Single-Reference Coupled-Cluster Methods for Multi-Reference Molecular Problems

Jun Shen, Nicholas P. Bauman, and Jared A. Hansen Department of Chemistry, Michigan State University East Lansing, Michigan 48824, USA

U.S. DEPARTMENT OF ENERGY

Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division

Spectral Sciences Incorporated

MICHIGAN STATE

Nordita Program on "Computational Challenges in Nuclear and Many-Body Physics," Stockholm, Sweden, September 15 – October 10, 2014

MANY THANKS TO PROFESSORS ALEXANDER BALATSKY, JORGE DUKELSKY, ROBERTO LIOTTA, AND CHONG QI FOR INVITATION AND WARM HOSPITALITY

THE ELECTRONIC SCHRÖDINGER EQUATION

 $H_e \Psi_K(\mathbf{X}; \mathbf{R}) = E_K(\mathbf{R}) \Psi_K(\mathbf{X}; \mathbf{R})$ $H_e = Z + V = \sum_{i=1}^N z(\mathbf{x}_i) + \sum_{i>j=1}^N v(\mathbf{x}_i, \mathbf{x}_j)$ $z(\mathbf{x}_i) = -\frac{1}{2}\Delta_i + \sum_{A=1}^M \frac{Z_A}{R_{Ai}}, \quad v(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{r_{ij}}$

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966,1969; J. Čížek and J. Paldus, 1971)

scaling with the

system size

 $m_A = N \Rightarrow$ exact theory, $m_A < N \Rightarrow$ approximations

$m_A = 2$	$T = T_1 + T_2$	CCSD	$n_o^2 n_u^4 (n_o^2 n_u^2)$	$\leftarrow \text{ iterative } N^6$
$m_A = 3$	$T = T_1 + T_2 + T_3$	CCSDT	$n_o^3 n_u^5 \ (n_o^3 n_u^3)$	← iterative <i>№</i>
$m_A = 4$	$T = T_1 + T_2 + T_3 + T_4$	CCSDTQ	$n_o^4 n_u^6 \ (n_o^4 n_u^4)$	← iterative <i>N</i> ¹⁰

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966,1969; J. Čížek and J. Paldus, 1971)

$$\begin{split} |\Psi\rangle &= e^{T^{(A)}} |\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k \\ T_1 |\Phi\rangle &= \sum_{i} t_a^i |\Phi_i^a\rangle, \quad T_2 \Phi = \sum_{i>j} t_{ab}^{ij} |\Phi_{ij}^{ab}\rangle, \quad T_3 \Phi = \sum_{i>j>k} t_{abc}^{ijk} |\Phi_{ijk}^{abc}\rangle, \quad \text{etc.} \\ a, b, \dots & a > b & a > b & a > b > c \\ a, b, \dots & a > b & a > b & a > b > c \\ i, j, \dots & \bullet \bullet \bullet \bullet \bullet & \bullet & \bullet & \bullet \\ \mathbf{1p}\text{-1h, singles (S)} \quad \mathbf{2p}\text{-2h, doubles (D)} \quad \mathbf{3p}\text{-3h, triples (T)} \\ m_A &= N \Rightarrow \text{exact theory,} \quad m_A < N \Rightarrow \text{approximations} \\ m_A &= 3 & T = T_1 + T_2 & CCSD & n_o^2 n_u^4 (n_o^2 n_u^2) \\ m_A &= 4 & T = T_1 + T_2 + T_3 & CCSDT & n_o^3 n_u^5 (n_o^3 n_u^3) \\ m_A &= 4 & T = T_1 + T_2 + T_3 + T_4 & CCSDTQ & n_o^4 n_u^6 (n_o^4 n_u^4) \\ \hline \langle \Phi_{i_1 i_2 \dots i_k}^{a_1 a_2 \dots a_k} | \left(H_N e^{T^{(A)}} \right)_C |\Phi\rangle &= 0, \ k = 1 \dots, m_A \\ \mathcal{E}_0 &= \langle \Phi | H | \Phi \rangle + \langle \Phi | \left(H_N e^{T^{(A)}} \right)_C |\Phi\rangle &= \langle \Phi | H | \Phi \rangle + \langle \Phi | \left[H_N (T_1 + T_2 + \frac{1}{2} T_1^2) \right]_C |\Phi\rangle \end{split}$$

 E_0

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966, 1969; J. Čížek and J. Paldus, 1971)

with the

size

 \leftarrow iterative N^6

iterative N⁷ or N⁹

plus non-

To reduce prohibitive computer costs of CCSDT, CCSDTQ, etc., one usually approximates T₃, T₄, etc. This can be done through, e.g., noniterative corrections to CCSD energies, as in the CCSD(T), CCSD(TQ), etc. approximations.

a

 m_A

 m_A

 m_A

EXCITED STATES: EQUATION-OF-MOTION CC (EOMCC) THEORY, SYMMETRY-ADAPTED-CLUSTER CONFIGURATION INTERACTION APPROACH (SAC-CI), AND RESPONSE CC METHODS

(H. Monkhorst, 1977; D. Mukherjee and P.K. Mukherjee, 1979; H. Nakatsuji and K. Hirao, 1978; K. Emrich, 1981; M. Takahashi and J. Paldus; 1986; J. Geertsen, M. Rittby, and R.J. Bartlett, 1989)

 $|\Psi_K\rangle = R_K |\Psi_0\rangle, \quad |\Psi_0\rangle = e^T |\Phi\rangle$

$$T = T_1 + T_2 + \cdots, \quad R_K = R_{K,0} + R_{K,open}, \quad R_{K,open} = R_{K,1} + R_{K,2} + \cdots$$

Example: EOMCC

(K. Emrich, 1981; J. Geertsen, M. Rittby, and R.J. Bartlett, 1989; J.F. Stanton and R.J. Bartlett, 1993)

In the exact theory,

$$(\bar{H}_{N,\text{open}} R_{K,\text{open}})_C |\Phi\rangle = \omega_K R_K |\Phi) \text{ or } [\bar{H}_{N,\text{open}}, R_{K,\text{open}}] |\Phi\rangle = \omega_K R_K$$
$$\bar{H}_N = e^{-T} H_N e^T = (H_N e^T)_C, \quad \omega_K = E_K - E_0, \quad R_{K,\text{open}} = R_K - R_{K,0}.$$

In approximate methods,

$$T \simeq T^{(A)} = \sum_{n=1}^{m_A} T_n, \quad R_K \simeq R_K^{(A)} = \sum_{n=0}^{m_A} R_{K,n} \quad (m_A < N)$$

Basic approximation: EOMCCSD

 $m_{A} = 2: T = T_{1} + T_{2} \qquad \bar{\mathrm{H}}^{\mathrm{CCSD}} = \begin{pmatrix} \bar{\mathrm{H}}_{\mathrm{SS}} & \bar{\mathrm{H}}_{\mathrm{SD}} \\ \bar{\mathrm{H}}_{\mathrm{DS}} & \bar{\mathrm{H}}_{\mathrm{DD}} \end{pmatrix}$ $R_{K} = R_{K,0} + R_{K,1} + R_{K,2} \qquad \bar{\mathrm{H}}^{\mathrm{CCSD}} = \begin{pmatrix} \bar{\mathrm{H}}_{\mathrm{SS}} & \bar{\mathrm{H}}_{\mathrm{SD}} \\ \bar{\mathrm{H}}_{\mathrm{DS}} & \bar{\mathrm{H}}_{\mathrm{DD}} \end{pmatrix}$ Higher-order methods: EOMCCSDT, EOMCCSDTQ, EOMCCSD(T), etc.

Electron-Attached (EA) and Ionized (IP) EOMCC Methods

CHALLENGES IN COUPLED-CLUSTER THEORY (IN FACT, IN ALL *AB IMITIO* ELECTRONIC STRUCTURE APPROACHES)

- Reaction pathways involving bond breaking, biradicals, energy gaps in magnetic systems, electronic excitations dominated by two-electron transitions, ... (generally, multireference problems, systems with strong non-dynamical correlations).
- Steep increase of computer costs with the system size (typically, CPU steps and memory requirements that scale as N⁶-N⁷ and N⁴, respectively, with the system size N).

TYPES OF MANY-ELECTRON CORRELATIONS

CONVENTIONAL SINGLE-REFERENCE CC/EOMCC METHODS ARE EXCELLENT IN DESCRIBING DYNAMICAL CORRELATIONS (EVEN WHEN THEY ARE STRONG, AS IN NUCLEI), BUT THEY HAVE SERIOUS PROBLEMS WHEN NON-DYNAMICAL CORRELATIONS BECOME SIGNIFICANT

PROBLEMS WITH THE STANDARD CC/EOMCC APPROXIMATIONS

 $(T^{(A)} = \sum_{n=1}^{m_A} T_n, \ R^{(A)} = \sum_{n=0}^{m_A} R_{K,n}, \ m_A < N)$

MCQDPT2: 131.7i

Vertical excitation energies of CH⁺ and C₂ (in eV) [K. Kowalski and P. Piecuch, 2001, 2002]

Adiabatic excitation energies of the CH radical (in eV) [S. Hirata, 2004]

State	EOMCCSD	EOMCCSDT	EOMCCSDTQ	Experiment
a ⁴ Σ ⁻	0.95	0.66	0.65	0.74
$A^{2}\Delta$	3.33	3.02	3.00	2.88
B $^{2}\Sigma^{-}$	4.41 > 1 e	v 3.27	3.27	3.23
$C^{2}\Sigma^{+}$	5.29 error	^{rs} 4.07	4.04	3.94

AMONG THE SOLUTIONS WITHIN CC (EXAMPLES):

IMPROVED SINGLE-REFERENCE CC THEORIES, FOR EXAMPLE,

Completely renormalized CC and EOMCC approaches (cf., also, methods based on partitioning of the similarity transformed Hamiltonian)

Objective: Use asymmetric energy formulas and moment expansions to capture the most relevant dynamical and non-dynamical correlations dynamically

Extended CC approaches

Objective: Use two cluster operators and bi-variational formulation to improve cluster amplitudes

Externally corrected and tailored CC approaches

Objective: Use information about non-dynamical correlations extracted from non-CC wave functions

Spin-flip CC and EOMCC approaches

Objective: Use spin-flipping excitation operators to obtain low-spin states from high-spin references

MULTI-REFERENCE CC (MRCC) THEORIES

Genuine MRCC approaches: valence-universal and state-universal MRCC

Objective: Use multi-dimensional reference spaces and the multi-root Bloch wave operator theory **State-selective MRCC methods, e.g., BW-MRCC, Mk-MRCC, MR-expT, BCCC, ic-MRCC, MR-EOMCC, etc.**

Objective: Use multi-dimensional reference spaces but focus on one state at a time

ACTIVE-SPACE CC/EOMCC APPROACHES (simplified SSMRCC or SRMRCC; also, CASCC)

Objective: Use active orbitals in single-reference CC/EOMCC to incorporate the leading nondynamical correlations through selection of higher-than-double excitations

AMONG THE SOLUTIONS WITHIN CC (EXAMPLES):

IMPROVED SINGLE-REFERENCE CC THEORIES, FOR EXAMPLE,

Completely renormalized CC and EOMCC approaches (cf., also, methods based on partitioning of the similarity transformed Hamiltonian)

Objective: Use asymmetric energy formulas and moment expansions to capture the most relevant dynamical and non-dynamical correlations dynamically

Extended CC approaches

Objective: Use two cluster operators and bi-variational formulation to improve cluster amplitudes

Externally corrected and tailored CC approaches

Objective: Use information about non-dynamical correlations extracted from non-CC wave functions

Spin-flip CC and EOMCC approaches

Objective: Use spin-flipping excitation operators to obtain low-spin states from high-spin references

MULTI-REFERENCE CC (MRCC) THEORIES

Genuine MRCC approaches: valence-universal and state-universal MRCC

Objective: Use multi-dimensional reference spaces and the multi-root Bloch wave operator theory **State-selective MRCC methods, e.g., BW-MRCC, Mk-MRCC, MR-expT, BCCC, ic-MRCC, MR-EOMCC, etc.**

Objective: Use multi-dimensional reference spaces but focus on one state at a time

ACTIVE-SPACE CC/EOMCC APPROACHES (simplified SSMRCC or SRMRCC; also, CASCC)

Objective: Use active orbitals in single-reference CC/EOMCC to incorporate the leading nondynamical correlations through selection of higher-than-double excitations

AMONG THE SOLUTIONS WITHIN CC (EXAMPLES):

IMPROVED SINGLE-REFERENCE CC THEORIES, FOR EXAMPLE,

Completely renormalized CC and EOMCC approaches (cf., also, methods based on partitioning of the similarity transformed Hamiltonian)

Objective: Use asymmetric energy formulas and moment expansions to capture the most relevant dynamical and non-dynamical correlations dynamically

ACTIVE-SPACE CC/EOMCC APPROACHES (simplified SSMRCC or SRMRCC; also, CASCC)

Objective: Use active orbitals in single-reference CC/EOMCC to incorporate the leading nondynamical correlations through selection of higher-than-double excitations

IN SEARCH FOR BLACK-BOX METHODS FOR BOND BREAKING AND EXCITED STATES: METHOD OF MOMENTS OF COUPLED-CLUSTER EQUATIONS (MMCC) AND COMPLETELY RENORMALIZED CC/EOMCC APROACHES

Main idea:

$$\delta_{K}^{(A)} = E_{K} - E_{K}^{(A)} = \Lambda[\Psi_{K}; \mathcal{M}_{K, i_{1} \dots i_{k}}^{a_{1} \dots a_{k}}(m_{A}), \ k > m_{A}]$$

$E_K^{(A)}$	-	the energy of electronic state K obtained using standard coupled-cluster calculations (e.g., CCSD or EOMCCSD)
E_K	-	the exact (full CI) energy of state K in a basis set
Ψ_K	-	the exact (full CI) wave function in a basis set
$\mathcal{M}^{a_1a_k}_{K,i_1i_k}(m_A)$	-	the generalized moments of coupled-cluster equations

$$E_K^{\rm MMCC} = E_K^{(A)} + \delta_K^{\rm MMCC}$$

(the ground-state problem, original formulation: P. Piecuch and K. Kowalski, 2000; the excited-state extension within the original formulation: K. Kowalski and P. Piecuch, 2001)

$$E_{0} = \frac{\left\langle \Psi_{0} \left| e^{T^{(A)}} \left(H e^{T^{(A)}} \right)_{C} \right| \Phi \right\rangle}{\left\langle \Psi_{0} \left| e^{T^{(A)}} \right| \Phi \right\rangle}$$

$$\begin{split} \text{Instead of conventional } E_{0} &= \left\langle \Phi \middle| H \ e^{T_{1}+T_{2}+\dots+T_{N}} \middle| \Phi \right\rangle \text{, use} \\ & \Lambda[\Psi] = \frac{\left\langle \Psi \middle| H \ e^{T^{(A)}} \middle| \Phi \right\rangle}{\left\langle \Psi \middle| e^{T^{(A)}} \middle| \Phi \right\rangle} & \longleftarrow & \text{MMCC functional} \\ & (\text{K.Kowalski and P. Piecuch, 2000}) \\ & (T^{(A)} &= T_{1} + \dots + T_{m_{A}}) \end{aligned} \\ & \Lambda[\Psi_{0}] = E_{0} & \bigoplus & \text{exact, independent of} \\ & \text{truncation } m_{A} \text{ defining } T^{(A)} \end{aligned} \\ & E_{0} = \frac{\left\langle \Psi_{0} \middle| e^{T^{(A)}} H \ e^{T^{(A)}} \middle| \Phi \right\rangle}{\left\langle \Psi_{0} \middle| e^{T^{(A)}} \middle| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \middle| e^{T^{(A)}} H e^{T^{(A)}} \right\rangle}{\left\langle \Psi_{0} \middle| e^{T^{(A)}} \middle| \Phi \right\rangle} \\ & \left[\frac{\left| \Phi \right\rangle \left\langle \Phi \middle| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{i_{n}} < n < a_{i_{n}} < a_{i_{n}} < a_{i_{n}} \\ & H_{0} \middle| e^{T^{(A)}} \middle| \Phi \right\rangle} \end{aligned} \\ & \left[\frac{\left| \Phi \right\rangle \left\langle \Phi \middle| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{i_{n}} < n < a_{i_{n}} < a_{i_{n}} < a_{i_{n}} < a_{i_{n}} \\ & H_{0} \middle| e^{T^{(A)}} \middle| \Phi \right\rangle} \end{aligned} = E_{0}^{\left(A \right)} + \delta_{0}^{\left(A \right)} \end{aligned} \\ & \left[\frac{\left| \Phi \right\rangle \left\langle \Phi \middle| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{i_{n}} < n < a_{i_{n}} < a_{i_{n$$

