Unconventional Coupled Cluster Theories
for Strong and Weak Correlations
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coupled cluster theory



CCSD(T)
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H=e"He; E=<0|ﬁ|0>; O:<;b|ﬁ|0>

Coupled Cluster theory is the “gold standard” for weakly correlated
systems in quantum chemistry

It is based on a particle-hole excitation construction of the Hilbert
space: singles + doubles + triples + quadruples +...

It has polynomial scaling with system size: CCSD is N6; CCSDT is N8

For strongly correlated systems where collective excitations
become important, single-reference CC falls dead

(T) means that triple excitations are treated perturbatively



pair coupled cluster theory

Lots of “pair” theories in the literature...
What is different about this one ?




Seniority

THE JOURNAL OF CHEMICAL PHYSICS 135, 044119 (2011)

Seniority and orbital symmetry as tools for establishing a full configuration
interaction hierarchy
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We explore the concept of seniority number (defined as the number of unpaired electrons in a
determinant) when applied to the problem of electron correlation in atomic and molecular sys-
tems. Although seniority is a good quantum number only for certain model Hamiltonians (such
as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full
configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose
weight diminishes as its seniority number increases. The primary focus of this study is the ade-
quate description of static correlation effects. The examples considered are the ground states of
the helium, beryllium, and neon atoms, the symmetric dissociation of the N, and CO, molecules,
as well as the symmetric dissociation of an Hg hydrogen chain. It is found that the symme-
try constraints that are normally placed on the spatial orbitals greatly affect the convergence rate
of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all
paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those com-
monly used for Hubbard Hamiltonian studies) are allowed in the wave function construction.
© 2011 American Institute of Physics. [d0i:10.1063/1.3613706]




Seniority €0 vs. ph excitations
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QO =

N - 2D, where N is particle number and D number of pairs.
€1 is the number of unpaired electrons.




E(R), (hartree)

Seniority 0 = 0, 2, 4...

N, and Hg dissociations; cc-pVDZ

Potential Energy Curves for N,, C;-MOs Potential Energy Curves for Hg, C,-MOs
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€2=0 is FCI of paired excitations w/ orbital optimization (DOCI).
Breaking spatial symmetry yields faster seniority convergence.




Seniority

Bytautas et al., J. Chem. Phys. 135, 044119 (2011).

Introduction:

"Thus, our objective is to see if the seniority-based method

of partitioning Hilbert space is capable of offering new insights
on how o generate compact wave functions that converge
rapidly toward the FCI limit as the seniority number

is increased.”

Conclusions:

"When the single-determinant reference is a good zeroth

order wave function (the correlation energy is essentially
dynamic), the traditional, excitation-based configuration selection
procedure seems to be more efficient than a seniority based
selection procedure. However, for the cases which

exhibit strong (static) correlation (such as the beryllium atom

or the symmetric dissociation of N,, CO,, and Hg molecules),

a seniority-based selection procedure is considerably more
efficient.."




Seniority zero FCI (DOCT)

Seniority is not a symmeftry.

But DOCI describes strong correlation very well.

It has combinatorial cost.
Not good for weakly correlated systems.

"Dual” to particle-hole number (neither a symmetry).

Is there a simple form that approximates seniority
zero FCI (DOCT) accurately?

YES: recent work by Ayers/Bultinck/Van Neck & in
my group.



Seniority zero pair CCD
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Seniority zero pair coupled cluster doubles theory
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Coupled cluster theory with single and double excitations accurately describes weak electron corre-
lation but 1s known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled
cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve
the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field
computational cost and 1s an excellent approximation to the full configuration interaction (FCI) of
the paired space provided that the orbital basis defining the pairing scheme 1s adequately optimized.
In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI
leads to a very accurate description of static correlation. The same conclusion extends to p-CCD
if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these re-
sults with numerous examples. We also explore the contributions of different seniority sectors to the
coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both
Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair
the orbitals so that the role of the Brueckner orbitals at the CCD level 1s retamed at the p-CCD level.
Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems. ©
2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880819]

A simplified version of CCD does static correlation very well

if orbitals defining the pairing scheme are optimized !




