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OUTLINE
• Path integrals and quantum matter 
• Role of correlated disorder 
• Monte Carlo methods 
• Finite size scaling 
• Examples 

– Boson localization  
– Superfluidity in aerogel 
– Solid Helium



Models
• Path integral formulates quantum problem in d-dimensions as classical 

problem in d+1 dimensions 
 

!
!
!
!
!

• Extrapolation to T=0, exchange, etc is difficult but possible 
• Alternatively study coarse grained models on a lattice.  

Will not give all details but useful approximations and insights 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Poor mans version:  
3DXY and loop lattice models

• 3DXY model in  
d+1 dimensions 
!
!

• Integer current loop model 
 

• Random coupling constant Kij models random disorder 
• Quantum problem means random couplings constant 

in imaginary time direction: one dimensional 
correlated random disorder 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Monte Carlo methods
• Super efficient new algorithms eliminate severe bottleneck:  

critical slowing down  
• 3DXY Model: Wolff method 

Builds and flips clusters of correlated order meter 
U. Wolff, PRL 62, 361 (1989) 

• Integer current model: Worm method 
Generates current loops as random walks.  
Automatically generates correlation functions and exchange.  
N. Prokof'ev and B. Svistunov, PRL 87, 160601 (2001) 

• Fermion minus sign problem unsolved. 
Restricted to systems without minus signs. 

• Generate numerical data on small lattice systems and use 
scaling relations to extract properties 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Disordered universality classes and Harris criterion

• Quenched disorder modeled as random coupling constant in XY 
model for superfluidity with order parameter 
!
!
!

• Harris criterion for irrelevance of quenched disorder 
!
!
!
!
!

• Must be obeyed at disordered fixed point. 
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Correlated disorder
• Weinrib, Halperin, Phys. Rev. B 27, 413–427 (1983) 
 
 

• Harris criterion for correlated disorder 
 
 
 
 
k(r)=defect number containing site r, N=number of defects, n=number of 
sites of defect. Applies for disorder potential defined on all sites. 

• Can also consider disorder forming correlated curves or planes.  
In this case the sum runs over lattice sites occupied by defects: 
 
 
 
 
          increment of coupling upon adding a defect 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Examples of disordered universality classes for d=3
• I general: 
!
!

• Point disorder 
 

• Linear disorder 

!
• Directed random walk disorder 

!
• Random walk disorder 

!
• Planar disorder 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C(R) ∼ R−6 N n2 ∼ R−6 × R3 ×1 = R−3     a = 3    ν =
2
3

  (ν = 0.671 , α = −0.015)

C(R) ∼ R−6 n 2 δN ∼ R−6 × R2 × R2 = R−2      a = 2      ν = 1     α = −1

C(R) ∼ R−6 n 2 δN ∼ R−6 × R2 × R2 = R−2      a = 2      ν = 1     α = −1

C(R) ∼ R−6 n 2 δN ∼ R−6 × R4 × R = R−1        a = 1      ν = 2     α = −4

C(R) ∼ R−6 n 2 δN ∼ R−6 × R4 × R = R−1        a = 1      ν = 2     α = −4

C(R) ∼ R−6 N n2 ∼ R−a             ν =
2
a

          α = 2 − dν



Dirty boson localization quantum phase transition in 2d at T=0 
=Superconducting transition with columnar defects in 3d at T>0
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boson insulator phase!
vortex insulator= 
superconductor!
winding number=0!

boson superconductor!
Vortices delocalized  
from defects!
winding number nonzero



Data for YBCO in zero field with 
columnar defects

30

Experiment:                     Simulation:                     

Effect of tuning the disorder strength: 

Result: 

C. J. van der Beek, Thierry Klein, Rene 
Brusetti, Christophe Marcenat, Mats 
Wallin, S. Teitel, and Hans Weber 
Phys. Rev. B 75, 100501 (2007) 

with columns

pure system



 Worm simulation of dirty bosons

• Test prediction z=d=2 by changing temperature 
• Idea: Divide winding number fluctuation by inverse 

temperature squared and do a scaling analysis.  
Maximum scales as

11

Average each data point over up to 
105 realizations of random disorder 
Simulation results suggest z=1.8 
H Meier and MW, PRL 108, 055701 (2012) 

J-current model



Aerogel
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Heat capacity at the lambda transition

• Buckingham and Fairbank  
"The Nature of the Lambda Transition"  
Progress in Low Temperature Physics III, 1961	

!
!
!
!

• Space shuttle measurements in microgravity  
to eliminate pressure gradient  
J. Lipa et al, PRB 68, 174518 (2003)
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SF transition in bulk and porous media

54Lambda transition becomes rounded by presence of porous media. 
Assumption: pores act as correlated disorder for the He.

Experimental heat capacity data from ac heating method 
J. Yoon, D. Sergatskov, J. Ma, N. Mulders, and M. H. W. Chan, PRL 80, 80 (1998).