(the ground-state problem, original formulation: P. Piecuch and K. Kowalski, 2000)

$$\delta_0^{(A)} = E_0 - E_0^{(A)} = \sum_{n=m_A+1}^N \sum_{k=m_A+1}^n \langle \Psi_0 | C_{n-k}(m_A) M_k(m_A) | \Phi \rangle / \langle \Psi_0 | e^{T^{(A)}} | \Phi \rangle$$

$$\begin{split} &C_{n-k}(m_A) = \left(e^{T^{(A)}}\right)_{n-k}, \ \text{ for example, if } m_A = 2 \ (\text{the CCSD case}), \\ &C_0(2) = 1, \ C_1(2) = T_1, \ C_2(2) = T_2 + \frac{1}{2}T_1^2, \ C_3(2) = T_1T_2 + \frac{1}{6}T_1^3, \ \text{etc.} \\ &M_k(m_A)|\Phi\rangle = \sum_{\substack{i_1 < \ldots < i_k \\ a_1 < \ldots < a_k}} \mathcal{M}_{i_1 \ldots i_k}^{a_1 \ldots a_k}(m_A)|\Phi_{i_1 \ldots i_k}^{a_1 \ldots a_k}\rangle, \\ &\mathcal{M}_{i_1 \ldots i_k}^{a_1 \ldots a_k}(m_A) = \langle \Phi_{i_1 \ldots i_k}^{a_1 \ldots a_k}|(H_N e^{T^{(A)}})_C|\Phi\rangle - \text{ generalized moments of CC equations,} \\ &\text{for example, if } m_A = 2 \ (\text{the CCSD case}), \\ &\mathcal{M}_{i_1 \ldots i_k}^{a_1 \ldots a_k}(2) = \langle \Phi_{i_1 \ldots i_k}^{a_1 \ldots a_k}|(H_N e^{T_1 + T_2})_C|\Phi\rangle, \ k = 3 - 6. \end{split}$$

COMPLETELY RENORMALIZED CC METHODS (original formulation; P. Piecuch and K. Kowalski, 2000; available in GAMESS; CCTYP=CR-CC, CR-CC(Q))

$$E_0(2,3) = E_0^{\text{CCSD}} + \langle \Psi_0 | \boldsymbol{M}_3(2) | \Phi \rangle / \langle \Psi_0 | e^{T_1 + T_2} | \Phi \rangle$$
$$E_0(2,4) = E_0^{\text{CCSD}} + \langle \Psi_0 | \boldsymbol{M}_3(2) + [\boldsymbol{M}_4(2) + T_1 \boldsymbol{M}_3(2)] | \Phi \rangle / \langle \Psi_0 | e^{T_1 + T_2} | \Phi \rangle$$

$$M_{3}(2)|\Phi\rangle = \sum_{\substack{i < j < k \\ a < b < c}} \mathcal{M}_{ijk}^{abc}(2)|\Phi_{ijk}^{abc}\rangle, \quad \mathcal{M}_{ijk}^{abc}(2) = \langle \Phi_{ijk}^{abc}|\left(H_{N}e^{T_{1}+T_{2}}\right)_{C}|\Phi\rangle$$

 $M_{4}(2)|\Phi\rangle = \sum_{\substack{i < j < k < l \\ a < b < c < d}} \mathcal{M}_{ijkl}^{abcd}(2)|\Phi_{ijkl}^{abcd}\rangle, \quad \mathcal{M}_{ijkl}^{abcd}(2) = \langle \Phi_{ijkl}^{abcd}|\left(H_{N}e^{T_{1}+T_{2}}\right)_{C}|\Phi\rangle$

COMPLETELY RENORMALIZED CC METHODS (original formulation; P. Piecuch and K. Kowalski, 2000; available in GAMESS; CCTYP=CR-CC, CR-CC(Q))

$$E_0(2,3) = E_0^{\text{CCSD}} + \langle \Psi_0 | \mathbf{M}_3(2) | \Phi \rangle / \langle \Psi_0 | e^{T_1 + T_2} | \Phi \rangle + \mathbf{T}_3 \text{ correction to CCSD}$$

 $E_0(2,4) = E_0^{\text{CCSD}} + \langle \Psi_0 | \mathbf{M}_3(2) + [\mathbf{M}_4(2) + T_1 \mathbf{M}_3(2)] | \Phi \rangle / \langle \Psi_0 | e^{T_1 + T_2} | \Phi \rangle$

$$M_{3}(2)|\Phi\rangle = \sum_{\substack{i < j < k \\ a < b < c}} \mathcal{M}_{ijk}^{abc}(2)|\Phi_{ijk}^{abc}\rangle, \quad \mathcal{M}_{ijk}^{abc}(2) = \langle \Phi_{ijk}^{abc}| \left(H_{N}e^{T_{1}+T_{2}}\right)_{C}|\Phi\rangle$$

 $M_4(2)|\Phi\rangle = \sum_{\substack{i < j < k < l \\ a < b < c < d}} \mathcal{M}_{ijkl}^{abcd}(2)|\Phi_{ijkl}^{abcd}\rangle, \quad \mathcal{M}_{ijkl}^{abcd}(2) = \langle \Phi_{ijkl}^{abcd}|\left(H_N e^{T_1 + T_2}\right)_C |\Phi\rangle$

COMPLETELY RENORMALIZED CC METHODS (original formulation; P. Piecuch and K. Kowalski, 2000; available in GAMESS; CCTYP=CR-CC, CR-CC(Q))

$$E_{0}(2,3) = E_{0}^{\text{CCSD}} + \underbrace{\Psi_{0}|M_{3}(2)|\Phi}/\langle\Psi_{0}|e^{T_{1}+T_{2}}|\Phi\rangle}_{T_{3}} \text{ correction to CCSD}$$

$$E_{0}(2,4) = E_{0}^{\text{CCSD}} + \underbrace{\langle\Psi_{0}|M_{3}(2) + [M_{4}(2) + T_{1}M_{3}(2)]|\Phi}/\langle\Psi_{0}|e^{T_{1}+T_{2}}|\Phi\rangle}_{T_{3}} + T_{4}$$

$$Correction to CCSD$$

$$M_{3}(2)|\Phi\rangle = \sum_{\substack{i < j < k \\ a < b < c}} \mathcal{M}_{ijk}^{abc}(2)|\Phi_{ijk}^{abc}\rangle, \quad \underbrace{\mathcal{M}_{ijk}^{abc}(2) = \langle\Phi_{ijk}^{abc}|(H_{N}e^{T_{1}+T_{2}})_{C}|\Phi\rangle}_{ijkl}$$

$$M_{4}(2)|\Phi\rangle = \sum_{\substack{i < j < k < l \\ a < b < c < d}} \mathcal{M}_{ijkl}^{abcd}(2)|\Phi_{ijkl}^{abcd}\rangle, \quad \mathcal{M}_{ijkl}^{abcd}(2) = \langle\Phi_{ijkl}^{abcd}|(H_{N}e^{T_{1}+T_{2}})_{C}|\Phi\rangle$$

COMPLETELY RENORMALIZED CC METHODS (original formulation; P. Piecuch and K. Kowalski, 2000; available in GAMESS; CCTYP=CR-CC, CR-CC(Q))

$$E_{0}(2,3) = E_{0}^{\text{CCSD}} + \underbrace{\Psi_{0}|M_{3}(2)|\Phi}/\langle\Psi_{0}|e^{T_{1}+T_{2}}|\Phi\rangle}_{T_{3}} \text{ correction to CCSD}$$

$$E_{0}(2,4) = E_{0}^{\text{CCSD}} + \underbrace{\langle\Psi_{0}|M_{3}(2) + [M_{4}(2) + T_{1}M_{3}(2)]|\Phi}/\langle\Psi_{0}|e^{T_{1}+T_{2}}|\Phi\rangle}_{T_{3}} + T_{4} \text{ correction to CCSD}$$

$$M_{3}(2)|\Phi\rangle = \sum_{\substack{i < j < k \\ a < b < c}} \mathcal{M}_{ijk}^{abc}(2)|\Phi_{ijk}^{abc}\rangle, \quad \underbrace{\mathcal{M}_{ijk}^{abc}(2) = \langle\Phi_{ijk}^{abc}|(H_{N}e^{T_{1}+T_{2}})_{C}|\Phi\rangle}_{ijkl}$$

$$M_{4}(2)|\Phi\rangle = \sum_{\substack{i < j < k < l \\ a < b < c < d}} \mathcal{M}_{ijkl}^{abcd}(2)|\Phi_{ijkl}^{abcd}\rangle, \quad \mathcal{M}_{ijkl}^{abcd}(2) = \langle\Phi_{ijkl}^{abcd}|(H_{N}e^{T_{1}+T_{2}})_{C}|\Phi\rangle$$

Example: The CR-CCSD(T) approach

$$\begin{split} |\Psi_{0}^{\text{CCSD}(\text{T})}\rangle &= (1 + T_1 + T_2 + T_3^{[2]} + Z_3)|\Phi\rangle + \leftarrow \text{MBPT}(2)\text{-like} \\ \hline E_0^{\text{CR-CCSD}(\text{T})} &= E_0^{\text{CCSD}} + N^{\text{CR}(\text{T})}/D^{(\text{T})} \\ N^{\text{CR}(\text{T})} &= \langle \Psi_0^{\text{CCSD}(\text{T})} | M_3(2) | \Phi \rangle = \langle \Phi | (T_3^{[2]} + Z_3)^{\dagger} M_3(2) | \Phi \rangle \\ D^{(\text{T})} &= \langle \Psi_0^{\text{CCSD}(\text{T})} | e^{T_1 + T_2} | \Phi \rangle = (1 + \langle \Phi | T_1^{\dagger} T_1 | \Phi \rangle + \langle \Phi (T_2^{\dagger} (T_2) + \frac{1}{2} T_1^2) | \Phi \rangle \\ &+ \langle \Phi | (T_3^{[2]} + Z_3)^{\dagger} (T_1 T_2 + \frac{1}{6} T_1^3) | \Phi \rangle \end{split}$$

(reduces to CCSD(T), when $M_3(2) \rightarrow (V_N T_2)_C$ and $D^{(T)} \rightarrow 1$).

Examples: Single bond breaking in F₂ and CH₃F

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Int. Rev. Phys. Chem., 2002)

Examples: Single bond breaking in F₂ and CH₃F

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Int. Rev. Phys. Chem., 2002)

• Multiple Bond Breaking [the MMCC(2,6) Method and the GMMCC(2,4) Approach Using the Extended CCSD (ECCSD) Amplitudes]

(K. Kowalski and P. Piecuch, J. Chem. Phys., 2000; P. Piecuch et al., Int. Rev. Phys. Chem., 2002; I.S.O. Pimienta, K. Kowalski, and P. Piecuch, J. Chem. Phys., 2003; P. Piecuch et al., Theor. Chem. Acct., 2004; P.-D. Fan, K. Kowalski, and P. Piecuch, Mol. Phys., 2005)

The newest generation of CR-CC corrections: the CR-CC(m_A,m_B) methods

(P. Piecuch and M. Włoch, 2005; P. Piecuch et al., 2006, 2007)

Ν

Instead of

of

$$\begin{aligned} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{\infty} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi \right\rangle \right\rangle &= \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{aligned}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\langle \Psi_0 | = \langle \Phi | Le^{-T^{(A)}}, \quad L = \sum_{n=0}^N L_n, \quad \langle \Phi | L_0 | \Phi \rangle = 1$$

The newest generation of CR-CC corrections: the CR-CC(m_A,m_B) methods

(P. Piecuch and M. Włoch, 2005; P. Piecuch et al., 2006, 2007)

N

Instead of

of

$$\begin{aligned}
\left|\Phi\right\rangle\!\left\langle\Phi\right| + \sum_{n=1}^{\infty}\sum_{i_{1}<\cdots< i_{n},a_{1}<\cdots a_{n}}\left|\Phi_{i_{1}\ldots i_{n}}\right\rangle &\leq \Phi_{i_{1}\ldots i_{n}}^{a_{1}\ldots a_{n}}\\
E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle\Psi_{0}\left|He^{T^{(A)}}\right|\Phi\right\rangle}{\left\langle\Psi_{0}\left|e^{T^{(A)}}\right|\Phi\right\rangle} = \frac{\left\langle\Psi_{0}\left|e^{T^{(A)}}\right|\Psi(He^{T^{(A)}})_{C}\right|\Phi\right\rangle}{\left\langle\Psi_{0}\left|e^{T^{(A)}}\right|\Phi\right\rangle}
\end{aligned}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| Le^{-T^{(A)}}, L \right| = \sum_{n=0}^{N} L_{n}, \quad \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1$$

$$E_{0} = \frac{\left\langle \Phi \left| Le^{-T^{(A)}} e^{T^{(A)}} \right\rangle \left(He^{T^{(A)}} \right)_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| Le^{-T^{(A)}} e^{T^{(A)}} \right\rangle \Phi \right\rangle} = \left\langle \Phi \left| L \left(He^{T^{(A)}} \right)_{C} \right| \Phi \right\rangle \Leftarrow \frac{\text{exact, independent of truncation } m_{A}}{\text{defining } T^{(A)}}$$

The newest generation of CR-CC corrections: the CR-CC(m_A,m_B) methods

(P. Piecuch and M. Włoch, 2005; P. Piecuch et al., 2006, 2007)

Ν

Instead of

of

$$E_{0} = \Lambda[\Psi_{0}] = \frac{\langle \Psi_{0} | He^{T^{(A)}} | \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle} = \frac{\langle \Psi_{0} | e^{T^{(A)}} \Psi(He^{T^{(A)}})_{C} | \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle}$$

before exploiting the resolution of identity, introduce the ansatz:

Example: CR-CC(2,3)=CR-CCSD(T)_L, robust, size extensive T_3 correction to CCSD

[in GAMESS since February 2006 (closed-shells) and August 2007 (open-shells); CCTYP=CR-CCL]

$$E_{0}(2,3) = E_{0}^{(\text{CCSD})} + \left\langle \Phi \left| L_{3} M_{3}(2) \right| \Phi \right\rangle = E_{0}^{(\text{CCSD})} + \sum_{i_{1} < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

Example: CR-CC(2,3)=CR-CCSD(T)_L, robust, size extensive T_3 correction to CCSD

[in GAMESS since February 2006 (closed-shells) and August 2007 (open-shells); CCTYP=CR-CCL]

Example: CR-CC(2,3)=CR-CCSD(T)_L, robust, size extensive T_3 correction to CCSD

[in GAMESS since February 2006 (closed-shells) and August 2007 (open-shells); CCTYP=CR-CCL]

 $CR-CC(2,3) \Longrightarrow CCSD(T)$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

 $CR-CC(2,3) \Longrightarrow CCSD(T)$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

$$M_{abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \implies \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$$
$$\mathsf{CR-CC(2,3)} \Longrightarrow \mathsf{CCSD(T)}$$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

$$M_{abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \implies \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$$

(3) (4) (2) $\ell_{abc}^{ijk} = \left\langle \Phi \left| \left[(L_1^{(CCSD)} \overline{H}_2^{(CCSD)})_{DC} + (L_2^{(CCSD)} \overline{H}_1^{(CCSD)})_{DC} + (L_2^{(CCSD)} \overline{H}_2^{(CCSD)})_C \right| \Phi_{abc}^{abc} \right\rangle / D_{abc}^{ijk}$

$$\mathsf{CR-CC(2,3)} \Longrightarrow \mathsf{CCSD(T)}$$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

$$M_{abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \implies \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$$

$$\mathsf{CR-CC(2,3)} \Longrightarrow \mathsf{CCSD(T)}$$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

$$M_{abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \implies \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$$

$$D_{abc}^{ijk} = E_0^{(CCSD)} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi_{ijk}^{abc} \right\rangle \implies \varepsilon_i + \varepsilon_j + \varepsilon_k - \varepsilon_a - \varepsilon_b - \varepsilon_c$$

$CR-CC(2,3) \Longrightarrow CCSD[T]=CCSD+T$

$$E_0(2,3) = E_0^{(\text{CCSD})} + \sum_{i_1 < j < k, a < b < c} \ell_{abc}^{ijk} M_{ijk}^{abc}(2)$$

$$M_{abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \implies \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$$

$$D_{abc}^{ijk} = E_0^{(CCSD)} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi_{ijk}^{abc} \right\rangle \implies \mathcal{E}_i + \mathcal{E}_j + \mathcal{E}_k - \mathcal{E}_a - \mathcal{E}_b - \mathcal{E}_c$$

The CR-CC(2,3) method is more accurate than all other non-iterative triples CC methods formulated to date. Example: potential energy curve of OH⁻.