00-pCCD
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(PRI =6,(1-N,)

Coupled Cluster theory with a simplified cluster operator.

Every occupied pair can be excited onto any unoccupied pair.

Wavefunction |V > = exp(T,) |@ > is an entangled pair product state.

Orbital optimization: make CC energy stationary with respect to
orbital rotations (Scuseria & Schaefer, 1987). This is crucial.

Excellent oo-p-CCD results compared to DOCT.

Method has mean-field computational cost: O(N3)
(if we ignore the integral tfransformation)



Hg dissociation (dz basis)
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A combinatorial cost wave function (DOCI)
is remarkably well approximated by O(N3) p-CCD



Hubbard model

_ T T T
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U=0 => RHF isexact
U small => weakly correlated

U large => strongly correlated

Exact solution known in 1D => Bethe ansatz
Equivalent to minimum basis hydrogen chains
with R~ U/t

Very rich physics




Performance on 1D
Hubbard chains

Percent of exact correlation energy

Half -filling
6 sites 8 sites 10 sites 14 sites
U 00-p-CCD DOCI 00-p-CCD DOCI 00-p-CCD DOCI 00-p-CCD DOCI
2 85.46% 85.48% 83.41% 83.42% 81.99% 82.00% 80.09% 80.10%
5 92.02% 92.02% 90.74% 90.75% 89.91% 89.92% 88.89% 88.90%
9 96.97% 96.97% 96.51% 96.51% 96.23% 96.23% 95.88% 95.88%

00-p-CCD closely follows DOCI, which is close
to the exact answer for large U (strong correlation)

It is crucial o optimize the orbitals, i.e., make energy
stationary with respect to all (occ+vir) orbital rotations




0o-p-CCD vs. RHF based CC

1D Hubbard chain; 16 sites; half-filling

u/t
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=—Exact
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CcCcD

- Orbital optimization (0o) is crucial for matching DOCI
- Optimized orbitals become localized for large V.
- Note catastrophic failure of CCD/CCSD w/ RHF orbitals




Freezing & breaking pairs

Do p-CCD with RHF orbitals.
Freeze the pair amplitudes.

Solve for all other amplitudes.
Much closer to oo-p-CCD (~DOCI).

U/t
5

o 1 2 3 4

6 7 8 9 10 .o

fp-CCD
¢ fp-CCSD
DoOcCI
=Fxact
B cCsD
CCD

1D Hubbard chain; 16 sites; half-filling




How good is oo-p-CCD for
weak correlation?

1D Hubbard chain; 16 sites; half-filling
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Not nearly as good as CCSD
(breaking pairs is important)




Lessons learned

* Pairing in the particle-hole basis is good for

strong correlation.

* A combinatorial cost wavefunction can be very well

approximated by a low polynomial cost method.

* How do we include weak correlations?



similarity transformation

theory



Hamiltonian Similarity Transformations

Previous related work from many groups...
S. Tsuneyuki, Prog. Theor. Phys. Suppl. 176, 134 (2008).
E. Neuscamman et al., PRB 84, 205132 (2011).

Our goal here is:

H=e’He', I

J, E:<c1>|ﬁ|cp>

Non-unitary similarity transformations are canonical.

They lead to non-hermitian effective Hamiltonians.

Except for coupled cluster theory, very little has been done.

In CC, the cluster operator T is non-hermitian.

Variational MC community:

H=¢'He’




Gutzwiller similarity transformation

H=>t(clc, +cl C.a)+UZ”.¢”.¢

ijo

H=e’De’; J=p>n.n, =nD, e’De’=D

eclc e’ =[1+(e"-Dc-c_Jcic, [1+(e" - l)CTG =

ic”jo |a jo

Hausdorff transformation can be resummed.
Similar to "transcorrelation” but done in Hilbert, not real space.
Energy is unbound.

n is an adjustable parameter

Solved via energy variance: min(<_T_>—‘E‘ )

Or via projective equations: <() [n..n. ¢ﬁ | ()> =0

J. Wahlen-Strothman, C. A. Jimenez-Hoyos, T. M. Henderson, 6. E. Scuseria, arxiv: 1409.2203




Variational and projective energies are very close
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Projective energy is unbound and has no stationary points.
Projective energy variance minimum is close to the variational one.




