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coupled cluster theory 



• Coupled Cluster theory is the “gold standard” for weakly correlated 
systems in quantum chemistry

• It is based on a particle-hole excitation construction of the Hilbert 
space: singles + doubles + triples + quadruples +…

• It has polynomial scaling with system size: CCSD is N6; CCSDT is N8

• For strongly correlated systems where collective excitations 
become important, single-reference CC falls dead

• (T) means that triple excitations are treated perturbatively
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pair coupled cluster theory 

Lots of “pair” theories in the literature… 
What is different about this one ?



Seniority



Seniority Ω  vs. ph excitations

Ω = N – 2D, where N is particle number and D number of pairs.
Ω is the number of unpaired electrons.



Seniority Ω = 0, 2, 4...

Ω=0 is FCI of paired excitations w/ orbital optimization (DOCI).
Breaking spatial symmetry yields faster seniority convergence.

N2 and H8 dissociations; cc-pVDZ



Seniority

Introduction:
“Thus, our objective is to see if the seniority-based method
of partitioning Hilbert space is capable of offering new insights
on how to generate compact wave functions that converge
rapidly toward the FCI limit as the seniority number
is increased.” 

Conclusions:
“When the single-determinant reference is a good zeroth
order wave function (the correlation energy is essentially 
dynamic), the traditional, excitation-based configuration selection
procedure seems to be more efficient than a seniority based
selection procedure. However, for the cases which
exhibit strong (static) correlation (such as the beryllium atom
or the symmetric dissociation of N2, CO2, and H8 molecules),
a seniority-based selection procedure is considerably more
efficient...”

Bytautas et al., J. Chem. Phys. 135, 044119 (2011). 



• Seniority is not a symmetry.

• But DOCI describes strong correlation very well.
• It has combinatorial cost.
• Not good for weakly correlated systems.

• “Dual” to particle-hole number (neither a symmetry).

• Is there a simple form that approximates seniority

zero FCI (DOCI) accurately?

• YES: recent work by Ayers/Bultinck/Van Neck & in 

my group.

Seniority zero FCI (DOCI)



Seniority zero pair CCD

A simplified version of CCD does static correlation very well
if orbitals defining the pairing scheme are optimized !

A simplified version of CCD does static correlation very well
if orbitals defining the pairing scheme are optimized !



• Coupled Cluster theory with a simplified cluster operator.

• Every occupied pair can be excited onto any unoccupied pair.

• Wavefunction |Ψ > = exp(T2) |Φ > is an entangled pair product state.

• Orbital optimization: make CC energy stationary with respect to 
orbital rotations (Scuseria & Schaefer, 1987). This is crucial.

• Excellent oo-p-CCD results compared to DOCI.

• Method has mean-field computational cost: O(N3)
(if we ignore the integral transformation)
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H8 dissociation (dz basis)

A combinatorial cost wave function (DOCI) 
is remarkably well approximated by O(N3) p-CCD

A combinatorial cost wave function (DOCI) 
is remarkably well approximated by O(N3) p-CCD



• U = 0 =>  RHF is exact
• U small =>  weakly correlated

• U large =>  strongly correlated

• Exact solution known in 1D =>  Bethe ansatz

• Equivalent to minimum basis hydrogen chains 
with  R ~ U/ t

• Very rich physics
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Performance on 1D 
Hubbard chains

Half-filling

Percent of exact correlation energy

oo-p-CCD closely follows DOCI, which is close 
to the exact answer for large U (strong correlation)

It is crucial to optimize the orbitals, i.e., make energy
stationary with respect to all (occ+vir) orbital rotations



oo-p-CCD vs. RHF based CC
1D Hubbard chain; 16 sites; half-filling

- Orbital optimization (oo) is crucial for matching DOCI
- Optimized orbitals become localized for large U.
- Note catastrophic failure of CCD/CCSD w/ RHF orbitals



Freezing & breaking pairs
Do p-CCD with RHF orbitals. 
Freeze the pair amplitudes. 
Solve for all other amplitudes.
Much closer to oo-p-CCD (~DOCI).

1D Hubbard chain; 16 sites; half-filling



How good is oo-p-CCD for 
weak correlation?

Not nearly as good as CCSD
(breaking pairs is important)

1D Hubbard chain; 16 sites; half-filling



• Pairing in the particle-hole basis is good for 

strong correlation.

• A combinatorial cost wavefunction can be very well 

approximated by a low polynomial cost method.

• How do we include weak correlations?

Lessons learned



similarity transformation 

theory 



Hamiltonian Similarity Transformations

• Our goal here is: 

• Non-unitary similarity transformations are canonical.

• They lead to non-hermitian effective Hamiltonians.

• Except for coupled cluster theory, very little has been done.

• In CC, the cluster operator T is non-hermitian.

• Variational MC community:

Previous related work from many groups…
S. Tsuneyuki, Prog. Theor. Phys. Suppl. 176, 134 (2008).
E. Neuscamman et al., PRB 84, 205132 (2011).
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Gutzwiller similarity transformation

• Hausdorff transformation can be resummed.

• Similar to “transcorrelation” but done in Hilbert, not real space.

• Energy is unbound.

• η is an adjustable parameter 

• Solved via energy variance:

• Or via projective equations:
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J. Wahlen-Strothman, C. A. Jimenez-Hoyos, T. M. Henderson, G. E. Scuseria, arxiv: 1409.2203
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Variational and projective energies are very close

Projective energy is unbound and has no stationary points.
Projective energy variance minimum is close to the variational one.

Hubbard chain
10 sites
half-filling
U=4
RHF
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Lie algebraic similarity 
transformation theory

• All J are two-body Hermitian correlators.