Thermal Stereomutations of Cyclopropane

(A. Kinal, P. Piecuch, M.J. McGuire, and M. Włoch, in preparation)

	MRCI(Q)	CR-CCSD(T)	Experiment
$\Delta {\rm H_{geom}}^\ddagger$	59.7	67.8	63.6 ± 0.5

CR-CC(2,3) : 63.3 kcal/mol

The Conrotatory and Disrotatory Isomerization Pathways of Bicyclo[1.1.0]butane to Butadiene

(A. Kinal and P. Piecuch, J. Phys. Chem. A, 2007; J.J. Lutz and P. Piecuch, J. Chem. Phys., 2008)

Kinetic Modeling of JP-10 (exo-Tetrahydrodicyclopentadiene) High-Temperature Oxidation: Role of Biradical Species in Initial Decomposition Steps

[G.R. Magoon, J. Aguilera-Iparraguirre, W.H. Green, J.J. Lutz, P. Piecuch, H.-W. Wong, and O.O. Oluwole, Int. J. Chem. Kin., 2012]

Kinetic Modeling of JP-10 (exo-Tetrahydrodicyclopentadiene) High-Temperature Oxidation: Role of Biradical Species in Initial Decomposition Steps

THE MMCC ENERGY FORMULA FOR EXCITED STATES

(original formulation; K. Kowalski and P. Piecuch, 2001; biorthogonal extension, P. Piecuch et al., 2006, 2009)

CH [Piecuch, Gour, Włoch,									(2009)]
State	Theory	E/Hartree	$T_e/{\rm eV}$	REL	State	Theory	E/Hartree	T_e/eV	REL
$B^2\Sigma^-$	EOMCCSD	-38.228 924	4.241	1.79	$C \ ^2\Sigma^+$	EOMCCSD	-38.194 213	5.185	1.87
	$\mathrm{EOMCCSDT}^{b}$	-38.267 435	3.273			$\mathrm{EOMCCSDT}^{b}$	-38.238 031	4.073	
	EA-EOMCCSD(2p-1h)	-38.160 687	6.105			EA-EOMCCSD(2p-1h)	-38.180 332	5.570	
	EA-EOMCCSD(3p-2h)	-38.262 600	3.377			EA-EOMCCSD(3p-2h)	-38.236 024	4.100	
	$\text{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	-38.261 677	3.357			$EA-EOMCCSD(3p-2h){3}$	-38.234 680	4.092	
	$CR-EOMCCSD(T),ID^{c}$	-38.270 424	3.181			$CR-EOMCCSD(T),ID^{c}$	-38.236 048	4.117	
	CR-EOMCC(2,3),A	-38.257 269	3.529			CR-EOMCC(2,3),A	-38.224 449	4.422	
	CR-EOMCC(2,3),B	-38.255 709	3.569			CR-EOMCC(2,3),B	-38.222 634	4.469	
	CR-EOMCC(2,3),C	-38.272 744	3.123			CR-EOMCC(2,3),C	-38.238 514	4.055	
	CR-EOMCC(2,3),D	-38.272 498	3.130			CR-EOMCC(2,3),D	-38.238 118	4.065	
	$\operatorname{Experiment}^d$		3.23			$\operatorname{Experiment}^{e}$		3.94	

					H	[Piec	uch, Gour, Wło	ch, IJQC	(2009)]
State	Theory	E/Hartree	T_e/eV	REL	State	Theory	E/Hartree	T_e/eV	REL
$B^{2}\Sigma^{-}$	EOMCCSD (> 1 eV error)	-38.228 924	4.241	1.79	$C \ ^2\Sigma^+$	EOMCCSD (> 1 eV error)	-38.194 213	5.185	1.87
	$\mathrm{EOMCCSDT}^{b}$	-38.267 435	3.273			$\mathrm{EOMCCSDT}^{b}$	-38.238 031	4.073	
	EA-EOMCCSD(2p-1h)	-38.160 687	6.105			EA-EOMCCSD(2p-1h)	-38.180 332	5.570	
	EA-EOMCCSD(3p-2h)	-38.262 600	3.377			EA-EOMCCSD(3p-2h)	-38.236 024	4.100	
	$\text{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	-38.261 677	3.357			$EA-EOMCCSD(3p-2h){3}$	-38.234 680	4.092	
	$CR-EOMCCSD(T),ID^{c}$	-38.270 424	3.181			$CR-EOMCCSD(T),ID^{c}$	-38.236 048	4.117	
	CR-EOMCC(2,3),A	-38.257 269	3.529			CR-EOMCC(2,3),A	-38.224 449	4.422	
	CR-EOMCC(2,3),B	-38.255 709	3.569			CR-EOMCC(2,3),B	-38.222 634	4.469	
	CR-EOMCC(2,3),C	-38.272744	3.123			CR-EOMCC(2,3),C	-38.238 514	4.055	
	CR-EOMCC(2,3),D	-38.272 498	3.130			CR-EOMCC(2,3),D	-38.238 118	4.065	
	$\operatorname{Experiment}^d$		3.23			$\operatorname{Experiment}^{e}$		3.94	

				([Piec	uch, Gour, Wło	ch, IJQC	(2009)]
State	Theory	E/Hartree	T_e/eV	REL	State	Theory	E/Hartree	$T_e/{\rm eV}$	REL
$B \ ^2\Sigma^-$	EOMCCSD (> 1 eV error)	-38.228 924	4.241	1.79	$C \ ^2\Sigma^+$	EOMCCSD (> 1 eV error)	-38.194 213	5.185	1.87
	$\mathrm{EOMCCSDT}^{b}$	-38.267 435	3.273	(<0.1	eV error)	$\mathrm{EOMCCSDT}^{b}$	-38.238 031	4.073	
	EA-EOMCCSD(2p-1h)	-38.160 687	6.105			EA-EOMCCSD(2p-1h)	-38.180 332	5.570	
	EA-EOMCCSD(3p-2h)	-38.262 600	3.377			EA-EOMCCSD(3p-2h)	-38.236 024	4.100	
	$\text{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	$-38.261 \ 677$	3.357			$\operatorname{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	-38.234 680	4.092	
	$\operatorname{CR-EOMCCSD}(\mathbf{T}), \operatorname{ID}^c$	-38.270 424	3.181			$CR-EOMCCSD(T),ID^{c}$	-38.236 048	4.117	
	CR-EOMCC(2,3),A	-38.257 269	3.529			CR-EOMCC(2,3),A	-38.224 449	4.422	
	CR-EOMCC(2,3),B	-38.255 709	3.569			CR-EOMCC(2,3),B	-38.222 634	4.469	
	CR-EOMCC(2,3),C	-38.272 744	3.123			CR-EOMCC(2,3),C	-38.238 514	4.055	
	CR-EOMCC(2,3),D	-38.272 498	3.130			CR-EOMCC(2,3),D	-38.238 118	4.065	
	$\operatorname{Experiment}^d$		3.23			$\operatorname{Experiment}^{e}$		3.94	

					•	[Piec	uch, Gour, Wło	ch, IJQC	; (2009)]
State	Theory	E/Hartree	T_e/eV	REL	State	Theory	E/Hartree	T_e/eV	REL
$B \ ^2\Sigma^-$	EOMCCSD (> 1 eV error)	-38.228 924	4.241	1.79	$C \ ^2\Sigma^+$	EOMCCSD (> 1 eV error)	-38.194 213	5.185	1.87
	$\mathrm{EOMCCSDT}^{b}$	-38.267 435	3.273	(<0.1 e∖	/ error)	$\mathrm{EOMCCSDT}^{b}$	-38.238 031	4.073	
	EA-EOMCCSD(2p-1h)	-38.160 687	6.105			EA-EOMCCSD(2p-1h)	-38.180 332	5.570	
	EA-EOMCCSD(3p-2h)	-38.262 600	3.377			EA-EOMCCSD(3p-2h)	-38.236 024	4.100	
	$\text{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	$-38.261\ 677$	3.357			$\text{EA-EOMCCSD}(3p\text{-}2h)\{3\}$	-38.234 680	4.092	
	$CR-EOMCCSD(T),ID^{c}$	-38.270 424	3.181	(~0.1 e∖	/ error)	$CR-EOMCCSD(T),ID^{c}$	-38.236 048	4.117	
	CR-EOMCC(2,3),A	-38.257 269	3.529			CR-EOMCC(2,3),A	-38.224 449	4.422	
	CR-EOMCC(2,3),B	-38.255 709	3.569			CR-EOMCC(2,3),B	-38.222 634	4.469	
	CR-EOMCC(2,3),C	-38.272 744	3.123			CR-EOMCC(2,3),C	-38.238 514	4.055	
	CR-EOMCC(2,3),D	-38.272 498	3.130	(<0.1 e\	/ error)	CR-EOMCC(2,3),D	-38.238 118	4.065	
	$\operatorname{Experiment}^d$		3.23			$\operatorname{Experiment}^{e}$		3.94	

				СН		[Piecuch, Gour, Wło	och, IJQC (2009)]
State	Theory	E/Hartree	T_e/eV REI	L State	Theory	E/Hartree	$T_e/{ m eV}$ REL
$B^{2}\Sigma^{-}$	EOMCCSD (> 1 eV error	·) -38.228 924	4.241 1.79	$C^{2}\Sigma^{+}$	EOMCCSD (> 1 eV e	rror) -38.194 213	5.185 1.87
	$\mathrm{EOMCCSDT}^{b}$	-38.267 435	3.273 (<0.	1 eV error)	$\mathrm{EOMCCSDT}^{b}$	-38.238 031	4.073
	EA-EOMCCSD(2p-1h)	-38.160 687	6.105		EA-EOMCCSD(2p-1h)) -38.180 332	5.570
	EA-EOMCCSD(3p-2h)	-38.262 600	3.377		EA-EOMCCSD(3p-2h)) -38.236 024	4.100
	EA-EOMCCSD $(3p-2h)$ {3	} -38.261 677	3.357		EA-EOMCCSD(3p-2h)){3} -38.234 680	4.092
	$CR-EOMCCSD(T),ID^{c}$	-38.270 424	3.181 (~0 .	1 eV error)	CR-EOMCCSD(T),ID	c -38.236 048	4.117
	CR-EOMCC(2,3),A	-38.257 269	3.529		CR-EOMCC(2,3),A	-38.224 449	4.422
	CR-EOMCC(2,3),B	-38.255 709	3.569		CR-EOMCC(2,3),B	-38.222 634	4.469
	CR-EOMCC(2,3),C	-38.272 744	3.123		CR-EOMCC(2,3),C	-38.238 514	4.055
	CR-EOMCC(2,3),D	-38.272 498	3.130 (<0 .	1 eV error)	CR-EOMCC(2,3),D	-38.238 118	4.065
	$\operatorname{Experiment}^d$		3.23		$\operatorname{Experiment}^{e}$		3.94
			CNC, O		[Piecuch, Gour, Włoch, IJ Phys. (2009); Hansen, Pie	IQC (2009); Ehara, G cuch, Lutz, Gour, P	our, Piecuch, Mol hys. Scr. (2011)]
	EA-I	EOMCCSD			CF	R-EOMCC(2,3)	
Molecule	e State REL $(2p-1h)$ $(3p-1h)$	p-2h) (3p-2h)-	4} EOMCO	CSD CR-E	OMCCSD(T),ID A	B C D	Experiment ^{b}
CNC	$A^{2}\Delta_{u}$ 1.099 7.206 4	.105 4.085	4.291	1	4.339 4.400	4.397 4.395 4.39	5 3.761
	$B^{2}\Sigma_{u}^{+}$ 1.979 7.639 4	.718 4.704	7.123	3	4.675 5.432	5.595 4.582 4.59	<mark>9</mark> 4.315
C_2N	$A^{2}\Delta$ 1.090 6.190 3	.055 3.028	3.191	1	3.344 3.377	3.368 3.389 3.38	8 2.636
	$B^{2}\Sigma^{-}$ 1.856 7.856 3	.677 3.648	5.514	4	3.351 4.018	4.160 3.091 3.11	0 2.779
	$C^{2}\Sigma^{+}$ 1.897 6.722 3	.809 3.788	6.358	8	4.023 4.741	4.901 3.799 3.82	4 3.306

Completely renormalized CC/EOMCC methods can offer great help ... but there are situations where this is not sufficient ... Example: excited states of metallic clusters (Be₃)

(K. Kowalski et al., J. Chem. Phys. 2005, P. Piecuch et al., Int. J. Quantum Chem., 2006)

	State	Full CI	EOMCCSD	CR-EOMCCSD(T)
	$X \ ^1A_1'$	-43.882330	-43.864904	-43.873110
	$1 \ {}^{1}E''$	1.67 (S)	1.718	1.647
	$1 \ {}^{1}A_{1}''$	1.78 (D)		
	$1 \ {}^{1}E'$	2.04 (S)	2.122	1.988
	$2 \ {}^{1}E''$	2.61 (D)		
1	$2 {}^{1}E'$	2.68 (D)	9.315	3.032
	$1 \ {}^{1}A'_{2}$	2.89 (S)	2.932	2.790
	$2 {}^{1}A'_{1}$	2.91 (S)	3.029	2.896
	$3 \ {}^{1}E''$	3.04 (D)	4.232	3.546
	3 ¹ E'	3.08 (D)	4.823	3.338
	$1 \ {}^{1}A_{2}''$	3.16 (S,D)	3.993	3.358
	$2 {}^{1}A_{1}''$	3.31 (D)	5.271	3.601
	$4 {}^{1}E'$	3.48 (D)	4.570	3.633
	$3 {}^{1}A'_{1}$	3.64 (D)	4.935	4.033
	$4 \ {}^{1}E''$	3.90 (D)	5.286	3.954
	$3 {}^{1}A_{1}''$	3.99 (S,D)	4.244	3.891
	$2 {}^{1}A_{2}''$	4.12 (D)	5.995	4.384

Av. errors (eV): 1.33

ACTIVE-SPACE CC/EOMCC APROACHES FOR QUASI-DEGENERATE STATES (CCSDt, CCSDtq, EOMCCSDt, etc.)

[~ state-selective MRCC methods exploiting a single-reference formalism]

[Key concepts: Oliphant and Adamowicz, 1991; Piecuch, Oliphant, and Adamowicz, 1993; Piecuch and Adamowicz, 1994; Piecuch, Kucharski, and Bartlett, 1999; Kowalski and Piecuch, 2000-2001; Gour, Piecuch, and Włoch, 2005-2006; Shen and Piecuch, 2013-2014; cf., also, CASCC work by Adamowicz et al.]

REPRESENTATIVE APPROXIMATIONS: CCSDt OR SSMRCCSD(T) AND EOMCCSDt

$$T^{\text{int}} = T_1^{\text{int}} + T_2^{\text{int}} + T_3^{\text{int}}, \quad T^{\text{ext}} = T_1^{\text{ext}} + T_2^{\text{ext}} + T_3^{\text{ext}} (\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array})$$

$$T^{\text{CCSDt}} = T_1 + T_2 + T_3 \left(\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array} \right), \quad R_K^{\text{CCSDt}} = R_{K,0} + R_{K,1} + R_{K,2} + R_{K,3} \left(\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array} \right)$$

$$\bar{\mathbf{H}}^{\text{CCSDt}} = \begin{pmatrix} \bar{\mathbf{H}}_{\mathbf{SS}} & \bar{\mathbf{H}}_{\mathbf{SD}} & \bar{\mathbf{H}}_{\mathbf{St}} \\ \bar{\mathbf{H}}_{\mathbf{DS}} & \bar{\mathbf{H}}_{\mathbf{DD}} & \bar{\mathbf{H}}_{\mathbf{Dt}} \\ \bar{\mathbf{H}}_{\mathbf{tS}} & \bar{\mathbf{H}}_{\mathbf{tD}} & \bar{\mathbf{H}}_{\mathbf{tt}} \end{pmatrix}, \quad \bar{H} = e^{-T} H e^{T} = (H e^{T})_{C}$$

Other approximations: SSMRCCSD(TQ) or CCSDtq, EOMCCSDtq, etc.

Because of the use of active orbitals, the numbers of t, q, ... excitations are small fractions (~10-30 %) of all T, Q, ... excitations.

The most expensive CPU steps of (EOM)CCSDt and (EOM)CCSDtq scale as $\sim N_o N_u n_o^2 n_u^4$ and $\sim N_o^2 N_u^2 n_o^2 n_u^4$, respectively.