Lie algebraic

transformation theory

similarity

(Correlators are Cartan generators

of an enveloping algebra)”

J = Z aia,jo”nianja'

ljoo'

H=e"He’

J~D,N,N,,SS%, SN, NS

* All J are two-body Hermitian correlators.

* Closed renormalization¥ No truncationin H .

* Adjustable parameters o, ;.

are solved projectively.

* J. Zhao and G. E. Scuseria, in preparation.
F J. Wahlen-Strothman, C. A. Jimenez-Hoyos, T. M.

Henderson, G. E. Scuseria, arxiv: 1409.2203




Ec as a function of U

1D Hubbard chain; N=10-26; half-filling
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Very accurate for small U. Less accurate for large U.
Model recovers mostly dynamical correlation.




Comparison w/ CCSD

1D Hubbard chain; N=6-30; half-filling
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CCSD does better for small U but deteriorates quickly beyond U ~2.5




Doping at U=2

1D Hubbard chain; 8 holes

10

—— PBC
—¥— OBC

(e
(s
T

981

o7 r

% Correlation Energy

96

—

10 15 20 25 30
Size

We recover ~95% of Ec for 30 sites at 25% hole doping




Correlator range

1D Hubbard PBC, N=30; 3 filled

Correlation parameters are short-range




Projective vs. variational

1D Hubbard PBC, N=14; 3 filled

U | E | E | Exact | RHF | o3 | %

1 -14.698 -14700 -14715 -14476 0053  0.053
2 -11.849 -11877 -11954 -10.976 0.258 0.244
3 -9.393 -9506 -9.749 -7476 0.743 0.674
4 -7469 -7475 -8088 -3.976 1969 1.992
5 -5494 -6.076 -6.853 -0476 3.346 2.428
6 -3.766 -4863 -5917 3.024 5254  3.579

For small U, projective and variational results are very close.
For large U, the deviation is large but projective results are
very good compared to RHF.
Variational cost is combinatorial whereas projective is polynomial.




marriage of Gutzwiller & pCCD

(preliminary results)



Energy (n)

1D Hubbard, N=14; £ filled; U=4
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Optimum n(U)

1D Hubbard, N=14; % filled; U=4

Optimal Eta
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E = E(U.N,y)

1D Hubbard, N=14; % filled
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Energy as a function of U

1D Hubbard, N=14; % filled

%Ec (00-PCCD + 6ST) %Ec (0o-PCCD )

112.25%
92.60%
87.11%
88.05%
91.13%
94.02%
96.52%
98.42%
99.82%

Improvements for all U, except U=1

93.04%
83.98%
81.39%
83.48%
86.82%
89.78%
92.06%
93.76%
95.01%



extension to quasiparticles



Pairing Hamiltonian

H :ngNp _Gngpq
p Pq
_Pp,PqT]zapq(l—Np)

| T _ T
N P ]_wpqpq

I R

Integrable by Bethe ansatz (Richardson)
6>0 (attractive) describes superfluidity in nuclei

Model breaks number symmetry for large enough G

Interesting for studying role reversal between spin
and number




Extension of p-CCD to quasiparticles

PHYSICAL REVIEW C 89, 054305 (2014)

Quasiparticle coupled cluster theory for pairing interactions

Thomas M. Henderson and Gustavo E. Scuseria
Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA

Jorge Dukelsky
Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

Angelo Signoracci”
Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvelte, France

Thomas Duguet
Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France and National Superconducting Cyclotron Laboratory
and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 20 March 2014; published 5 May 2014)

We present an extension of the pair coupled clusier doubles (p-CCD) method to quasiparticles and apply it to
the attractive pairing Hamiltonian. Near the transition point where number symmetry gets spontaneously broken,
the proposed BCS-based p-CCD method yields energies significantly better than those of existing methods when
compared to the exact results obtained via solution of the Richardson equations. The quasiparticle p-CCD method
has a low computational cost of O(N?) as a function of system size. This together with the high quality of results
here demonstrated points to considerable promise for the accurate description of strongly correlated systems with
more realistic pairing interactions.




