Sensitivity to the ordering of neutrino masses at oscillation experiments

Pilar Coloma

Virginia Tech

Based on the collaboration:
M. Blennow, P. Coloma, P. Huber and T. Schwetz, JHEP 1403 (2014) 028, arXiv: 1311.1822 [hep-ph]

News in Neutrino Physics
NORDITA, Stockholm,
April 7, 2014

Outline

- Introduction and motivation
- Statistical issues
- Ways to determine the mass ordering for a large θ_{13}
- Interference effects in vacuum
- Matter effects
- Precise determination of mass splittings
- Conclusions

The two-family approximation

In the two-family approximation:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{\alpha \alpha} \sin ^{2}\left(\frac{\Delta m_{\alpha \alpha}^{2} L}{4 E}\right)
$$

The two-family approximation

In the two-family approximation:

$$
\begin{aligned}
& P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \simeq 1-\sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{42}\right) \quad(\text { KamLAND }) \\
& \sim 33^{\circ}
\end{aligned}
$$

The two-family approximation

In the two-family approximation:

$$
\begin{gather*}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \simeq 1-\sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \tag{KamLAND}\\
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \simeq 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \\
\sim 9^{\circ} \\
\\
\\
\sim 2.5 \times 10^{-3} \mathrm{eV}^{2}
\end{gather*}
$$

The two-family approximation

In the two-family approximation:

$$
\begin{gather*}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \simeq 1-\sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \quad \text { (KamLAND) } \tag{KamLAND}\\
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \simeq 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \quad \begin{array}{c}
\text { (Daya Bay, } \\
\text { RENO, } \\
\text { D-CHOOZ) }
\end{array} \\
\begin{array}{c}
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right) \\
\sim 40^{\circ}-50^{\circ}
\end{array} \quad \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}
\end{gather*}
$$

The two-family approximation

In the two-family approximation:

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

The two-family approximation

In the two-family approximation:

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

Currently holds the largest uncertainty. Important for the flavor puzzle:

- bimaximal, tri-bimaximal, etc
- golden ratio
- quark-lepton complementarity

Some nice reviews:
King et al, 1402.4271 [hep-ph]
Altarelli et al, 1205.5133 [hep-ph], 1002.0211 [hep-ph]

The two-family approximation

In the two-family approximation:

$$
\begin{gathered}
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{\alpha \alpha} \sin ^{2}\left(\frac{\Delta m_{\alpha \alpha}^{2} L}{4 E}\right) \\
\quad(
\end{gathered}
$$

No sensitivity to CP violation $(\delta)!$!

- Is CP violated only in the quark sector?
- Is leptogenesis viable?
- Model building

Note that an appearance experiment is needed to observe CP violation

The two-family approximation

In the two-family approximation:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{\alpha \alpha} \sin ^{2}\left(\frac{\Delta m_{a s}^{2} L}{4 E}\right)
$$

Mass ordering and $0 v \beta \beta$

An independent measurement of the hierarchy is extremely useful as a double-check of $0 v \beta \beta$ and new physics
(see, for instance, Blennow et al, 1005.3240 [hep-ph])

Mass ordering and CP violation

Three family golden oscillation probability:

$$
P_{e \mu}^{ \pm}\left(\theta_{13}, \delta\right)=X_{ \pm} \sin ^{2} 2 \theta_{13}
$$

$$
+Y_{ \pm} \cos \theta_{13} \sin 2 \theta_{13} \cos \left(\pm \delta-\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

$$
+Z
$$

Cervera et al, hep-ph/0002108

An unknown hierarchy usually leads to a reduced ability to observe CP violation

Minakata, Nunokawa, hep-ph/0108085

Statisticalissues

Parameter estimation and sensitivities

i. Define a test statistic. For instance:

$$
\Delta \chi^{2}(\theta)=\chi^{2}(\theta)-\chi_{\min }^{2}
$$

ii. Wilks' theorem tells us that this test statistic will be χ^{2} distributed with p dof, where p is the number of parameters estimated from the data
S. S. Wilks, Annals Math. Statist. 9, no. 1, 60 (1938)
iii. Use the Asimov data set to get the median value of $\Delta \chi^{2}$ This gives the median sensitivity of a given experiment to θ

Statistical issues with mass ordering

One of the requirements of Wilks' theorem is that the parameter begin tested needs to be continuous, but the mass ordering is not!
\rightarrow What happens then?