EXAMPLE: Bond breaking in F₂

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Chem. Phys. Lett., 2006)

EXAMPLE: Bond breaking in F₂

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Chem. Phys. Lett., 2006)

Potential energy curves for F₂/cc-pVDZ. Differences with CCSDT (in millihartree)

Method	$0.75R_{\rm e}$	R _e	$1.25R_{\rm e}$	1.5 <i>R</i> _e	$1.75R_{\rm e}$	$2R_{\rm e}$	$3R_{\rm e}$	$5R_{\rm e}$
CCSDT ^a	-198.922138	-199.102796	-199.085272	-199.065882	-199.059433	-199.058201	-199.058511	-199.058586
CCSD	4.504	9.485	19.917	32.424	41.184	45.638	49.425	49.816
CCSD(T) ^a	0.102	0.248	-0.503	-5.711	-15.133	-23.596	-35.700	-39.348
CR-CCSD(T) ^a	0.709	1.799	4.482	7.408	8.636	8.660	7.460	6.350
$LR-CCSD(T)^{b}$	0.540	1.260	2.801	3.601	2.465	0.693	-2.859	-4.518
$\text{CCSD}(2)_{\text{T}}^{\text{c}}$	0.460	1.398	3.698	5.984	6.637	6.357	4.976	3.895
CR-CC(2,3)	-0.289	-0.240	0.707	1.735	1.971	1.862	1.643	1.613
CCSDt ^a	2.677	2.297	1.907	1.720	1.730	1.789	1.889	1.891

EXAMPLE: Bond breaking in F₂

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Chem. Phys. Lett., 2006)

Potential energy curves for F₂/cc-pVDZ. Differences with CCSDT (in millihartree)

Method	$0.75R_{\rm e}$	R _e	$1.25R_{\rm e}$	1.5 <i>R</i> _e	$1.75R_{\rm e}$	$2R_{\rm e}$	$3R_{\rm e}$	$5R_{\rm e}$	NPE
CCSDT ^a	-198.922138	-199.102796	-199.085272	-199.065882	-199.059433	-199.058201	-199.058511	-199.05858	6
CCSD	4.504	9.485	19.917	32.424	41.184	45.638	49.425	49.816	45.312
$CCSD(T)^a$	0.102	0.248	-0.503	-5.711	-15.133	-23.596	-35.700	-39.348	39.596
CR-CCSD(T) ^a	0.709	1.799	4.482	7.408	8.636	8.660	7.460	6.350	7.951
LR-CCSD(T) ^b	0.540	1.260	2.801	3.601	2.465	0.693	-2.859	-4.518	8.119
$\text{CCSD}(2)_{\text{T}}^{\text{c}}$	0.460	1.398	3.698	5.984	6.637	6.357	4.976	3.895	6.177
CR-CC(2,3)	-0.289	-0.240	0.707	1.735	1.971	1.862	1.643	1.613	2.260
CCSDt ^a	2.677	2.297	1.907	1.720	1.730	1.789	1.889	1.891	0.957

Ground and excited states of Be₃

(K. Kowalski et al., J. Chem. Phys. 2005, P. Piecuch et al., Int. J. Quantum Chem., 2006)

Radicals via the active-space electron-attached (EA) and ionized (IP) EOMCC

(J.R. Gour, P. Piecuch, and M. Włoch, J. Chem. Phys., 2005; Int. J. Quantum Chem., 2006, J.R. Gour and P. Piecuch, J. Chem. Phys., 2006; Piecuch et al., 2007-2011)

$$(\bar{H}_{N,\text{open}} R_{\mu}^{(N\pm1)}(\text{CCSDt}))_{C} |\Phi\rangle = \omega_{\mu} \stackrel{(N\pm1)}{=} R_{\mu}^{(N\pm1)}(\text{CCSDt}) |\Phi\rangle$$
$$R_{\mu}^{(N+1)}(\text{CCSDt}) = R_{\mu,1p} + R_{\mu,2p-1h} + r_{\mu,3p-2h}$$
$$R_{\mu}^{(N-1)}(\text{CCSDt}) = R_{\mu,1h} + R_{\mu,2h-1p} + r_{\mu,3h-2p}$$

where

	$\rm CCSD/$	CCSDT/		EA-EC	рМ		
State	EOMCCSD	EOMCCSDT	$\operatorname{CCSD}(2p-1h)$	$\operatorname{CCSD}(3p-2h)$	CCSDt	MRCI(Q)	Exp.
aug-cc-pVTZ							
$X \ ^2\Pi$	-38.409 320	-38.413 493	-38.409 823	-38.412 070	-38.409 413	-38.413 811	
$a \ ^4\Sigma^-$	1.03	0.74	2.661	0.743	0.704	0.718	0.74
$A \ ^2\Delta$	3.28	2.94	5.120	2.964	2.931	2.911	2.87
$B \ ^2\Sigma^-$	4.62	3.27	6.453	3.393	3.359	3.251	3.23
$C \ ^2\Sigma^+$	5.48	4.03	5.815	4.053	4.040	3.980	3.94
aug-cc-pVQZ							
$X \ ^2\Pi$	-38.415 848	-	-38.416 559	-38.418 732	-38.415 905	-38.420 576	
$a~^{4}\Sigma^{-}$	1.06	-	2.741	0.766	0.724	0.741	0.74
$A \ ^2\Delta$	3.27	-	5.181	2.952	2.917	2.896	2.87
$B\ ^2\Sigma^-$	4.67	-	6.538	3.390	3.355	3.245	3.23
$C \ ^2\Sigma^+$	5.52	-	5.878	4.037	4.021	3.962	3.94

Timings in Multiples of the EA-EOMCCSD(2p-1h) Time

Method	aug-cc-pVTZ	aug-cc-pVQZ	
EA-EOMCCSD $(3p-2h)$	61.42	56.42	$\sim n_{\rm o}^2 n_{\rm u}^5$
EA-EOMCCSDt	5.57	3.45	$\sim N_{\rm u} n_{\rm o}^2 n_{\rm u}^4$
EOMCCSD	1.00	1.19	$\sim n_{\rm o}^2 n_{\rm u}^4$

Active orbitals in EA-EOMCCSDt: $1\pi_x$, $1\pi_y$, 4σ

	$\rm CCSD/$	CCSDT/		EA-EC	рМ		
State	EOMCCSD	EOMCCSDT	CCSD(2p-1h)	$\operatorname{CCSD}(3p-2h)$	CCSDt	MRCI(Q)	Exp.
aug-cc-pVTZ							
$X \ ^2\Pi$	-38.409 320	-38.413 493	-38.409 823	-38.412 070	-38.409 413	-38.413 811	
$a \ ^4\Sigma^-$	1.03	0.74	2.661	0.743	0.704	0.718	0.74
$A \ ^2\Delta$	3.28	2.94	5.120	2.964	2.931	2.911	2.87
$B \ ^2\Sigma^-$	4.62	3.27	6.453	3.393	3.359	3.251	3.23
$C \ ^2\Sigma^+$	5.48	4.03	5.815	4.053	4.040	3.980	3.94
aug-cc-pVQZ							
$X \ ^2\Pi$	-38.415 848	-	-38.416 559	-38.418 732	-38.415 905	-38.420 576	
$a \ ^4\Sigma^-$	1.06	-	2.741	0.766	0.724	0.741	0.74
$A \ ^2\Delta$	3.27	-	5.181	2.952	2.917	2.896	2.87
$B \ ^2\Sigma^-$	4.67	-	6.538	3.390	3.355	3.245	3.23
$C \ ^2\Sigma^+$	5.52	-	5.878	4.037	4.021	3.962	3.94

Timings in Multiples of the EA-EOMCCSD(2p-1h) Time

Method	aug-cc-pVTZ	aug-cc-pVQZ	
EA-EOMCCSD $(3p-2h)$	61.42	56.42	$\sim n_{\rm o}^2 n_{\rm u}^5$
EA-EOMCCSDt	5.57	3.45	$\sim N_{\rm u} n_{\rm o}^2 n_{\rm u}^4$
EOMCCSD	1.00	1.19	$\sim n_{\rm o}^2 n_{\rm u}^4$

Active orbitals in EA-EOMCCSDt: $1\pi_x$, $1\pi_y$, 4σ

	CCSD/	CCSDT/		EA-EC	рМ		
State	EOMCCSD	EOMCCSDT	$\operatorname{CCSD}(2p-1h)$	$\operatorname{CCSD}(3p-2h)$	CCSDt	MRCI(Q)	Exp.
aug-cc-pVTZ							
$X \ ^2\Pi$	-38.409 320	-38.413 493	-38.409 823	-38.412 070	-38.409 413	-38.413 811	
$a \ ^4\Sigma^-$	1.03	0.74	2.661	0.743	0.704	0.718	0.74
$A \ ^2\Delta$	3.28	2.94	5.120	2.964	2.931	2.911	2.87
$B \ ^2\Sigma^-$	4.62	3.27	6.453	3.393	3.359	3.251	3.23
$C \ ^2\Sigma^+$	5.48	4.03	5.815	4.053	4.040	3.980	3.94
$\operatorname{aug-cc-pVQZ}$							
$X \ ^2\Pi$	-38.415 848	-	-38.416 559	-38.418 732	-38.415 905	-38.420 576	
$a \ ^4\Sigma^-$	1.06	-	2.741	0.766	0.724	0.741	0.74
$A \ ^2\Delta$	3.27	-	5.181	2.952	2.917	2.896	2.87
$B \ ^2\Sigma^-$	4.67	-	6.538	3.390	3.355	3.245	3.23
$C \ ^2\Sigma^+$	5.52	-	5.878	4.037	4.021	3.962	3.94

Timings in Multiples of the EA-EOMCCSD(2p-1h) Time

Method	aug-cc-pVTZ	aug-cc-pVQZ	
EA-EOMCCSD $(3p-2h)$	61.42	56.42	$\sim n_{\rm o}^2 n_{\rm u}^{5}$
EA-EOMCCSDt	5.57	3.45	$\sim N_{\rm u} n_{\rm o}^{2} n_{\rm o}$
EOMCCSD	1.00	1.19	$\sim n_{\rm o}^2 n_{\rm u}^4$

Active orbitals in **EA-EOMCCSDt:** $1\pi_x, 1\pi_v, 4\sigma$

 $\sim N_{\rm u} n_{\rm o}^{2} n_{\rm u}^{4}$

	CCSD/	CCSDT/		EA-EC	ЭМ		
State	EOMCCSD	EOMCCSDT	CCSD(2p-1h)	$\operatorname{CCSD}(3p-2h)$	CCSDt	MRCI(Q)	Exp.
aug-cc-pVTZ							
$X \ ^2\Pi$	-38.409 320	-38.413 493	-38.409 823	-38.412 070	-38.409 413	-38.413 811	
$a \ ^4\Sigma^-$	1.03	0.74	2.661	0.743	0.704	0.718	0.74
$A\ ^{2}\Delta$	3.28	2.94	5.120	2.964	2.931	2.911	2.87
$B \ ^2\Sigma^-$	4.62	3.27	6.453	3.393	3.359	3.251	3.23
$C \ ^2\Sigma^+$	5.48	4.03	5.815	4.053	4.040	3.980	3.94
aug-cc-pVQZ							
$X \ ^2\Pi$	-38.415 848	-	-38.416 559	-38.418 732	-38.415 905	-38.420 576	
$a \ ^4\Sigma^-$	1.06	-	2.741	0.766	0.724	0.741	0.74
$A \ ^2\Delta$	3.27	-	5.181	2.952	2.917	2.896	2.87
$B \ ^2\Sigma^-$	4.67	-	6.538	3.390	3.355	3.245	3.23
$C \ ^2\Sigma^+$	5.52	-	5.878	4.037	4.021	3.962	3.94

Timings in Multiples of the EA-EOMCCSD(2p-1h) Time

Method	aug-cc-pVTZ	aug-cc-pVQZ	
EA-EOMCCSD $(3p-2h)$	61.42	56.42	$\sim n_{\rm o}^2 n_{\rm u}^{5}$
EA-EOMCCSDt	5.57	3.45	$\sim N_{\rm u} n_{\rm o}^{2} n_{\rm o}$
EOMCCSD	1.00	1.19	$\sim n_{\rm o}^2 n_{\rm u}^4$

Active orbitals in **EA-EOMCCSDt:** $1\pi_x, 1\pi_v, 4\sigma$

 $\sim N_{\rm u} n_{\rm o}^{2} n_{\rm u}^{4}$

	CCSD/	CCSDT/		EA-EC	рМ		
State	EOMCCSD	EOMCCSDT	$\operatorname{CCSD}(2p\text{-}1h)$	$\operatorname{CCSD}(3p-2h)$	CCSDt	MRCI(Q)	Exp.
aug-cc-pVTZ							
$X \ ^2\Pi$	-38.409 320	-38.413 493	-38.409 823	-38.412 070	-38.409 413	-38.413 811	
$a \ ^4\Sigma^-$	1.03	0.74	2.661	0.743	0.704	0.718	0.74
$A \ ^2\Delta$	3.28	2.94	5.120	2.964	2.931	2.911	2.87
$B \ ^2\Sigma^-$	4.62	3.27	6.453	3.393	3.359	3.251	3.23
$C \ ^2\Sigma^+$	5.48	4.03	5.815	4.053	4.040	3.980	3.94
aug-cc-pVQZ							
$X \ ^2\Pi$	-38.415848	-	-38.416 559	-38.418732	-38.415 905	-38.420 576	
$a \ ^4\Sigma^-$	1.06	-	2.741	0.766	0.724	0.741	0.74
$A \ ^2\Delta$	3.27	-	5.181	2.952	2.917	2.896	2.87
$B \ ^2\Sigma^-$	4.67	-	6.538	3.390	3.355	3.245	3.23
$C \ ^2\Sigma^+$	5.52	-	5.878	4.037	4.021	3.962	3.94

Timings in Multiples of the EA-EOMCCSD(2p-1h) Time

Method	aug-cc-pVTZ	aug-cc- $pVQZ$
EA-EOMCCSD $(3p-2h)$	61.42	56.42
EA-EOMCCSDt	5.57	3.45
EOMCCSD	1.00	1.19

 $\sim n_{\rm o}^2 n_{\rm u}^5$ $\sim N_{\rm u} n_{\rm o}^2 n_{\rm u}^4$

 $\sim n_{\rm o}^2 n_{\rm u}^4$

Active orbitals in EA-EOMCCSDt: $1\pi_x$, $1\pi_y$, 4σ

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$\begin{aligned} R_{\mu}^{(N+2)}\{N_{u}\} &= R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h} \\ R_{\mu}^{(N-2)}\{N_{o}\} &= R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p} \\ r_{\mu,4p-2h} &= \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{A}\mathbf{B}}{}_{cd}^{kl}(\mu) \, a^{\mathbf{A}}a^{\mathbf{B}}a^{c}a^{d}a_{l}a_{k} \\ r_{\mu,4h-2p} &= \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{I}\mathbf{J}kl}{}_{cd}^{kl}(\mu) \, a^{c}a^{d}a_{l}a_{k}a_{\mathbf{J}}a_{\mathbf{I}}. \end{aligned}$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{AB}cd}^{kl}(\mu) a^{\mathbf{A}} a^{\mathbf{B}} a^{c} a^{d} a_{l} a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{IJ}kl}^{\mathbf{IJ}kl}(\mu) a^{c} a^{d} a_{l} a_{k} a_{\mathbf{J}} a_{\mathbf{I}}.$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{A}\mathbf{B}cd}^{kl}(\mu) a^{\mathbf{A}}a^{\mathbf{B}}a^{c}a^{d}a_{l}a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{I}\mathbf{J}kl}^{\mathbf{I}Jkl}(\mu) a^{c}a^{d}a_{l}a_{k}a_{\mathbf{J}}a_{\mathbf{I}}$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{A}\mathbf{B}}^{kl}(\mu) a^{\mathbf{A}} a^{\mathbf{B}} a^{c} a^{d} a_{l} a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{I}\mathbf{J}}^{\mathbf{I}\mathbf{J}kl}(\mu) a^{c} a^{d} a_{l} a_{k} a_{\mathbf{J}} a_{\mathbf{I}}$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{AB}cd}^{kl}(\mu) a^{\mathbf{A}} a^{\mathbf{B}} a^{c} a^{d} a_{l} a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{IJ}kl}^{\mathbf{IJ}kl}(\mu) a^{c} a^{d} a_{l} a_{k} a_{\mathbf{J}} a_{\mathbf{I}}.$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + r_{\mu,4h-2p}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{AB}cd}^{kl}(\mu) a^{\mathbf{A}} a^{\mathbf{B}} a^{c} a^{d} a_{l} a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{IJ}kl}^{\mathbf{IJ}kl}(\mu) a^{c} a^{d} a_{l} a_{k} a_{\mathbf{J}} a_{\mathbf{I}}$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