• Closed renormalization.‡ No truncation in     .

• Adjustable parameters           are solved projectively.
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(Correlators are Cartan generators of an enveloping algebra)*

* J. Zhao and G. E. Scuseria, in preparation.
‡ J. Wahlen-Strothman, C. A. Jimenez-Hoyos, T. M. Henderson, G. E. Scuseria, arxiv: 1409.2203
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Ec as a function of U

1D Hubbard chain; N=10-26; half-filling

Very accurate for small U.  Less accurate for large U.
Model recovers mostly dynamical correlation.



Comparison w/ CCSD
1D Hubbard chain; N=6-30; half-filling

CCSD does better for small U but deteriorates quickly beyond U ~2.5

LAST

CCSD



Doping at U=2

1D Hubbard chain; 8 holes

We recover ~95% of Ec for 30 sites at 25% hole doping



Correlator range

1D Hubbard PBC, N=30; ½ filled

Correlation parameters are short-range



Projective vs. variational

U Ep Ev Exact RHF σ2
p σ2

v

1 -14.698 -14.700 -14.715 -14.476 0.053 0.053
2 -11.849 -11.877 -11.954 -10.976 0.258 0.244
3 -9.393 -9.506 -9.749 -7.476 0.743 0.674
4 -7.469 -7.475 -8.088 -3.976 1.969 1.992
5 -5.494 -6.076 -6.853 -0.476 3.346 2.428
6 -3.766 -4.863 -5.917 3.024 5.254 3.579

For small U, projective and variational results are very close. 
For large U, the deviation is large but projective results are 
very good compared to RHF.

Variational cost is combinatorial whereas projective is polynomial.

1D Hubbard PBC, N=14; ½ filled



marriage of Gutzwiller & pCCD

(preliminary results)



Energy (η)
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Optimum η(U)
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1D Hubbard, N=14; ½ filled; U=4



E = E(U,ηopt)
1D Hubbard, N=14; ½ filled



U %Ec (oo-PCCD + GST) %Ec (oo-PCCD )
1 112.25% 93.04%
2 92.60% 83.98%
3 87.11% 81.39%
4 88.05% 83.48%
5 91.13% 86.82%
6 94.02% 89.78%
7 96.52% 92.06%
8 98.42% 93.76%
9 99.82% 95.01%

Energy as a function of U

Improvements for all U, except U=1

1D Hubbard, N=14; ½ filled



extension to quasiparticles



• Integrable by Bethe ansatz (Richardson)
• G>0 (attractive) describes superfluidity in nuclei

• Model breaks number symmetry for large enough  G

• Interesting for studying role reversal between spin 
and number

Pairing Hamiltonian
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Extension of p-CCD to quasiparticles



Attractive Pairing Hamiltonian

• At G=Gc, HF breaks number symmetry => BCS
• pCCD is better than PBCS but not great
• Exact DOCI results from Richardson solution



cluster mean-field theory

& beyond



Cluster mean-field theory

• Consider a system product state made                          
of plaquette states:    |Ψ > = |g1 g2 g3 ... gM >

• Plaquette states gi are internally entangled.
• But do not interact (strong orthogonality).
• They provide a tiling of the physical system.
• Minimize the energy: E = < Ψ | H | Ψ >;                 

i.e., solve for the optimal plaquette states.
• Energy is size extensive and upper bound.
• Increase size of plaquette…
• Hierarchical mean-field theory for spin systems:  

Isaev, Dukelsky, Ortiz, PRB (2009).



Cluster mean-field theory

Variational: all energies are upper bounds to the exact result
but convergence is not monotonic (because of even-odd alternation)
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Add symmetry breaking & restoration

LM: Linear Momentum 

Sz-HF: restore m=0 

Cluster mean field converges slowly to the exact result
but very rapidly with added SB&R. 
Size of system is 4 plaquettes; for small size, SB&R overcorrelates.



quantum embedding



PBC
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Embedding Approximation: 
Slater Determinant

• Algebraic construction
• Clear definition of bath
• Single particle basis 

Fragment 
Bath

Impurity Problem
• Small Hilbert space
• Accurate impurity solver possible
• Even if not size extensive!
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Bulik, Scuseria, Dukelsky, Phys. Rev. B 89, 035140 (2014)

Full (DMET) or diagonals (DET)

|  =

Exact Schmidt
decomposition

Density Matrix Embedding Theory
G. Knizia, G. K.-L. Chan, PRL 109, 184604 (2012) & JCTC 9, 1429 (2013)



1D Hubbard: energy per site 

400 sites at half-filling => thermodynamic limit 
BA = Bethe Ansatz (exact).
Impurity solver is FCI.



1D Hubbard: double occupancy 

400 sites at half-filling, BA = Bethe Ansatz (exact)
for large U:  signature of Mott transition0n n  



Fragment of 2 sites Fragment of 4 sites

1D Hubbard: metal-insulator transition
Density vs. chemical potential

U= 4

400 sites at half-filling, BA = Bethe Ansatz (exact)
Impurity solver is FCI.



1D polymers

2D boron nitride

3D diamond

sto-3g  &  6-31g bases

ccd &  ccsd

ab initio PBC implementation
I. W. Bulik and G. E. Scuseria, J. Chem. Phys. 141, 054113 (2014).



Polyyne 6-31g (−C≡C−)n



Diamond sto-3g



• Pair coupled cluster theory for 
strong correlation.

• Similarity transformation theory 
(generalized CC) for weak correlation.

• Cluster mean-field theory & beyond.

• Quantum embedding for infinite systems.

Summary
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