Qian et al, 1210.3651 [hep-ph]
Ciuffoli, Evslin and Zhang, 1305.5150 [hep-ph]
Capozzi, Lisi and Marrone, 1309.1638 [hep-ph]
Vittels and Read, 1311.4076 [hep-ex]
Blennow et al, 1311.1822 [hep-ph]
Blennow, 1311.3183 [hep-ph]
LBNO collaboration, 1312.6520 [hep-ph]

Hypothesis testing

Pick up a test statistic. Several possibilities:

$$
\Delta \chi^{2}=\chi_{\mathrm{NO}}^{2}-\chi_{\min }^{2}
$$

$$
T=\chi_{\mathrm{IO}}^{2}-\chi_{\mathrm{NO}}^{2}
$$

$$
T^{\prime}=\chi^{2}(\theta)-\min \left\{\chi^{2}\right\}
$$

...(or any other possibility you can think of)

Hypothesis testing

Pick up a test statistic. Several possibilities:

$$
\Delta \chi^{2}=\chi_{\mathrm{NO}}^{2}-\chi_{\min }^{2}
$$

$$
T=\chi_{\mathrm{IO}}^{2}-\chi_{\mathrm{NO}}^{2}
$$

$$
T^{\prime}=\chi^{2}(\theta)-\min \left\{\chi^{2}\right\}
$$

..(or any other possibility you can think of)

Hypothesis testing

Hypothesis testing

Hypothesis testing

Hypothesis testing

Hypothesis testing

Three possible outcomes are in principle possible:

1) Reject exactly one hypothesis
2) Reject both hypotheses
3) Accept both hypotheses

Gaussian approximation

- Under the gaussian approximation:

$$
T=\mathcal{N}\left(T_{0}, 2 \sqrt{T_{0}}\right)
$$

One can obtain expressions for type I and type II error rates as a function of T_{0}, which turns into a relation between α and β.

- Then, setting $\beta=0.5$ one can then get the expression for the number of sigmas for the median experiment in the gaussian case:

$$
n=\sqrt{2} \operatorname{erfc}^{-1}\left(\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{0}}{2}}\right)\right)
$$

Gaussian approximation

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Does the gaussian approximation hold?

Ways to measure the mass ordering

A large θ_{13} opens multiple ways:
i. Interference effects between solar and atmospheric oscillations
\rightarrow reactors at medium baselines

Reactor experiments at medium baselines

Petcov, Piai, hep-ph/01102074 Choubey, Petcov, Piai, hep-ph/0306017

$$
\begin{aligned}
P_{e e} & =1-c_{13}^{4} \sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \\
& -\sin ^{2} 2 \theta_{13}\left[c_{12}^{2} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)+s_{12}^{2} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)\right]
\end{aligned}
$$

Reactor experiments at medium baselines

Two major proposals: RENO-50 and JUNO
Technical challenges:

- energy resolution
- energy non-linearity
- reactor distribution

See also:
Zhan et al, 0807.3203, 0901.2976
Qian et al, 1208.1551
Kettell et al, 1307.7419
Learned et al, hep-ex/0612022
Ciuffoli et al, 1209.2227,1308.0591
Ge et al, 1210.8141

Blennow and Schwetz 1306.3988 [hep-ph]

MC results for JUNO

T is gaussian distributed up to very good accuracy:

$$
T=\mathcal{N}\left(T_{0}, 2 \sqrt{T_{0}}\right)
$$

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]
(Similar distributions found for instance in 1210.3651)

Ways to measure the mass ordering

A large θ_{13} opens multiple ways:
i. Interference effects between solar and atmospheric oscillations
\rightarrow reactors at medium baselines
ii. Matter effects

- In appearance \rightarrow beams
- In disappearance \rightarrow atmospheric neutrinos

Matter effects in appearance (beams)

$$
\sin ^{2} 2 \theta_{M}=\frac{\sin ^{2} 2 \theta}{\sin ^{2} 2 \theta+(\cos \theta-A)^{2}} ; \quad A=\frac{2 E V}{\Delta m^{2}}
$$

Wolfenstein ('78), Barger et al ('80),
Mikheev and Smirnov ('85) 0.00

Matter effects in appearance (beams)

Types of neutrino beams:

- Based on pion-decay (NOvA, T2K, LBNE, LBNO, ESSnuSB)

$$
\pi^{+} \rightarrow \mu^{+} \nu_{\mu}
$$

$$
\nu_{\mu} \longrightarrow \nu_{e}
$$

Technology well-known; but intrinsic backgrounds and typically large systematics

- Based on muon decay (IDS-NF, NuMAX)

$$
\mu^{+} \rightarrow e^{+} \bar{\nu}_{\mu} \nu_{e}
$$

$$
\begin{aligned}
\left(\nu_{\mu}\right. & \left.\longrightarrow \nu_{e}\right) \\
\nu_{e} & \longrightarrow \nu_{\mu}\left(\nu_{\tau}\right)
\end{aligned}
$$

Very clean, low systematics, flavor rich; but technically challenging and requires charge discrimination at detector

Matter effects in appearance (beams)