M. Nooijen and R.J. Bartlett, 1997; M. Nooijen, 2002; K.W. Sattetmeyer, H.F. Schaefer III, and J.F. Stanton, 2003; M. Musiał, R.J. Bartlett, et al., 2011-2013; T. Kuś and A.I. Krylov, 2011-2012; ...

$$R_{\mu}^{(N+2)}\{N_{u}\} = R_{\mu,2p} + R_{\mu,3p-1h} + r_{\mu,4p-2h}$$

$$R_{\mu}^{(N-2)}\{N_{o}\} = R_{\mu,2h} + R_{\mu,3h-1p} + \overbrace{r_{\mu,4h-2p}}^{(\mu)}$$

$$r_{\mu,4p-2h} = \sum_{k>l,\mathbf{A}<\mathbf{B}< c< d} r_{\mathbf{AB}cd}^{kl}(\mu) a^{\mathbf{A}} a^{\mathbf{B}} a^{c} a^{d} a_{l} a_{k}$$

$$r_{\mu,4h-2p} = \sum_{\mathbf{I}>\mathbf{J}>k>l,c< d} r_{\mathbf{L}}^{\mathbf{L}} (\mu) a^{c} a^{d} a_{l} a_{k} a_{\mathbf{J}} a_{\mathbf{L}}$$

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

Method	$\Delta E_{\rm S-T}$
DEA-EOMCC $(3p-1h)$	20.9
DEA-EOMCC $(4p-2h){3}^{b}$	18.9
DIP-EOMCC(3h-1p)	22.0
$\text{DIP-EOMCC}(4h-2p)\{3\}^c$	18.8
DIP-EOMCC(4h-2p)	18.8
$\operatorname{Expt.}^d$	16.0 ± 0.1
Expt. $-\Delta ZPVE^e$	18.1

Example: Singlet-triplet gap in trimethylenemethane (TMM), in kcal/mol

[geometries from L.V. Slipchenko and A.I. Krylov, *J. Chem. Phys.* **117**, 4694 (2002)]

_
(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

Method	$\Delta E_{\rm S-T}$
DEA-EOMCC $(3p-1h)$	20.9
DEA-EOMCC $(4p-2h){3}^{b}$	18.9
DIP-EOMCC(3h-1p)	22.0
DIP-EOMCC $(4h-2p){3}^c$	18.8
DIP-EOMCC(4h-2p)	18.8
$\operatorname{Expt.}^d$	16.0 ± 0.1
Expt. $-\Delta ZPVE^{e}$	18.1

Example: Singlet-triplet gap in trimethylenemethane (TMM), in kcal/mol

[geometries from L.V. Slipchenko and A.I. Krylov, *J. Chem. Phys.* **117**, 4694 (2002)]

0

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

DEA-EOMCC $(3p-1h)$ 20.9 DEA-EOMCC $(4p-2h){3}^{b}$ 18.9	
DEA-EOMCC $(4p-2h){3}^{b}$ 18.9	
DIP-EOMCC $(3h-1p)$ 22.0 15 tir	nes
DIP-EOMCC $(4h-2p){3}^c$ 18.8 faste	r
DIP-EOMCC $(4h-2p)$ 18.8	
Expt. ^d 16.0 ± 0.1	
Expt. $-\Delta ZPVE^e$ 18.1	

Example: Singlet-triplet gap in trimethylenemethane (TMM), in kcal/mol

[geometries from L.V. Slipchenko and A.I. Krylov, *J. Chem. Phys.* **117**, 4694 (2002)]

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

		=	Method	cc-pVDZ	cc-pVTZ
Method	$\Delta E_{\rm S-T}$		CCSD ^{a,b}	46.1	46.9
			$CCSD(T)^{a,b}$	24.4	27.1
DEA-EOMCC(3p-1h)	20.9		$CR-CC(2,3)A^{a,b,c}$	32.3	33.6
$DEA = OMCC(4m, 2h) (2)^{b}$	19.0	1	$CCSDt^{a,b}$	29.9	22.6
$DEA-EOMCC(4p-2n){5}$	10.9		$CCSD(T)-h^{a,b}$	19.8	19.3
DIP-EOMCC $(3h-1p)$	22.0	45 6	$CC(t;3)A^{a,b}$	21.2	21.8
		15 time Tfaster	$^{\mathbf{S}}$ CC(t;3) $_{\mathbf{D}}^{a,b}$	21.2	21.7
$DIP-EOMCC(4h-2p){3}^{c}$	18.8		CCSDT ^{a,b}	21.7	
	10.0		2R SUCCSD/RHF ^d		19.9
DIP-EOMCC $(4h-2p)$	18.8		2R SUCCSD/MCSCF ^a		16.1
Expt d	16.0 ± 0.1		2R RMRCCSD/RHF ^M		30.6
Expt.	10.0 ± 0.1	-	$2R RMRCCSD/MCSCF^{-}$		25.8
Expt. $-\Delta ZPVE^{e}$	18.1		$2R RMRCCSD(T)_{f}/RMP$ $2R RMRCCSD(T)_{f}/MCSCF^{d}$		23.6
		_	2R RMRCCSD(T) _{se} /RHF ^d		23.8
			2R RMRCCSD(T)se/MCSCFd		22.6
			SF-CIS ^{b,e}		20.4
			SF-CIS(D) ^{b,e}		20.6
E	•		SF-OD ^{b,e}		21.7
Example: Singlet-triplet g	gap in		EOM-SF-CCSD ^{b,f}		21.5
trimothylonomothono (TN			EOM-SF-CC $(2,3)^{b,f}$		18.2
u memyrenementalle (11)	1111],		4R BWCCSD it ^g	18.2	17.8
in kcal/mol			4R BWCCSDT-1α ^g	14.9	
			4R BWCCSDT- α^{g}	15.6	
[geometries from L.V. Slipchenko and A.I. Krylov,			Expt."	16.0	± 0.1
J. Chem. Phys. 117, 4694 (2002)]			Expt. $-\Delta ZPVE'$	1	8.1

J. Chem. Phys. **117**, 4694 (2002)]

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X {}^{3}B_{1}, B {}^{1}B_{1} \sim (1a_{1})^{2} (2a_{1})^{2} (1b_{2})^{2} (3a_{1})^{1} (1b_{1})^{1}$$

$$A {}^{1}A_{1}, C {}^{1}A_{1} \sim (1a_{1})^{2} (2a_{1})^{2} (1b_{2})^{2} (3a_{1})^{2} (1b_{1})^{0}, (1a_{1})^{2} (2a_{1})^{2} (1b_{2})^{2} (3a_{1})^{0} (1b_{1})^{2}$$

Method	$A \ ^1A_1 - X \ ^3B_1$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_1 - X {}^{3}B_1$	MUE	NPE
DEA-EOMCC $(3p-1h)$	1.53	1.09	0.93	1.53	0.60
DEA-EOMCC $(4p-2h){2}^c$	0.12	-0.56	-0.82	0.82	0.94
DEA-EOMCC(4p-2h)	0.19	0.14	0.43	0.43	0.29
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91
$\text{DIP-EOMCC}(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53
DIP-EOMCC $(4h-2p)$	1.24	0.69	0.95	1.24	0.55
Full CI^a	11.14	35.59	61.67		

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X^{3}B_{1}, B^{1}B_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{1}(1b_{1})^{1}$$

$$A^{1}A_{1}, C^{1}A_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{0}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{2}$$

$$DEA: CH_{2}^{2+}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{0} \qquad n_{0}^{2}n_{u}^{6}$$

Method	$A \ ^1A_1 - X \ ^3B_1$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_{1} - X {}^{3}B_{1}$	MUE	NPE
DEA-EOMCC(3p-1h)	1.53	1.09	0.93	1.53	0.60
$DEA\text{-}EOMCC(4p\text{-}2h)\{2\}^c$	0.12	-0.56	-0.82	0.82	0.94
DEA-EOMCC(4p-2h)	0.19	0.14	0.43	0.43	0.29
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91
$\text{DIP-EOMCC}(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53
DIP-EOMCC(4h-2p)	1.24	0.69	0.95	1.24	0.55
Full CI^a	11.14	35.59	61.67		

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X^{3}B_{1}, B^{1}B_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{1}(1b_{1})^{1}$$

$$A^{1}A_{1}, C^{1}A_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{0}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{2}$$

$$DEA: CH_{2}^{2+}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{0} \qquad n_{o}^{2}n_{u}^{6} \rightarrow N_{u}^{2}n_{o}^{2}n_{u}^{4}$$

Method	$A {}^{1}A_{1} - X {}^{3}B_{1}$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_{1} - X {}^{3}B_{1}$	MUE	NPE
DEA-EOMCC(3p-1h)	1.53	1.09	0.93	1.53	0.60
DEA-EOMCC $(4p-2h){2}^c$	0.12	-0.56	-0.82	0.82	0.94
DEA-EOMCC $(4p-2h)$	0.19	0.14	0.43	0.43	0.29
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91
$\text{DIP-EOMCC}(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53
DIP-EOMCC(4h-2p)	1.24	0.69	0.95	1.24	0.55
Full CI^a	11.14	35.59	61.67		

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X^{3}B_{1}, B^{1}B_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{1}(1b_{1})^{1}$$

$$A^{1}A_{1}, C^{1}A_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{0}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{2}$$

$$DEA: CH_{2}^{2+}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{0} \qquad n_{0}^{2}n_{u}^{6} \rightarrow N_{u}^{2}n_{0}^{2}n_{u}^{4}$$

Method	$A \ ^1A_1 - X \ ^3B_1$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_{1} - X {}^{3}B_{1}$	MUE	NPE	-
DEA-EOMCC(3p-1h)	1.53	1.09	0.93	1.53	0.60	2 s/iter
$DEA\text{-}EOMCC(4p\text{-}2h)\{2\}^c$	0.12	-0.56	-0.82	0.82	0.94	6 s/iter.
DEA-EOMCC $(4p-2h)$	0.19	0.14	0.43	0.43	0.29	2621 s/iter.
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91	
$\text{DIP-EOMCC}(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53	
DIP-EOMCC $(4h-2p)$	1.24	0.69	0.95	1.24	0.55	
Full CI^a	11.14	35.59	61.67]

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X^{3}B_{1}, B^{1}B_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{1}(1b_{1})^{1}$$

$$A^{1}A_{1}, C^{1}A_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{0}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{2}$$

$$DEA: CH_{2}^{2+}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{0} \qquad n_{o}^{2}n_{u}^{6} \rightarrow N_{u}^{2}n_{o}^{2}n_{u}^{4}$$

$$DIP: CH_{2}^{2-}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{2} \qquad n_{o}^{4}n_{u}^{4}$$

Method	$A {}^{1}A_{1} - X {}^{3}B_{1}$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_1 - X {}^{3}B_1$	MUE	NPE	_
DEA-EOMCC(3p-1h)	1.53	1.09	0.93	1.53	0.60	2 s/iter
$DEA\text{-}EOMCC(4p\text{-}2h)\{2\}^c$	0.12	-0.56	-0.82	0.82	0.94	6 s/iter.
DEA-EOMCC(4p-2h)	0.19	0.14	0.43	0.43	0.29	2621 s/iter
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91	
$\text{DIP-EOMCC}(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53	
DIP-EOMCC $(4h-2p)$	1.24	0.69	0.95	1.24	0.55]
Full CI^a	11.14	35.59	61.67]

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

$$X^{3}B_{1}, B^{1}B_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{1}(1b_{1})^{1}$$

$$A^{1}A_{1}, C^{1}A_{1} \sim (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{0}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{2}$$

$$DEA: CH_{2}^{2+}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{0}(1b_{1})^{0} \qquad n_{0}^{2}n_{u}^{6} \rightarrow N_{u}^{2}n_{0}^{2}n_{u}^{4}$$

$$DIP: CH_{2}^{2-}, (1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{2} \qquad n_{0}^{4}n_{u}^{4} \rightarrow N_{0}^{2}n_{0}^{2}n_{u}^{4}$$

Method	$A {}^{1}A_{1} - X {}^{3}B_{1}$	$B {}^{1}B_{1} - X {}^{3}B_{1}$	$C {}^{1}A_1 - X {}^{3}B_1$	MUE	NPE	-
DEA-EOMCC $(3p-1h)$	1.53	1.09	0.93	1.53	0.60	2 s/iter
DEA-EOMCC $(4p-2h){2}^c$	0.12	-0.56	-0.82	0.82	0.94	6 s/iter.
DEA-EOMCC $(4p-2h)$	0.19	0.14	0.43	0.43	0.29	2621 s/iter
DIP-EOMCC $(3h-1p)$	6.03	8.47	10.94	10.94	4.91	
$DIP\text{-}EOMCC(4h\text{-}2p)\{2\}^c$	1.17	0.64	0.90	1.17	0.53	
DIP-EOMCC $(4h-2p)$	1.24	0.69	0.95	1.24	0.55	-
Full CI^a	11.14	35.59	61.67]

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

	RHF			τ	JHF
R _{H-F}	Full CI	CCSD	CCSD(T)	 CCSD	CCSD(T)
1.5	9525	7320	9468	7398	8418
1.625	7008	4372	7066	4981	5776
1.750	4911	1838	5179	3156	3693
1.875	3304	-172	3902	1913	2244
2.000	2147	-1656	3212	1122	1323
2.125	1353	-2668	3023	638	766
2.250	827	-3282	3225	350	438
2.375	488	-3572	3714	182	247
2.500	277	-3605	4394	88	137
3.000	17	-2369	7370	1	10
4.000	0	-230	8899	 0	0

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

	RHF				UHF
R _{H-F}	Full CI	CCSD	CCSD(T)	CCS	D CCSD(T)
1.5	9525	7320	-57	7398	8 8418
1.625	7008	4372	58	498 1	1 5776
1.750	4911	1838	268	3150	6 3693
1.875	3304	-172	598	191.	3 2244
2.000	2147	-1656	1065	1122	2 1323
2.125	1353	-2668	1670	638	766
2.250	827	-3282	2398	350	438
2.375	488	-3572	3226	182	247
2.500	277	-3605	4117	88	137
3.000	17	-2369	7353	1	10
4.000	0	-230	8899	0	0

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

	RHF			τ	J HF
<i>R</i> _{H-F}	Full CI	CCSD	CCSD(T)	CCSD	CCSD(T)
1.5	9525	7320	-57	7398	-1107
1.625	7008	4372	58	4981	-1232
1.750	4911	1838	268	3156	-1218
1.875	3304	-172	598	1913	-1060
2.000	2147	-1656	1065	1122	-824
2.125	1353	-2668	1670	638	-587
2.250	827	-3282	2398	350	-389
2.375	488	-3572	3226	182	-241
2.500	277	-3605	4117	88	-140
3.000	17	-2369	7353	1	-7
4.000	0	-230	8899	0	0

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

Singlet-Triplet Splitting in (HFH)⁻ (in cm⁻¹)

DIP, reference system (HFH)³⁻

(J. Shen and P. Piecuch, J. Chem. Phys., 2013, Mol. Phys., 2014)

Singlet-Triplet Splitting in (HFH)⁻ (in cm⁻¹)

DIP, reference system (HFH)³⁻

		H-F distance (Å)												
Orbitals	Method	1.500	1.625	1.750	1.875	2.000	2.125	2.250	2.375	2.500	3.000	4.000	MUE	NPE
	DIP-EOMCC(3h-1p)	317	327	307	266	216	167	122	85	57	6	0	327	327
ROHF^{b}	$\texttt{DIP-EOMCC}(4h\text{-}2p)\{3\}^c$	-24	-18	-13	-9	-6	-4	-3	-2	-1	0	0	24	24
	DIP-EOMCC $(4h-2p)$	-9	-1	3	4	5	4	3	2	2	1	0	9	14
	DIP-EOMCC(3h-1p)	481	478	435	367	293	222	159	108	71	7	0	481	481
RHF^d	$\texttt{DIP-EOMCC}(4h\text{-}2p)\{3\}^c$	-40	-36	-77	-58	-40	-27	-17	-12	-8	-8	0	77	77
	DIP-EOMCC $(4h-2p)$	-22	-19	-16	-12	-8	-6	-4	-3	-1	1	0	22	23
	DIP-EOMCC(3h-1p)	674	725	719	672	603	525	447	374	311	153	79	725	646
$\operatorname{ROHF}/\operatorname{RHF}^{e}$	$\text{DIP-EOMCC}(4h\text{-}2p)\{3\}^c$	160	186	88	113	132	142	144	139	132	103	148	186	98
	DIP-EOMCC $(4h-2p)$	155	182	206	224	237	245	247	245	240	202	148	247	99
	Full CI^a	9525	7008	4911	3304	2147	1353	827	489	277	17	0		

Active orbitals for selecting 4h-2p excitations: 3 MOs correlating with the 1s shells of the H atoms and the 2p_z orbital of F

MERGING ACTIVE-SPACE AND RENORMALIZED COUPLED-CLUSTER METHODS, CC(*P*,*Q*), CC(t;3), CC(t,q;3), CC(t,q;3,4), CC(q;4), ETC. SCHEMES

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012; J. Chem. Theory Comput., 2012]

Key idea: Replace the previously developed moment expansions, which aim at describing the differences between the exact (full Cl) energies E_{μ} and the corresponding CC/EOMCC energies obtained using conventional truncation schemes for the cluster operator *T* and, in the case of excited states, excitation operator R_{μ} by the expansions that enable us to correct the energies obtained with arbitrary truncations of *T* and R_{μ} for the selected higher-order correlation effects of interest.