Usual lambda transition  
in pure He system

He in aerogel 
porous glass fractal
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MC data for SF transition in aerogel

62

Heat capacity and  
superfluid density

Finite size scaling 
data collapses

M. Nikolaou, M. Wallin, H. Weber, PRL 97, 225702 (2006)

Scaling gives exponents: 



Heat capacity scaling at SF 
transition of 4He in aerogel

• Heat capacity data 
explained by  
3DXY model with 
DLCA cluster 
 
M. Nikolaou, M. Wallin,  
H. Weber, PRL 97 (2006) 
 

• Source of confusion identified: fit to experiments using  
 
 
does not work and indicates scaling violations when 
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Supersolid
• State which is both solid and superfluid 
• Defect carried supersolidity can in principle exist 
• Solid order: broken translation symmetry 

  
• Superfluid order: nonzero superfluid density  

Measured by NCRI 

• Considerable interest on report by Kim-Chan of supersolidity in He 
solids: Nature London 427, 225 (2004), Science 305, 1941 (2005) 

• Classical shear modulus anomaly explains the NCRI signal.  
J. Day and J. Beamish, Nature (London) 450, 853 (2007).   

• No NCRI signal found if mechanical deformations are eliminated.  
Duk Kim and Moses Chan, PRL 109, 155301 (2012) 
Upper limit on the nonclassical rotational inertia or supersolid fraction of 
4×10^{-6}. Duk Kim and Moses Chan, PRB 90, 064503 (2014) 

• Small superfluid signals seen by Mi and Reppy, PRL 108, 225305 
(2012), 
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n(r) = n(R + r)

ρs =
∂2 f
∂Δθ 2 Δθ=0



Torsion oscillator experiment to 
measure superfluid density

20

Resonance period T = 2π I
k

I = moment of inertia
k = torsional spring constant

When part of the helium becomes superfluid it loses 
its viscosity and remains at rest in the lab frame.
It no longer contributes to the moment of inertia of the oscillator.
The oscillator obtains a non classical rotation inertia (NCRI):

I(T ) = Iclassical 1− ρS (T )
ρ

⎛
⎝⎜

⎞
⎠⎟

      or     ρS (T )
ρ

=
I(T ) − Iclassical

Iclassical

Suggested by Fritz London, Superfluids Vol II,  P144 (1954)
Verified experimentally by Hess, Fairbank, PRL 19, 216 (1967) 
Leggett PRL 25, 1543 (1970) proposed similar experiment 
to detect supersolidity: let solid helium to undergo dc or ac 
rotation to look for NCRI. Variational estimate of upper 
limit of the supersolid fraction: ρS (T ) / ρ < 10−4  

35 year search followed...



Breakthrough in 2004 by Kim and Chan: 
Torsion oscillator anomaly found in solid He-4 

suggesting NCRI and supersolidity
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Nature London 427, 225 (2004) 
Science 305, 1941 (2005) !
An explosion of activity followed 
to verify and interpret these 
results !
Similar TO results were verified 
by other groups !
Notably Hallock et al measure 
superfluid transport in He solids 
M.W. Ray,  R. B. Hallock 
PRL 105, 145301 (2010) 
Y. Vekhov, R. B. Hallock, PRL 
109, 045303 (2012) !
Heat capacity peak observed 
X. Lin, A.C. Clark, Z.G Cheng, 
M.H.W. Chan 
PRL 102, 125302 (2009)

ρS (T )
ρ



What are the properties of a defect supersolid? 
(assuming that it exists)

• Numerous theoretical calculations and simulations show the a supersolid 
should not exist for a pure 4He crystalline state 
N. Prokof'ev, Advances in Physics 56, 381 (2007) 
B. Clark and D. Ceperley, Phys. Rev. Lett. 96, 105302 (2006) 
M. Boninsegni, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 96, 105301 
(2006) 
!

• Superfluidity can exist in the cores of crystalline defects 
M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svistunov, and M. 
Troyer, Phys. Rev. Lett. 99, 035301 (2007) 
!

• Superfluid onset given by a 3DXY model with a lambda divergence of the 
heat capacity due to irrelevance of point disorder at 3DXY transition 
J. Toner, Phys. Rev. Lett. 100, 035302 (2008) 
D. Goswami, K. Dasbiswas, C.-D. Yoo, A. Dorsey, PRB 84, 054523 (2011) 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XY model for defect supersolidity
• Study a 3D dislocation network with superflow transport along defects 
• Builds in that superfluid density is suppressed upon annealing since the 

defect free perfect crystal is an insulator 
• Model dislocations as correlated quenched line disorder  

(due to e.g. pinning at He-3 defects)  
forming 3D interconnected network 

• Defects extend in all directions with isotropic distribution 
!
!
!

• Can study the superfluid onset for a given choice of random defect 
distribution by Monte Carlo simulations 
 
H. Meier, M. Wallin, S. Teitel, PRB 87, 214520 2013
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Here: non-3DXY smooth superfluid onset

• Lambda cusp of heat capacity in pure system replaced by smooth maximum 
• Sharp superfluid density onset of pure system replaced by smooth onset 
• Experimental dislocation density n~10^6-10^8 cm^{-2}  

Gives superfluid density rhos/rho~10^{-5} and superfluid onset temperature Tc<1 mK 
Far below Kim-Chan onset at 100 mK 
Rules out superfluidity as source of torsional anomaly in Kim-Chan experiments 

• H. Meier, M. Wallin, S. Teitel, PRB 87, 214520 2013
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Summary
• Path integral simulation investigations of Bose systems 
• Study effects of disorder on phase transitions 
• Efficient MC algorithms (Wolff, Worm, hybrids) are crucial 
• New insights to dirty boson quantum critical dynamics 
• New superfluid universality class in porous aerogel 
• New universality class of supersolid transition  

(NOT the physics seen in torsion oscillator experiments on solid Helium) 
• Current work:  

tunable disorder correlations from annealing approach 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