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Nuclear EDF vs DFT

Nuclear Energy Density functional (EDF) is not the same as density functional theory (DFT)

● In DFT the minimum of E[n] provides the exact ground state energy and the exact 
density n. The exact ground state density has symmetry properties consequence of a 
ground state wave function with the proper quantum numbers.

● In the nuclear EDF the (mean field inspired) functional provides an approximation to the 
energy (to be supplemented with additional correlations) and the associated density 
(mean field wave function) breaks symmetries that help to understand experimental data 
(parity doublets, rotational bands, etc). Therefore the EDF does not provide the exact 
answer and going beyond mean field is essential.

Typical EDF are those derived from the Skyrme, Gogny, etc interactions or 
relativistic lagrangians supplemented with extra density dependent terms which are 
typically of the form

 added to obtain saturation (binding energy proportional to A). α is a non-integer.

The variational principle applied to the EDF leads to the solution of the Hartree- Fock- 
Bogoliubov (HFB) equation for the quasiparticle amplitudes U and V of the quasiparticle 
operators in a given basis.



  

Challenges of the nuclear EDF

The nuclear EDF should provide a meaningful description of nuclear properties over the 
whole periodic chart with the same level of accuracy for all nuclei (even-even, even-odd, 
odd-even, odd-odd). Observables include binding energies, radii, moments of inertia, 
spins and parities of odd-A ground states, etc

Challenges

● Improve the agreement with experimental data exploring new parametrizations and 
functional forms   

● Skyrme (Sly, Brussels, UNEDF) 
● Gogny D1M
● Density dependent relativistic lagrangians, 
● BCPM (a true EDF inspired by realistic nuclear matter EoS)

● Incorporate in a consistent manner time odd fields which are important for odd nuclei, 
odd-odd nuclei, high spins and beta decay

● Provide a consistent framework to add beyond mean field correlations, both for 
symmetry restoration and for fluctuations in the collective degrees of freedom

● Achieve true predictive power for extrapolations in unknown regions of the nuclear 
chart



  

Computational challenges for the nuclear EDF

The shape of the nucleus is an interesting 
magnitude and it is common to explore the 
energy associated to different shapes. 
This leads to the solution of Constrained 
HFB equations for a large number of 
constraint's values: quadrupole, octupole, 
hexadecapole, etc 

odd-A systems described by blocked HFB 
that requires many initial configurations.

Over 6000 nuclei to consider

The ideal method to solve the highly-
non-linear HFB equations has to be 
robust and lead to a low iteration 
count.

The traditional iterative solution does 
not have these properties. Often fails 
to converge and is not adequate to 
handle many constraints.



  

Computational challenges: Solution of the HFB equation

Look at the problem as an energy minimization problem depending upon the parameters 
of the Thouless theorem  and search for the minimum using  the gradient method. 

● This is an old idea that has problems: the gradient gives you  the direction but not the 
step size. To estimate the step size the curvature is required but it is difficult to 
compute (RPA cost). The conjugate gradient method (Egido, NPA594, 70(1995)) is and 
alternative but adding  approximate second order curvature information (the curvature 
matrix is approximated by its diagonal form) if far cheaper:   (G.F. Bertsch and LMR PRC 84, 

014312 (2011)). 
Any form of the gradient method handles very well multiple constraints

● Recent proposals involving derivative free algorithms (POUNDERS) are also available 
PRC 82, 024313 (2010)

● Succesive diagonalization methods are still in use with appropriate annealing 
strategies

● Any progress in multidimensional minimization will help

Extend those  techniques to finite temperature HFB and also to Projection After Variation 
(PAV) where the projected energy is minimized instead.



  

Expansion on a basis: convergence and all that 

Quasiparticle operators are expanded on a (finite) basis

● Gaussian 
● Harmonic oscillator
● Wood-Saxon
● Sturmians
● Lagrange interpolation (aka spatial meshes)
● Bsplines
● DVR ...

The basis should

● Adapt to any relevant nuclear geometry (extreme deformations like fission)
● Facilitate the computation of (two body) matrix elements
● Extrapolate easily to the infinite basis limit

The harmonic oscillator basis is a popular choice in nuclear physics because

● Varying the oscillator lengths gives some freedom to adapt to the geometry
● Many analytical results are at hand for the computation of matrix elements
● Recent studies show how convenient the basis is for extrapolations to infinite basis 

(arXiv:1409.5997, S. Koning et al) 



  

Cluster emission

Constraining the octupole moment Q
30

 in a fully self-consistent calculation leads to the  
above sequence describing the emission of 14C off 224Ra (cluster radiactivity)



  

Cluster emission
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We use a HO basis in cilindrical 
coordinates

The two oscillator lengths b
perp

 and b
z
 are optimized for each configuration

Non uniform convergence with N
0 

for different Q
3 
values

Is it possible to extend recent ideas 
to extrapolate HO results to this 
non-spherical case ?

Is it possible to easily generalize to 
other kinds of basis ?

Obviously this would be of great 
relevance in fission studies where 
a large variety of shapes are 
considered and the relative energy 
is of relevance



  

A more flexible basis

Given a positive definite weight ρ(x) in a given interval [a,b] it is always possible to 
find a complete set of orthogonal polynomials satisfying 

When ρ(x) is a gaussian we recover the HO basis 

We propose (*) to consider for the weight a linear combination of gaussians

 that follow the shape of the potential. Remember that many functions can be 
expressed as Gauss transforms  (Coulomb for instance !). 

To visualize the properties of the basis we consider the interpolating Lagrange 
mesh associated with any orthogonal polynomial (**). 

For an orthogonal basis with N elements the Lagrange mesh is made of the N 
Gauss integration points that are the zeroes of p

N 
(x)

(*) F. Roca-Urgorri and LMR, to be submited
(**) D Baye and P -H Heenen 1986 J. Phys. A: Math. Gen. 19 2041



  

A more flexible basis:examples

Good for fission studies and reactions Good for near continuum states 
and/or resonances 

Most of the analytical results known for the HO basis can be generalized to this 
case. Computational cost for two body matrix elements of the order of N2 as in HO. 



  

A more flexible basis:examples

Double well potential with

Ground state convergence



  

Two and three body matrix elements

Three body forces are becoming popular in nuclear physics for various reasons.

They require the evaluation of a huge number of matrix elements O(N6)

Based on the idea that the set of N2 products of basis states can be expressed as a 
linear combination of 2N+1 states
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