Examples (and motivation):

Correct the results of CCSDt calculations, where $T \approx T^{(\text{CCSDt})} = T_1 + T_2 + t_3$, for the remaining triples effects neglected in CCSDt calculations, or correct EOMCCSDtq energies, obtained with $T \approx T^{(\text{CCSDtq})} = T_1 + T_2 + t_3 + t_4$ and and $R_\mu \approx R_\mu^{(\text{CCSDtq})} = R_1 + R_2 + r_3 + r_4$ for the remaining triples and quadruples.

Replace

$$E_{\mu} = E_{\mu}^{(A)} + \sum_{n=m_{A}+1}^{N_{\mu,A}} \left\langle \Phi \left| L_{\mu,n} M_{\mu,n}(m_{A}) \right| \Phi \right\rangle = E_{\mu}^{(A)} + \sum_{n=m_{A}+1}^{N_{\mu,A}} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots a_{n}} \ell_{\mu,a_{1}\dots a_{n}}^{i_{1}\dots i_{n}} M_{\mu,i_{1}\dots i_{n}}^{a_{1}\dots a_{n}}(m_{A}),$$

where $E_{\mu}^{(A)}$ is obtained with $T^{(A)} = T_{1} + \dots + T_{m_{A}}$ and $R_{\mu}^{(A)} = R_{1} + \dots + R_{m_{A}}$, with
 $M_{\mu,i_{1}\dots i_{n}}^{a_{1}\dots a_{n}}(m_{A}) = \left\langle \Phi_{i_{1}\dots i_{n}}^{a_{1}\dots a_{n}} \left| \overline{H}^{(A)} R_{\mu}^{(A)} \right| \Phi \right\rangle, \overline{H}^{(A)} = e^{-T^{(A)}} H e^{T^{(A)}},$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q) = E_{\mu}^{(P)} + \sum_{\substack{\Phi_{K} \in \mathcal{H}_{Q} \\ \operatorname{rank}(\Phi_{K}) \leq \min(N_{\mu}^{(P)},\Xi^{(P)})}} \ell_{\mu,K}(P) M_{\mu,K}(P),$$

where $E_{\mu}^{(P)}$ is obtained with $T^{(P)} = \sum_{\Phi_{K} \in \mathfrak{R}_{P}} t_{K} E_{K}$ and $R_{\mu}^{(P)} = r_{0} \mathbf{1} + \sum_{\Phi_{K} \in \mathfrak{R}_{P}} r_{K} E_{K}$, using $M_{\mu,K}(P) = \left\langle \Phi_{K} \left| \overline{H}^{(P)} R_{\mu}^{(P)} \right| \Phi \right\rangle, \ \overline{H}^{(P)} = e^{-T^{(P)}} H e^{T^{(P)}}$

$$\begin{split} & \mathsf{CC}(P;Q) \ \mathsf{HIERARCHY}. \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \end{split} \qquad \begin{bmatrix} \mathsf{J}. \ \mathsf{Shen \ and \ P. \ Piecuch, \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J}. \\ & \mathsf{Chem. \ Phys., \ 2012; \ J}. \\ & \mathsf{Chem. \ Phys., \ 2012]} \end{aligned}$$

$$E_{\mu}^{(\mathrm{CC(t;3)})} = E_{\mu}^{(\mathrm{CCSDt})} + \delta_{\mu}(\mathrm{t};3)$$
$$\delta_{\mu}(\mathrm{t};3) = \sum_{|\Phi_{ijk}^{abc}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t})}} \ell_{\mu,ijk}^{abc}(\mathrm{CCSDt}) \mathfrak{M}_{\mu,abc}^{ijk}(\mathrm{CCSDt})$$

$$\begin{split} & \mathsf{CC}(P;Q) \ \mathsf{HIERARCHY}. \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \\ & \mathsf{Cc. \ schemes} \\ & \mathsf{Ce. \ Chem. \ Phys., \ 2012]} \\ & \mathsf{Ce. \ Chem. \ Phys., \ Phys., \ Phys. \ Phys.$$

$$E_{\mu}^{(\mathrm{CC}(\mathrm{t};3))} = E_{\mu}^{(\mathrm{CCSDt})} + \delta_{\mu}(\mathrm{t};3)$$

$$\delta_{\mu}(\mathrm{t};3) = \sum_{|\Phi_{ijk}^{abc}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t}}} \ell_{\mu,ijk}^{abc}(\mathrm{CCSDt}) \mathfrak{M}_{\mu,abc}^{ijk}(\mathrm{CCSDt})$$

$$E_{\mu}^{(\mathrm{CC}(\mathrm{t},\mathrm{q};3))} = E_{\mu}^{(\mathrm{CCSDtq})} + \delta_{\mu}(\mathrm{t},\mathrm{q};3)$$

$$\delta_{\mu}(\mathrm{t},\mathrm{q};3) = \sum_{|\Phi_{ijk}^{abc}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t}}} \ell_{\mu,ijk}^{abc}(\mathrm{CCSDtq}) \mathfrak{M}_{\mu,abc}^{ijk}(\mathrm{CCSDtq}).$$

$$\Longrightarrow \mathsf{CC}(\mathrm{t},\mathrm{q};3)$$

$$\begin{split} & \mathsf{CC}(P;Q) \ \mathsf{HIERARCHY}. \\ & \mathsf{CC}(\mathsf{t};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3}), \ \mathsf{CC}(\mathsf{t},\mathsf{q};\mathsf{3},\mathsf{4}), \ \mathsf{CC}(\mathsf{q};\mathsf{4}), \ \mathsf{etc. \ schemes} \end{split} \qquad \begin{bmatrix} \mathsf{J}. \ \mathsf{Shen \ and \ P. \ Piecuch, \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{J}. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ J. \ \mathsf{Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ J. \ Chem. \ Phys., \ 2012; \ \mathsf{L}. \ \mathsf{L}.$$

$$\begin{split} E^{(\mathrm{CC}(\mathrm{t};3))}_{\mu} &= E^{(\mathrm{CCSDt})}_{\mu} + \delta_{\mu}(\mathrm{t};3) \\ \delta_{\mu}(\mathrm{t};3) &= \sum_{|\Phi^{abc}_{ijk}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t})}} \ell^{abc}_{\mu,ijk}(\mathrm{CCSDt}) \mathfrak{M}^{ijk}_{\mu,abc}(\mathrm{CCSDt}) \\ E^{(\mathrm{CC}(\mathrm{t},\mathrm{q};3))}_{\mu} &= E^{(\mathrm{CCSDtq})}_{\mu} + \delta_{\mu}(\mathrm{t},\mathrm{q};3) \\ \delta_{\mu}(\mathrm{t},\mathrm{q};3) &= \sum_{|\Phi^{abc}_{ijk}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t})}} \ell^{abc}_{\mu,ijk}(\mathrm{CCSDtq}) \mathfrak{M}^{ijk}_{\mu,abc}(\mathrm{CCSDtq}) \\ E^{(\mathrm{CC}(\mathrm{t},\mathrm{q};3,4))}_{\mu} &= E^{(\mathrm{CCSDtq})}_{\mu} + \delta_{\mu}(\mathrm{t},\mathrm{q};3,4) \\ \delta_{\mu}(\mathrm{t},\mathrm{q};3,4) &= \sum_{|\Phi^{abc}_{ijk}\rangle \in \mathscr{H}^{(\mathrm{T})} \ominus \mathscr{H}^{(\mathrm{t})}} \ell^{abc}_{\mu,ijk}(\mathrm{CCSDtq}) \mathfrak{M}^{ijk}_{\mu,abc}(\mathrm{CCSDtq}) \\ &+ \sum_{|\Phi^{abc}_{ijkl}\rangle \in \mathscr{H}^{(\mathrm{Q})} \ominus \mathscr{H}^{(\mathrm{q})}} \ell^{abcd}_{\mu,ijkl}(\mathrm{CCSDtq}) \mathfrak{M}^{ijkl}_{\mu,abcd}(\mathrm{CCSDtq}) \\ &+ \sum_{|\Phi^{abcd}_{ijkl}\rangle \in \mathscr{H}^{(\mathrm{Q})} \ominus \mathscr{H}^{(\mathrm{q})}} \ell^{abcd}_{\mu,ijkl}(\mathrm{CCSDtq}) \mathfrak{M}^{ijkl}_{\mu,abcd}(\mathrm{CCSDtq}) \\ \end{split}$$

Correcting CCSDt for the remaining triples with CR-CC(2,3)-like expressions

[J. Shen and P. Piecuch, Chem. Phys., 2012]

$$\begin{split} T^{(\mathrm{CCSDt})} &= T_1 + T_2 + t_3, \quad Q \Longrightarrow T_3 - t_3 \\ E^{(\mathrm{CC(t;3)})}_{\mu} &= E^{(\mathrm{CCSDt})}_{\mu} + \sum_{\{i < j < k, a < b < c\} \in Q} \ell^{ijk}_{\mu, abc} (\mathrm{CCSDt}) \ M^{abc}_{\mu, ijk} (\mathrm{CCSDt}) \\ M^{abc}_{\mu, ijk} (\mathrm{CCSDt}) &= \left\langle \Phi^{abc}_{ijk} \middle| \overline{H}^{(\mathrm{CCSDt})} R^{(\mathrm{CCSDt})}_{\mu} \middle| \Phi \right\rangle \\ \ell^{ijk}_{\mu, abc} (\mathrm{CCSDt}) &= \left\langle \Phi \middle| L^{(\mathrm{CCSDt})}_{\mu} \overline{H}^{(\mathrm{CCSDt})} \middle| \Phi^{abc}_{ijk} \right\rangle / (E^{(\mathrm{CCSDt})}_{\mu} - \left\langle \Phi^{abc}_{ijk} \middle| \overline{H}^{(\mathrm{CCSDt})} \middle| \Phi^{abc}_{ijk} \right\rangle) \\ t_3(\mathrm{I}) &= \sum_{i < j < \mathbf{K}, \mathbf{A} < b < c} t^{ij\mathbf{K}}_{Abc} E^{Abc}_{ij\mathbf{K}}, \quad t_3(\mathrm{II}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABc} E^{ABc}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABc} E^{ABc}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABc} E^{ABc}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABc} E^{ABc}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABc} E^{ABC}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABC} E^{ABC}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{B} < c} t^{i\mathbf{JK}}_{ABC} E^{ABC}_{i\mathbf{JK}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathbf{J} < \mathbf{K}, \mathbf{A} < \mathbf{K} < \mathbf{K}$$

Correcting CCSDt for the remaining triples with CR-CC(2,3)-like expressions

[J. Shen and P. Piecuch, Chem. Phys., 2012]

Example: Bond breaking in F_2 (cc-pVTZ basis set; the F-F distance R in multiples of R_e)

				0	CCSDt		(CCSD(T)-h			CC(t,3)		
R	CCSD	$\operatorname{CCSD}(\mathrm{T})$	CR-CC(2,3)	(III)	(II)	(I)	(III)	(II)	(I)	(III)	(II)	(I)	CCSDT
0.75	11.361	0.021	-0.364	10.401	7.516	2.290	-0.059	-0.163	-0.113	-0.351	-0.308	-0.162	-199.123383
1	17.979	-0.008	-0.282	16.173	9.907	1.969	-0.273	-0.679	-0.154	-0.341	-0.401	-0.152	-199.296095
1.25	30.089	-0.881	1.190	25.907	14.577	1.746	-1.617	-2.317	-0.224	0.806	0.069	-0.136	-199.267730
1.5	45.495	-6.165	3.305	38.405	21.103	1.630	-7.006	-6.962	-0.327	2.536	0.917	-0.124	-199.245756
1.75	56.750	-16.418	4.193	47.862	26.112	1.588	-16.224	-13.754	-0.410	3.355	1.355	-0.104	-199.239464
2	62.819	-26.354	4.254	53.126	28.850	1.574	-24.799	-19.507	-0.462	3.493	1.442	-0.088	-199.238344
3	68.361	-41.789	3.906	58.315	31.260	1.559	-37.814	-27.114	-0.520	3.289	1.265	-0.065	-199.238825
5	69.103	-47.179	3.733	58.889	31.429	1.558	-41.803	-28.715	-0.524	3.084	1.106	-0.052	-199.238928
NPE	57.742	47.200	4.618	48.488	23.912	0.732	41.744	28.552	0.410	3.844	1.842	0.110	

Correcting CCSDt for the remaining triples with CR-CC(2,3)-like expressions

[J. Shen and P. Piecuch, Chem. Phys., 2012]

$$\begin{split} T^{(\mathrm{CCSDt})} &= T_1 + T_2 + t_3, \quad Q \Longrightarrow T_3 - t_3 \\ E^{(\mathrm{CC(t;3)})}_{\mu} &= E^{(\mathrm{CCSDt})}_{\mu} + \sum_{\{i < j < k, a < b < c\} \in Q} \ell^{ijk}_{\mu, abc} (\mathrm{CCSDt}) \ M^{abc}_{\mu, ijk} (\mathrm{CCSDt}) \\ M^{abc}_{\mu, ijk} (\mathrm{CCSDt}) &= \left\langle \Phi^{abc}_{ijk} \middle| \overline{H}^{(\mathrm{CCSDt})} R^{(\mathrm{CCSDt})}_{\mu} \middle| \Phi \right\rangle \\ \ell^{ijk}_{\mu, abc} (\mathrm{CCSDt}) &= \left\langle \Phi \middle| L^{(\mathrm{CCSDt})}_{\mu} \overline{H}^{(\mathrm{CCSDt})} \middle| \Phi^{abc}_{ijk} \right\rangle / (E^{(\mathrm{CCSDt})}_{\mu} - \left\langle \Phi^{abc}_{ijk} \middle| \overline{H}^{(\mathrm{CCSDt})} \middle| \Phi^{abc}_{ijk} \right\rangle) \\ t_3(\mathrm{I}) &= \sum_{i < j < \mathrm{K}, \mathrm{A} < b < c} t^{ij\mathrm{K}}_{\mathrm{Abc}} E^{\mathrm{Abc}}_{ij\mathrm{K}}, \quad t_3(\mathrm{II}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{i\mathrm{J}\mathrm{K}}_{\mathrm{ABc}} E^{\mathrm{ABc}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABc}} E^{\mathrm{ABc}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABc}} E^{\mathrm{ABc}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABc}} E^{\mathrm{ABC}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABC}} E^{\mathrm{ABC}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABC}} E^{\mathrm{ABC}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{J} < \mathrm{K}, \mathrm{A} < \mathrm{B} < c} t^{\mathrm{I}\mathrm{J}\mathrm{K}}_{\mathrm{ABC}} E^{\mathrm{ABC}}_{i\mathrm{J}\mathrm{K}}, \quad t_3(\mathrm{III}) = \sum_{i < \mathrm{I} < \mathrm{I} < \mathrm{K}, \mathrm{A} < \mathrm{I} < \mathrm{K} < \mathrm$$

Example: Bond breaking in F_2 (cc-pVTZ basis set; the F-F distance R in multiples of R_e)

