameter for odd frequency pair BEC

$$H = \varepsilon_a b^*{}_a b_a + V_{ab} n_a n_b + t_{ab} (b^*{}_a b_b + hc)$$

$$D_{ab} (r, t = 0) = 0$$

$$\partial_t D_{ab} (r - r', t = 0) \neq 0 \rightarrow$$

$$d_{ab} = \langle \partial_t b_a (r, 0) b_b (r', 0) \rangle \neq 0 \text{ is an order parameter}$$

$$\partial_t b_a = b_a V_{ab} n_b + t_{ab} b_b$$

 $d_{ab} = \langle b_a(r,0)b_b(r',0) \rangle \rightarrow \text{off diagonal interflavor (interlayer) condensate!}$ this state can exist.

Hence odd frequency boson nematic state can exist.

Reciprocity for bosons

Even interband BEC even-f BEC

Odd interband BEC odd-f BEC

Multiband interacting boson models would be a good candidate.

Odd fellows ODD FELLOWS A Brown D. Julgino TA=-A

References of more works in odd frequency superconductivity

- "Realization of Odd-Frequency *p*-Wave Spin–Singlet Superconductivity Coexisting with Antiferromagnetic Order near Quantum Critical Point" Yuki Fuseya, Hiroshi Kohno, and Kazumasa Miyake, J. Phys. Soc. Jpn. **72**, 2914(2003)
- "Possible realization of odd-frequency pairing in heavy fermion compounds", P. Coleman, E. Miranda, and A. Tsevelik, Phys. Rev. Lett. **70**, 2960 2963 (1993).
- "Odd-frequency pairing in the Kondo lattice", P. Coleman, and E. Miranda, Phys. Rev. B **49**, 8955 8982 (1994)
- "Identifying the odd-frequency pairing state of superconductors by a field-induced Josephson effect" Jacob Linder, Takehito Yokoyama, and Asle Sudbo, Phys. Rev. B **77**, 174507 (2008).
- "Nesting, spin fluctuations, and odd-gap superconductivity in NaxCoO2.yH2O.", Johannes MD, Mazin II, Singh DJ, Papaconstantopoulos DA, Phys. Rev. Lett. **93**, 097005(2004).
- "Quantum transport in a normal metal/odd-frequency superconductor junction", Jacob Linder, Takehito Yokoyama, Yukio Tanaka, Yasuhiro Asano, and Asle Subdo, Cond-mat/0712.0443.
- 4) "Manifestation of the odd-frequency spin-triplet pairing state in diffusive ferromagnet/superconductor junctions." T. Yokoyama, Y. Tanaka, and A. A. Golubov, Phys. Rev. B 75, 134510(2007).
- "Anomalous Josephson Effect between Even- and Odd-Frequency Superconductors", Yuko Tanaka, Alexander A. Golubov, Satoshi Kashiwaya, and Masahito Ueda, Phys. Rev. Lett. **99**, 037005(2007).
- "Odd-frequency pairing in normal-metal/superconductor junctions." Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76, 054522(2007).

"Odd-frequency pairing in binary boson-fermion atom mixture", Ryan M. Kalas, Alexander Balatsky, and Dimitry Mozyrsky, cond-mat/0806.0419., PRB 2009.

Summary of previous works establishes the idea of the composite pairing

- New class of singlet superconductors which break the time reversal and parity, Alexander Balatsky, and Elihu Abrahams, PRB 45, 13125(1992).
 Proposal of the odd-frequency spin-singlet p-wave superconductivity. e-ph interaction is tried and realized that it can not mediate the odd frequency superconductivity
- Interactions for odd-ω-gap singlet superconductors Elihu Abrahams, Alexander Balatsky, J. R. Schrieffer, and Philip B. Allen, PRB 47, 513(1993)
 Proposal of a spin dependent electron-electron interaction. Does not face the problem that e-ph interaction faces.
- 3) Odd Frequency pairing in Superconductors,
 - J. R. Schrieffer, Alexander Balatsky, Elihu Abrahas, and Douglas J. Scalapino, Journal of Superconductiviy 7, 501(1994). Using equation of motion it is shown that the condensate of the odd-frequency pairing consists of two fermions and a boson (composite).
- 4) Even- and odd-frequency pairing correlations in the one-dimensional *t-J-h* model: A comparative study, A. V. Balatsky, and J. Bonca, Phys. Rev. B 48, 7445 7449 (1993).
 Binding of Cooper pairs with magnetization fluctuations naturally appears in this model.
- 5) Properties of odd-gap superconductors, Elihu Abrahams, Alexander Balatsky, D. J. Scalapino and J. R. Schrieffer, Phys. Rev. B **52**, 1271 (1995).
- 6) H. Daha et al, New J. Phys. 11 (2009) 065005. wave function and QP energy and DOS calculation
- 7) A. Black-Schaffer and A.V. Balatsky, PRB 86, 144506 (2012)
- 8) A. Black-Schaffer and A.V. Balatsky, PRB 87, 220506(R) (2013)

V. Berezinskii

=> Odd Fellows

E. Abrahams

D. Scalapino

J.R. Schrieffer

A. Black-Schaffer, UU
H. Dahal APS
J. Bonca JSI
D. Mozyrsky LANL
E. Abrahams, Rutgers/UCLA
JR Schrieffer U Florida
D. Scalapino UCSB

Summary

 Odd-frequency pairing in multiband superconductors

 Odd-frequency, odd-interband pairing always exists if there is finite interband hybridization

- Finite interband hybridization (scattering) + non-identical intraband pairing
- TI + SC hybrid structures
- Graphene with sublattice symmetry breaking
- Iron-pnictides, heavy fermion superconductors, MgB₂?

Summary and future

- Ubiquity of odd-frequency states. Need spectroscopy: Fish are the last to notice the water
- Order parameter and wf for odd-frequency pairing

e

e

$$\frac{\mathrm{d}F(\mathbf{r},t;\mathbf{r'},t')}{\mathrm{d}t}\Big|_{t\to t'}$$

- Odd frequency is ubuquitous in multiband superconductors: TO= +1, FeSe, MgB2, Gr/substrate.
- Investigate the nature of SC and competing states at interfaces (LaAIO/STO – multiband SC).