Attractive Pairing Hamiltonian

oxact
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At 6=6,, HF breaks number symmetry => BCS
pCCD is better than PBCS but not great
Exact DOCT results from Richardson solution




cluster mean-field theory
& beyond
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Cluster mean-field Theor'y 5 b & 4065420
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Consider a system product state made
of plaquette states: |¥ > = |g;9,95 ... gy >

Plaquette states g; are internally entangled.
But do not interact (strong orthogonality).
They provide a tiling of the physical system.

Minimize the energy: E = < W | H | ¥ »>;
i.e., solve for the optimal plaquette states.

Energy is size extensive and upper bound.
Increase size of plaquette...

Hierarchical mean-field theory for spin systems:
Isaev, Dukelsky, Ortiz, PRB (2009).



Cluster mean-field theory

1D periodic Heisenberg chain

-0.30

-0.35

energy per site

-0.40

[ exact (TDL)

-0.45 =1

size of plaquette

Variational: all energies are upper bounds to the exact result
but convergence is not monotonic (because of even-odd alternation)




Add symmetry breaking & restoration

1D periodic Heisenberg chain

| v 1 1 I

-0.25 & —A— HF
—©— LM-HF
—©0— LM,S,-HF

Néel

-0.30

LM: Linear Momentum

-0.35 S,-HF: restore m=0

energy per site

-0.40

-0.45 ]

size of plaquette

Cluster mean field converges slowly to the exact result
but very rapidly with added SBé&R.
Size of system is 4 plaquettes; for small size, SB&R overcorrelates.




quantum embedding



Density Matrix Embedding Theory

G. Knizia, 6. K.-L. Chan, PRL 109, 184604 (2012) & JCTC 9, 1429 (2013) Bath

PRC . . . . . . . Fmgmen’r\
Exact schmiat |~ ||'F) = Zﬂ’||ai>|18i>

decomposition

| L

Embedding Approximation:
V) = Slater Determinant

* Algebraic construction
* Clear definition of bath
* Single particle basis

( Impurity Problem
* Small Hilbert space
* Accurate impurity solver possible

' * Even if not size extensive!
H . Him
Match 7 with y ™

Full (DMET) or diagonals (DET) H imp — Zijkl | ai> ‘ IBj ><IBJ ‘ <ai | H | ak> | IBI ><ak | <IB| |

Bulik, Scuseria, Dukelsky, Phys. Rev. B 89, 035140 (2014)
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1D Hubbard: energy per site

Fragment of 2

Fragment of 4

€erTror

U/t

400 sites at half-filling => thermodynamic limit
BA = Bethe Ansatz (exact).
Impurity solver is FCI.




(nyny)

1D Hubbard: double occupancy
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U/t

U/t

400 sites at half-filling, BA = Bethe Ansatz (exact)
<nTn¢> — 0 for large U: signature of Mott transition




1D Hubbard: metal-insulator transition
Density vs. chemical potential

Fragment of 2 sites Fragment of 4 sites
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400 sites at half-filling, BA = Bethe Ansatz (exact)
Impurity solver is FCT.




ab initio PBC implementation

I. W. Bulik and G. E. Scuseria, J. Chem. Phys. 141, 054113 (2014).

1D polymers
2D boron nitride
3D diamond
sto-3g & 6-31g bases
ccd & cesd




Polyyne 6-31g
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Diamond sto-3g
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Summary

Pair coupled cluster theory for
strong correlation.

Similarity transformation theory
(generalized CC) for weak correlation.

Cluster mean-field theory & beyond.

Quantum embedding for infinite systems.
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