				0	CCSDt		(CCSD(T)-h			CC(t,3)		
R	CCSD	$\operatorname{CCSD}(\mathrm{T})$	CR-CC(2,3)	(III)	(II)	(I)	(III)	(II)	(I)	(III)	(II)	(I)	CCSDT
0.75	11.361	0.021	-0.364	10.401	7.516	2.290	-0.059	-0.163	-0.113	-0.351	-0.308	-0.16	2 -199.123383
1	17.979	-0.008	-0.282	16.173	9.907	1.969	-0.273	-0.679	-0.154	-0.341	-0.401	-0.15	-199.296095
1.25	30.089	-0.881	1.190	25.907	14.577	1.746	-1.617	-2.317	-0.224	0.806	0.069	-0.13	6 -199.267730
1.5	45.495	-6.165	3.305	38.405	21.103	1.630	-7.006	-6.962	-0.327	2.536	0.917	-0.12	4 -199.245756
1.75	56.750	-16.418	4.193	47.862	26.112	1.588	-16.224	-13.754	-0.410	3.355	1.355	-0.10	4 -199.239464
2	62.819	-26.354	4.254	53.126	28.850	1.574	-24.799	-19.507	-0.462	3.493	1.442	-0.08	8 -199.238344
3	68.361	-41.789	3.906	58.315	31.260	1.559	-37.814	-27.114	-0.520	3.289	1.265	-0.06	5 -199.238825
5	69.103	-47.179	3.733	58.889	31.429	1.558	-41.803	-28.715	-0.524	3.084	1.106	-0.05	2 -199.238928
NPE	57.742	47.200	4.618	48.488	23.912	0.732	41.744	28.552	0.410	3.844	1.842	0.110)

Correcting CCSDt for the remaining triples with CR-CC(2,3)-like expressions

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012]

The mean unsigned error (MUE) and non-parallelity errror (NPE) values (in millihartree) characterizing the results of various CC calculations for the potential energy curves of the HF, F_2 , and F_2^+ molecules relative to the corresponding full CCSDT energies

Molecular system ^a	CCSD	CCSD(T)	CR-CC(2,3)	CCSDt	CCSD(T)-h	CC(t;3)
MUE						
$\text{HF}(R/R_e = 0.75 - 5.0)$	36.029	71.762	1.553	3.779	0.350	0.187
$F_2(R/R_e = 0.75 - 5.0)$	69.103	47.179	4.254	2.290	0.524	0.162
$F_2^+(R/R_e = 0.75 - 3.0)$	89.240	22.032	14.305	1.840	0.727	0.254
NPE						
$\text{HF}(R/R_e = 0.75 - 5.0)$	29.733	71.770	1.433	1.385	0.330	0.202
$F_2(R/R_e = 0.75 - 5.0)$	57.742	47.200	4.618	0.732	0.410	0.110
$F_2^+(R/R_e = 0.75 - 3.0)$	77.510	22.132	15.262	0.717	0.604	0.081

^aIn each case, R/R_e designates the range of internuclear separations, in multiples of the equilibrium distance, which was used in the MUE and NPE evaluation. The active spaces used in the CCSDt, CCSD(T)-h, and CC(t;3) calculations consisted of the $N_o = 3$ highest-energy occupied and $N_u = 10$ lowest-energy unoccupied orbitals that correlate with the 1*s*, 2*s*, and 2*p* shells of the H atom and the 2*p*, 3*s*, 3*p*, and 4*s* shells of the F atom in the HF case, and the $N_o = 5$ highest occupied and $N_u = 9$ lowest unoccupied orbitals that correlate with the 2*p*, 3*s*, and 3*p* shells of the F atoms in the case of F₂ and F₂⁺. See Ref. 152 for further details.

[J. Shen and P. Piecuch, J. Chem. Phys, 2012]

	Reactant	TS	
CCSDT	-154.244157	-154.232002	4
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ	cc-pVTZ
CCSD	20.9	22.6
$\operatorname{CCSD}(T)$	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
\rightarrow CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
$\mathrm{TCCSD^{a}}$	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
$CASPT2^{b}$	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
$MkCCSD/mcscf^{c}$	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf^{c}}$	9.5	11.4
$\rm SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
$BWCCSD(a.c.)^{e}$	6.5	7.6
BWCCSD(i.c.) ^e	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
MkCCSD ^e	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF	f 7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-2	2.5

[J. Shen and P. Piecuch, J. Chem. Phys, 2012]

	Reactant	TS	
CCSDT	-154.244157	-154.232002	
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ	cc- $pVTZ$
CCSD	20.9	22.6
CCSD(T)	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
\triangleright CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
TCCSD ^a	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
$CASPT2^{b}$	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
$MkCCSD/mcscf^{c}$	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf}^{c}$	9.5	11.4
$\rm SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
$BWCCSD(a.c.)^{e}$	6.5	7.6
$BWCCSD(i.c.)^{e}$	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
$MkCCSD^{e}$	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF ^f	7.3	8.4
$DIP-EOM-CCSD^{a}$	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-4	2.5

[J. Shen and P. Piecuch, J. Chem. Phys, 2012]

	Reactant	TS	
CCSDT	-154.244157	-154.232002	
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ	cc- $pVTZ$
CCSD	20.9	22.6
CCSD(T)	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
\rightarrow CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
$\mathrm{TCCSD}^{\mathrm{a}}$	9.4	12.9
$TCCSD(T)^{a}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
$CASPT2^{b}$	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
$MkCCSD/mcscf^{c}$	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf}^{c}$	9.5	11.4
$\rm SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
$BWCCSD(a.c.)^{e}$	6.5	7.6
$BWCCSD(i.c.)^{e}$	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
MkCCSD ^e	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF	t 7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-2	2.5

[J. Shen and P. Piecuch, J. Chem. Phys, 2012]

	Reactant	TS	
CCSDT	-154.244157	-154.232002	
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc- $pVDZ$	cc- $pVTZ$
CCSD	20.9	22.6
CCSD(T)	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
\rightarrow CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
$\mathrm{TCCSD}^{\mathbf{a}}$	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
CASPT2 ^b	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
$MkCCSD/mcscf^{c}$	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf}^{c}$	9.5	11.4
$\rm SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
$BWCCSD(a.c.)^{e}$	6.5	7.6
$BWCCSD(i.c.)^{e}$	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
$MkCCSD^{e}$	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF ^f	7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-2	2.5

The Conrotatory		con_TS	
and Disrotatory	CCSD(T) ^a	40.4	
Isomerization	CR-CC(2,3) ^a	41.1	
Pathways of			
Bicyclo[1.1.0]-			
butane to			
Butadiene Revisited			

	con_TS	dis_TS	g-but	gt_TS	t-but	
CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0	
CR-CC (2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9	

^a A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007)

The Conrotatory		con_TS	dis_TS	g-but	gt_TS	t-but
and Disrotatory	CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
Isomerization	CR-CC (2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9
Pathways of	ACSE ^b	41.2	55.7	-23.8		
Bicyclo[1.1.0]-						

Butadiene Revisited

butane to

^a A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007)

^b D. A. Maziotti, J. Phys. Chem. A **112**, 13684 (2008)

While not definitive, comparison of the CR-CC and ACSE total energies for reactant, product, and transition states suggests the CR-CC method may be missing some multireference correlation of the biradical disrotatory transition state that would lower its energy by about 9.5 kcal/mol.

The Conrotatory		con_TS	dis_TS	g-but	gt_TS	t-but
and Disrotatory	CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
Isomerization	CR-CC (2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9
Pathways of	ACSE ^b	41.2	55.7	-23.8		
Bicyclo[1.1.0]-	CCSDt ^c	40.1	59.0	-27.2	-25.3	-31.1
butane to	CC(t;3) ^c	40.2	60.1	-25.3	-22.6	-28.3

Butadiene Revisited

E

^a A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007)

^b D. A. Maziotti, J. Phys. Chem. A 112, 13684 (2008)

While not definitive, comparison of the CR-CC and ACSE total energies for reactant, product, and transition states suggests the CR-CC method may be missing some multireference correlation of the biradical disrotatory transition state that would lower its energy by about 9.5 kcal/mol.

^c J. Shen and P. Piecuch, *J. Chem. Phys.* **136**, 144104 (2012)

The Conrotatory		con_TS	dis_TS	g-but	gt_TS	t-but
and Disrotatory	CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
Isomerization	CR-CC(2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9
Pathways of	ACSE ^b	41.2	55.7	-23.8		
Bicyclo[1.1.0]-	CCSDt ^c	40.1	59.0	-27.2	-25.3	-31.1
butane to	CC(t;3) ^c	40.2	60.1	-25.3	-22.6	-28.3
Butadiene Revisited	OMR3-DMC ^d	40.4(5)	58.6(5)	-25.2(5)	-22.2(5)	-27.9(5)

dis TS disrotatory *66.1* pathway conrotatory pathway con TS E 41.1 (40.6 ± 2.5) gt TS bicyclo[1.1.0]butane (bicbut) gauche-buta-1,3-diene (g-but) -27.9 -24.9 -22.1 (-25.9 ± 0.4) trans-buta-1,3-diene (t-but)

^a A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007)

^b D. A. Maziotti, J. Phys. Chem. A **112**, 13684 (2008)

While not definitive, comparison of the CR-CC and ACSE total energies for reactant, product, and transition states suggests the CR-CC method may be missing some multireference correlation of the biradical disrotatory transition state that would lower its energy by about 9.5 kcal/mol.

> ^c J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012) ^d A. R. Berner and A. Lüchow, J. Phys. Chem. A 114, 13222 (2010)

Method	con_TS	dis_TS	g-but	gt_TS	t-but
cc-pVDZ					
CCSD	45.0	75.7	-25.6	-23.1	-28.5
CCSD(T)	39.9	13.5	-26.1	-23.4	-29.0
CCSD(2) _T	43.9	68.3	-25.0	-22.0	-28.0
CR-CC(2,3) ^a	40.3	62.1	-26.1	-23.3	-29.0
CCSDt	39.5	55.7	-28.4	-25.6	-31.6
CCSD(T)-h	39.4	53.9	-26.5	-23.7	-29.4
CC(t;3)	39.7	57.4	-26.4	-23.6	-29.3
CCSDT	39.8	57.5	-26.5	-23.7	-29.4
MCQDPT2 ^b	37.0	53.7	-26.4	-23.4	-29.4
cc-pVTZ					
CCSD	45.6	78.9	-24.8	-22.2	-27.6
CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
CCSD(2) _T	41.7	67.8	-25.0	-22.3	-27.9
CR-CC(2,3) ^{a,b}	41.1	66.1	-24.9	-22.1	-27.9
CCSDt	40.1	59.0	-27.2	-25.3	-31.1
CCSD(T)-h	39.7	53.6	-25.4	-22.6	-28.4
CC(t;3)	40.2	60.1	-25.3	-22.6	-28.3
MRMP2/6-31G(d) ^c	38.0	54.0	-26.6		
MRMP2/6-311G(d,p) ^c	35.7	52.2	-27.0		
CASPT2/6-31G(d)d	41.5	56.3	-23.2		-26.0
MRCI(Q)/6-31G(d) ^d	41.5	56.7	-29.8		-32.4
ACSE/6-31G(d)c	41.8	56.4	-24.2		
ACSE/6-311G(d,p)c	41.2	55.7	-23.8		
OMR3-DMC ^e	40.4(5)	58.6(5)	-25.2(5)	-22.2(5)	-27.9(5)
Experiment	40.6 ± 2.5	f			-25.9 ± 0.4^{g}

The Conrotatory
and Disrotatory
Isomerization
Pathways of
Bicyclo[1.1.0]-
butane to
Butadiene Revisited

Species ^b	CCSD	CCSD(T)	CCSD(2) _T	CR-CC(2,3) ^c	CCSDt	CCSD(T)-h	CC(t;3)
bicbut	21.863	0.450	3.107	0.134	14.427	- 0.200	- 0.263
con_TS	30.130	0.573	5.305	0.968	14.024	-0.826	-0.418
dis_TS	50.760	- 69.648	14.052	7.345	11.487	- 5.918	- 0.491
g-but	23.259	1.009	3.786	0.794	11.377	-0.183	-0.065
gt_TS	22.836	0.964	3.658	0.782	11.402	-0.139	-0.028
t-but	23.396	1.036	3.837	0.840	10.963	- 0.192	- 0.056

Errors in the calculated total electronic energies relative to full CCSDT, in millihartree (the cc-pVDZ basis set)

PRELIMINARY CC(t,q;3) AND CC(t,q;3,4) RESULTS: Correcting CCSDtq for the missing triples or triples and quadruples

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Double dissociation	Method	$R = R_{\rm e}$	$R = 1.5 R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
of the H ₂ O molecule	CCSD	1.790	5.590	9.335	9.335	7.545
(DZ basis set)	CCSDT	0.434	1.473	-2.210	2.210	3.683
	CCSDTQ	0.015	0.141	0.108	0.141	0.126
	Full CI	-76.157866	-76.014521	-75.905247		

Method	$R = R_{\rm e}$	$R=1.5R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
$\mathrm{CCSD}(\mathrm{TQ}_f)$	0.151(0.166)	-0.047(0.094)	-6.022(-5.914)	6.022(5.914)	6.173(6.080)
CR-CC(2,4)	0.041(0.056)	0.238(0.379)	-1.039(-0.931)	1.039(0.931)	1.277(1.310)
$CCSDtq{2,2}$	0.970(0.985)	1.091(1.232)	1.229(1.337)	1.229(1.337)	0.259(0.352)
$CC(t,q;3){2,2}$	0.309(0.324)	0.497(0.638)	0.713(0.821)	0.713(0.821)	0.403(0.496)
$\rm{CC}(t,q;3,4)\{2,2\}$	0.022(0.037)	0.049(0.190)	0.411(0.519)	0.411(0.519)	0.389(0.482)
CCSDTQ	-76.157851	-76.014380	-75.905139		
Full CI	-76.157866	-76.014521	-75.905247		
[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Double dissociation	Method	$R = R_{\rm e}$	$R = 1.5 R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
of the H ₂ O molecule	CCSD	1.790	5.590	9.335	9.335	7.545
(DZ basis set)	CCSDT	0.434	1.473	-2.210	2.210	3.683
	CCSDTQ	0.015	0.141	0.108	0.141	0.126
	Full CI	-76.157866	-76.014521	-75.905247		

Method	$R = R_{\rm e}$	$R=1.5R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
$\mathrm{CCSD}(\mathrm{TQ}_f)$	0.151(0.166)	-0.047(0.094)	-6.022(-5.914)	6.022(5.914)	6.173(6.080)
CR-CC(2,4)	0.041(0.056)	0.238(0.379)	-1.039(-0.931)	1.039(0.931)	1.277(1.310)
$CCSDtq{2,2}$	0.970(0.985)	1.091(1.232)	1.229(1.337)	1.229(1.337)	0.259(0.352)
$CC(t,q;3){2,2}$	0.309(0.324)	0.497(0.638)	0.713(0.821)	0.713(0.821)	0.403(0.496)
$CC(t,q;3,4){2,2}$	0.022(0.037)	0.049(0.190)	0.411(0.519)	0.411(0.519)	0.389(0.482)
CCSDTQ	-76.157851	-76.014380	-75.905139		
Full CI	-76.157866	-76.014521	-75.905247		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Double dissociation	Method	$R = R_{\rm e}$	$R = 1.5 R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
of the H ₂ O molecule	CCSD	1.790	5.590	9.335	9.335	7.545
(DZ basis set)	CCSDT	0.434	1.473	-2.210	2.210	3.683
	CCSDTQ	0.015	0.141	0.108	0.141	0.126
	Full CI	-76.157866	-76.014521	-75.905247		

Method	$R = R_{\rm e}$	$R=1.5R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
$\mathrm{CCSD}(\mathrm{TQ}_f)$	0.151(0.166)	-0.047(0.094)	-6.022(-5.914)	6.022(5.914)	6.173(6.080)
CR-CC(2,4)	0.041(0.056)	0.238(0.379)	-1.039(-0.931)	1.039(0.931)	1.277(1.310)
$CCSDtq{2,2}$	0.970(0.985)	1.091(1.232)	1.229(1.337)	1.229(1.337)	0.259(0.352)
$CC(t,q;3){2,2}$	0.309(0.324)	0.497(0.638)	0.713(0.821)	0.713(0.821)	0.403(0.496)
$\rm{CC}(t,q;3,4)\{2,2\}$	0.022(0.037)	0.049(0.190)	0.411(0.519)	0.411(0.519)	0.389(0.482)
CCSDTQ	-76.157851	-76.014380	-75.905139		
Full CI	-76.157866	-76.014521	-75.905247		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Double dissociation	Method	$R = R_{\rm e}$	$R = 1.5 R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
of the H ₂ O molecule	CCSD	1.790	5.590	9.335	9.335	7.545
(DZ basis set)	CCSDT	0.434	1.473	-2.210	2.210	3.683
	CCSDTQ	0.015	0.141	0.108	0.141	0.126
	Full CI	-76.157866	-76.014521	-75.905247		

Method	$R = R_{\rm e}$	$R=1.5R_{\rm e}$	$R = 2R_{\rm e}$	MUE	NPE
$\mathrm{CCSD}(\mathrm{TQ}_f)$	0.151(0.166)	-0.047(0.094)	-6.022(-5.914)	6.022(5.914)	6.173(6.080)
CR-CC(2,4)	0.041(0.056)	0.238(0.379)	-1.039(-0.931)	1.039(0.931)	1.277(1.310)
$CCSDtq{2,2}$	0.970(0.985)	1.091(1.232)	1.229(1.337)	1.229(1.337)	0.259(0.352)
$CC(t,q;3){2,2}$	0.309(0.324)	0.497(0.638)	0.713(0.821)	0.713(0.821)	0.403(0.496)
$CC(t,q;3,4){2,2}$	0.022(0.037)	0.049(0.190)	0.411(0.519)	0.411(0.519)	0.389(0.482)
CCSDTQ	-76.157851	-76.014380	-75.905139		
Full CI	-76.157866	-76.014521	-75.905247		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	Ε	\mathbf{F}	G	Η	Ι	NPE MUE
CCSD	0.391	0.378	0.479	1.092	3.481	0.791	0.311	0.180	0.036	3.445 3.481
CCSDT	0.021	0.003	0.041	-0.104	-2.205	0.058	0.042	0.015	0.004	2.263 2.205
CCSDTQ	0.000	-0.001	0.001	-0.001	0.000	0.016	-0.001	-0.001	0.000	0.018 0.016
Full CI	-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878	

Method	А	В	С	D	Е	F	G	Η	Ι	NPE	MUE
$CR-CC(2,4)_{AA}$	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209	0.737
$CR-CC(2,4)_{DA}$	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	1.098	0.936
$CCSDtq\{(1,1)\}$	0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885	0.908
$\mathrm{CC}(t,\!q;\!3)_{\mathrm{A}}\{1,\!1\}$	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406	0.412
$\mathrm{CC}(t,\!q;\!3)_{D}\{1,\!1\}$	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213	0.210
$CC(t,\!q;\!3,\!4)_{\rm AA}\{1,\!1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460	0.466
${\rm CC}(t,\!q;\!3,\!4)_{\rm DA}\{1,\!1\}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	0.270	0.263
CCSDTQ	-15.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878		-
Full CI	-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	Е	F		i i	H	I NPH	E MUE
CCSD	0.391	0.378	0.479	1.095	2 3.48	.7	91 0.3	11 0.1		036 3.44	5 3.481
CCSDT	0.021	0.003	0.041	-0.10	4 -2.20	0.0	58 0.0	42 0.0	015 0.	004 2.26	$3\ 2.205$
CCSDTQ	0.000	-0.001	0.001	-0.00	1 0.00	0.0	-0.0	-0.	001 0.	000 0.01	8 0.016
Full CI -15	5.779172	-15.7372	24 -15.6748	818 -15.622	883 -15.602	2919 -15.62	4981 -15.69	03194 -15.73	36688 -15.7	60878	
Method		A	В	С	D	Е	F	G	Η	Ι	NPE MUE
$CR-CC(2,4)_{AA}$	A	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209 0.737
$CR-CC(2,4)_{DA}$	ł	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	$1.098 \ 0.936$
$CCSDtq{(1,1)}$		0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885 0.908
$CC(t,q;3)_A$ {1,1	1}	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406 0.412
$CC(t,q;3)_{D}$ {1,1	1}	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213 0.210
$CC(t,q;3,4)_{AA}$	$\{1,\!1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460 0.466
$CC(t,q;3,4)_{DA}$	$\{1,\!1\}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	$0.270 \ 0.263$
CCSDTQ	-1	5.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878	
Full CI	-1	5.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878	

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	E	F	C	i i	ł	I NPE	E MU	Е
CCSD	0.391	0.378	0.479	1.095	2 3.48	0.79	91 0.3	11 0.1	.80 0.	036 3.44	5 3.48	31
CCSDT	0.021	0.003	0.041	-0.10	4 -2.20	0.08	58 0.0	42 0.0)15 0.	004 2.26	3 2.20)5
CCSDTQ	0.000	-0.001	0.001	-0.00	1 0.00	0.0	-0.0	-0.	0.001	000 0.01	8 0.01	.6
Full CI -1	15.77917	2 -15.7372	24 -15.6748	818 -15.622	883 -15.602	2919 -15.62	4981 -15.69	03194 -15.73	36688 -15.7	60878		
												_
Method		А	В	С	D	Е	F	G	Η	Ι	NPE	MUE
CR-CC(2,4)A	AA	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209	0.737
$CR-CC(2,4)_{L}$	DA	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	1.098	0.936
$CCSDtq{(1,1)}$	l}	0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885	0.908
$CC(t,q;3)_A$	1,1}	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406	0.412
$CC(t,q;3)_{D}$	$1,1\}$	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213	0.210
$CC(t,q;3,4)_A$	$_{A}\{1,1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460	0.466
$CC(t,q;3,4)_D$	$_{A}\{1,1\}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	0.270	0.263
CCSDTQ	-	-15.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878		-
Full CI	-	-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	E	F	C	d I	H	I NPE	MU	Е
CCSD	0.391	0.378	0.479	1.092	2 3.48	0.79	91 0.3	11 0.1		036 3.448	5 3.48	81
CCSDT	0.021	0.003	0.041	-0.10	4 -2.20	0.08	58 0.0	42 0.0)15 0.	004 2.263	3 2.20)5
\mathbf{CCSDTQ}	0.000	-0.001	0.001	-0.00	1 0.00	0.0	-0.0	-0.	001 0.	000 0.018	8 0.01	.6
Full CI	-15.7791	72 -15.7372	24 -15.6748	818 -15.622	883 -15.602	2919 -15.62	4981 -15.69	03194 -15.73	36688 -15.7	60878		
												_
Method		А	В	С	D	Е	F	G	Η	Ι	NPE	MUE
CR-CC(2,4))AA	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209	0.737
CR-CC(2,4)) _{DA}	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	1.098	0.936
CCSDtq{(1	l,1}	0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885	0.908
$\mathrm{CC}(\mathrm{t},\mathrm{q};3)_{\mathrm{A}}$	{1,1}	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406	0.412
$CC(t,q;3)_D$	$\{1,\!1\}$	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213	0.210
CC(t,q;3,4)	$_{AA}\{1,1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460	0.466
CC(t,q;3,4)	$_{\rm DA}\{1,1\}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	0.270	0.263
CCSDTQ		-15.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878		-
Full CI		-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	E	F		g I	H	I NPE	MU	Е
CCSD	0.391	0.378	0.479	1.092	2 3.48	0.7	91 0.3	0.1	180 0.	036 3.445	5 3.48	1
CCSDT	0.021	0.003	0.041	-0.10	4 -2.20	0.0	58 0.0	42 0.0	015 0.	004 2.263	3 2.20	5
\mathbf{CCSDTQ}	0.000	-0.001	0.001	-0.00	1 0.00	0.0	-0.0	-0.	001 0.	000 0.018	8 0.01	6
Full CI	-15.77917	72 -15.7372	24 -15.6748	818 -15.622	883 -15.602	2919 -15.62	4981 -15.69	93194 -15.73	36688 -15.7	60878		
												_
Method		А	В	С	D	Е	F	G	Η	Ι	NPE	MUE
CR-CC(2,4)) _{AA}	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209	0.737
CR-CC(2,4)) _{DA}	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	1.098	0.936
$CCSDtq{(1$.,1}	0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885	0.908
$CC(t,q;3)_A$	{1,1}	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406	0.412
$\mathrm{CC}(\mathrm{t},\mathrm{q};3)_{\mathrm{D}}$	{1,1}	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213	0.210
CC(t,q;3,4)	$AA\{1,1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460	0.466
CC(t,q;3,4)	$DA{1,1}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	0.270	0.263
CCSDTQ	-	-15.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878		-
Full CI		-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878		

[P. Piecuch, J. Shen, N.P. Bauman, and M. Ehara, in preparation]

Method	А	В	С	D	Е	F	G	Η	Ι	NPE MUE
CCSD	0.391	0.378	0.479	1.092	3.481	0.791	0.311	0.180	0.036	3.445 3.481
CCSDT	0.021	0.003	0.041	-0.104	-2.205	0.058	0.042	0.015	0.004	2.263 2.205
CCSDTQ	0.000	-0.001	0.001	-0.001	0.000	0.016	-0.001	-0.001	0.000	0.018 0.016
Full CI	-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878	

Method	А	В	С	D	Е	F	G	Η	Ι	NPE	MUE
$CR-CC(2,4)_{AA}$	0.165	0.141	0.153	0.473	-0.737	0.254	0.093	0.050	0.009	1.209	0.737
$CR-CC(2,4)_{DA}$	0.058	0.036	0.009	0.162	-0.936	0.036	-0.001	-0.003	0.001	1.098	0.936
$CCSDtq\{(1,1\}$	0.238	0.191	0.239	0.367	0.908	0.314	0.185	0.117	0.024	0.885	0.908
$CC(t,q;3)_{A}\{1,1\}$	0.097	0.074	0.097	0.133	0.412	0.124	0.058	0.036	0.007	0.406	0.412
$CC(t,q;3)_{D}{1,1}$	0.033	0.022	0.036	0.036	0.210	0.033	-0.003	0.003	0.002	0.213	0.210
$CC(t,q;3,4)_{AA}\{1,1\}$	0.094	0.073	0.095	0.114	0.466	0.126	0.054	0.032	0.006	0.460	0.466
$CC(t,q;3,4)_{DA}\{1,1\}$	0.030	0.021	0.034	0.017	0.263	0.035	-0.007	0.000	0.001	0.270	0.263
CCSDTQ	-15.779172	-15.737225	-15.674819	-15.622884	-15.602919	-15.624965	-15.693195	-15.736689	-15.760878		-
Full CI	-15.779172	-15.737224	-15.674818	-15.622883	-15.602919	-15.624981	-15.693194	-15.736688	-15.760878		

[J. Shen and P. Piecuch, in preparation; cf., also, J.J. Lutz and P. Piecuch, Comput. Theor. Chem., 2014]

[J. Shen and P. Piecuch, in preparation; cf., also, J.J. Lutz and P. Piecuch, Comput. Theor. Chem., 2014]

[J. Shen and P. Piecuch, in preparation; cf., also, J.J. Lutz and P. Piecuch, Comput. Theor. Chem., 2014]

[J. Shen and P. Piecuch, in preparation; cf., also, J.J. Lutz and P. Piecuch, Comput. Theor. Chem., 2014]

Mean unsigned errors (MUEs) rel. to full CI, in mH, for the A' and A" excited states

	STATE		7R-SU-CCSD [1]		EOMCCSD		CR-I	EOMCC(2,3)	CC(t;3)		
	1 ¹ A'		3.94		10.80		0.88		1.10		
	2 ¹ A'		3.12		15.59		1.89		1.61		
	3 ¹ A'		12.44		14.86		3.86		2.12		
	1 ³ A'		4.25		3.03		1.31		0.92		
	2 ³ A'		4.15		9.67		0.68		1.25		
	3 ³ A'		6.48		11.09			4.89		2.08	
	AVERAGE MUE		5.73		10.84	10.84		3.38	1.	51	
STATE	TATE 4R-SU-		CCSD [1]	(8,4)-CCSD [1]		EOI	MCCSD CR-EOMCC(2,		3)) CC(t;	
1 ¹ A" 2		.85	1.	32 8		8.31	0.87		0.99		
2 ¹ A" 6		.22 3.8		30 2		1.54	0.89		0.19		
1 ³ A" 3		.88	2.3	32		8.53	0.58		1.1		
2 ³ A" 1		2.62	.62 1.9		95 8		3.95 4.13		0.6		
AVERAGE MUE		6.39		2.47			5.83 1.62			0.75	

[1] X. Li and J. Paldus, J. Chem. Phys. 133, 024102 (2010).

(SUB)LINEAR SCALING LOCAL CORRELATION CC METHODS: CLUSTER-IN-MOLECULE (CIM) CCSD, CCSD(T), AND CR-CC(2,3) APPROACHES

[W. Li, P. Piecuch, and J.R. Gour, AIP Proceedings, 2009; W. Li, P. Piecuch, J.R. Gour, and S. Li, J. Chem. Phys., 2009; W. Li, P. Piecuch, and J.R. Gour, Prog. Theor. Chem. Phys., 2009; W. Li and P. Piecuch, J. Phys. Chem. A, 2010 (x2)]

$$\Delta E = \sum_{i'} \delta E_{i'}, \quad \delta E_{i'} = \frac{1}{M_{i'}} \sum_{\{P_{i'}\}} \delta E_{i'}(\{P_{i'}\})$$
(CIMTYP in GAMESS) (CIMTYP in GAMESS)

Our CIM-CC and CIM-MBPT algorithms are characterized by:

•The use of (virtually) orthonormal LMO bases (one can use canonical CC/MBPT codes for orthonormal orbitals to perform the CIM-CC and CIM-MBPT calculations)

•The linear scaling of the CPU time when the same theory level is applied to all CIM subsystems (CIM subsystems do not grow with the system size, reflecting on the immediate chemical environment)

•The natural and coarse-grain parallelism that can be further enhanced by fine-grain parallelism (each CC subsystem calculation can run on a different processor or node in serial or parallel; fast connection among nodes is not needed)

•The non-iterative character of triples (and other perturbative) energy corrections through the use of subsystem-specific quasi-canonical MOs (QCMOs) (usually, local CC and MBPT approaches convert the determination of non-iterative energy corrections into relatively expensive iterative steps).

•The possibility to mix different levels of CC theory or CC and non-CC (e.g., MP*n* or MBPT(*n*)) methods within a single computation.

MULTI-LEVEL CIM-CC METHODS WITH A CANONICAL TREATMENT OF CHEMICALLY INACTIVE REGIONS

CIM-CR-CC(2,3)/MP2 or CCSD vs DFT study of the Co-C Bond dissociation in methylcobalamin (MeCbl)

[P.M. Kozłowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and M. Jaworska, J. Chem. Theory Comput., 2012]

Molecular structure of B_{12} cofactors (R = Me or Ado) $R_1 = CH_2CONH_2$, $R_2 = CH_2CH_2CONH_2$, $R_3 =$ (CH₂)₂CONHCH₂CH(CH₃)OPO₃⁻.

MULTI-LEVEL CIM-CC METHODS WITH A CANONICAL TREATMENT OF CHEMICALLY INACTIVE REGIONS

CIM-CR-CC(2,3)/MP2 or CCSD vs DFT study of the Co-C Bond dissociation in methylcobalamin (MeCbl)

[P.M. Kozłowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and M. Jaworska, J. Chem. Theory Comput., 2012]

Molecular structure of B_{12} cofactors (R = Me or Ado) $R_1 = CH_2CONH_2$, $R_2 = CH_2CH_2CONH_2$, $R_3 =$ (CH₂)₂CONHCH₂CH(CH₃)OPO₃⁻.

The Im-[Co^{III}corrin]-Me⁺ structural model of MeCbl employed by us (58 atoms; 234 electrons, 530 basis functions in the 6-31G^{*} description; the 6-311++G^{**} results extrapolated from the analysis of Co-C bond dissociation in the Co(NH₃)₅Me²⁺).

MULTI-LEVEL CIM-CC METHODS WITH A CANONICAL TREATMENT OF CHEMICALLY INACTIVE REGIONS

CIM-CR-CC(2,3)/MP2 or CCSD vs DFT study of the Co-C Bond dissociation in methylcobalamin (MeCbl)

[P.M. Kozłowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and M. Jaworska, J. Chem. Theory Comput., 2012]

as CR-CC(2,3) atoms !

Molecular structure of B_{12} cofactors (R = Me or Ado) $R_1 = CH_2CONH_2$, $R_2 = CH_2CH_2CONH_2$, $R_3 =$ (CH₂)₂CONHCH₂CH(CH₃)OPO₃⁻.

The Im-[Co^{III}corrin]-Me⁺ structural model of MeCbl employed by us (58 atoms; 234 electrons, 530 basis functions in the 6-31G^{*} description; the 6-311++G^{**} results extrapolated from the analysis of Co-C bond dissociation in the Co(NH₃)₅Me²⁺).

The Im-[Co^{III}corrin]-Me⁺ structural model of MeCbl where the red colored zone marks the atoms that can be assigned to the CIM subsystem which in the multi-level GSECIM-X/Y calculations is treated by the higherlevel method X.

THANK YOU