NuMAX 1290 km
~300/60 events/ch

LBNE 1290 km
~200/60 events

NOvA 810 km
$\sim 80 / 23$ events

T2(H)K 295 km
~4000/2200 events

Matter effects in appearance (beams)

CP violation

Simple vs composite hypotheses

- For composite hypotheses, the distribution of T depends on some parameter:
- θ_{23} and δ in the case of long baselines
θ_{23} in the case of atmospheric neutrinos
- The null hypothesis has to be rejected for all values of the parameter:

$$
T_{c}=\min _{\theta} T_{c}(\theta)
$$

Simple vs composite hypotheses

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Simple vs composite hypotheses

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

MC results for beam experiments

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Matter effects in disappearance

Petov, hep-ph/9805262
Akhmedov, hep-ph/9805272

$$
P_{\mu \mu}^{ \pm}\left(\theta_{13}, \delta\right)=1-\chi_{ \pm} \sin ^{2} 2 \theta_{13}-\psi_{ \pm} \sin 2 \theta_{13} \cos \delta-\omega
$$

Perfect detector resolution

Matter effects in disappearance

Many possibilities:

- ORCA @ KM3NET (see e.g. 1402.1022 [astroph.IM]);
- Hyper-Kamiokande (1109.3262 [hep-ex], 1309.0184 [hep-ex]);
- INO @ ICAL
(see e.g. Ghosh and Choubey, 1306.1423 [hep-ph])
- 50 kt LAr detector
(Barger et al, 1203.6012 [hep$\mathrm{ph}]$)

PINGU coll., 1401.2046 [hep-ex]
(see also Mena, Mocioiu, Razzaque, 0803.3044[hep-ph] and Akhmedov, Razzaque, Smirnov, 1205.7071 [hep-ph])

Matter effects in disappearance

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

MC results for PINGU

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Present and future prospects

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Present and future prospects

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Precise measurements of mass splittings

Disappearance experiments measure an effective mass splitting which depends on the neutrino flavor, even in vacuum:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{\alpha \alpha} \sin ^{2}\left(\frac{\Delta m_{\alpha \alpha}^{2} L}{4 E}\right)
$$

$\Delta_{e \mu} \equiv \Delta m_{e e}^{2}-\Delta m_{\mu \mu}^{2}= \pm \Delta m_{21}^{2}\left(r_{e}-r_{\mu}\right)$
$r_{e}-r_{\mu}=\cos 2 \theta_{12}-\cos \delta \sin \theta_{13} \sin 2 \theta_{12} \tan \theta_{23}+\mathcal{O}\left(\sin ^{2} \theta_{13}\right)$

Nunokawa, Parke, Zukanovich Funchal, hep-ph/0503283
Minakata, Nunokawa, Parke, Zukanovich Funchal, hep-ph/0607284
De Gouvea, Jenkins, Kayser, hep-ph/0503079

Precise measurements of mass splittings

Physics in this case is more involved, but the observable effect is similar.

Blennow, Schwetz, 1306.3988 [hep-ph]
(see also Li et al, 1303.6733 [hep-ph], for instance)

Conclusions

- The large value of θ_{13} recently measured has opened a door to measure the neutrino mass spectrum in many different ways
- Huge number of possibilities (short-, mid- and longterm): PINGU, ORCA, HyperK, JUNO, RENO50, ICAL, NOvA, LBNE,...
- The usual sensitivity estimates for the median experiment are valid
- Synergies between different proposals exist

Thank you for your attention!

Backup

JUNO:

energy resolution	$3 \% \sqrt{1 \mathrm{MeV} / E}$		$3.5 \% \sqrt{1 \mathrm{MeV} / E}$	
	normal	inverted	normal	inverted
$T_{0}\left(\sqrt{T_{0}} \sigma\right)$	$10.1(3.2 \sigma)$	$11.1(3.3 \sigma)$	$5.4(2.3 \sigma)$	$5.9(2.4 \sigma)$
median sens.	$7.3 \times 10^{-4}(3.4 \sigma)$	$4.3 \times 10^{-4}(3.5 \sigma)$	$1.0 \times 10^{-2}(2.5 \sigma)$	$7.5 \times 10^{-3}(2.7 \sigma)$
crossing sens.	$5.2 \%(1.9 \sigma)$		$12 \%(1.6 \sigma)$	

	$\sigma_{E_{\nu}}$	$\sigma_{\theta_{\nu}}$	exposure	$T_{0}^{\text {NO }}$ (med. sens.)	$T_{0}^{\text {IO }}$ (med. sens.)
INO	$0.1 E_{\nu}$	10°	$10 \mathrm{yr} \times 50 \mathrm{kt}$	$5.5(2.6 \sigma)$	$5.4(2.6 \sigma)$
PINGU	$0.2 E_{\nu}$	$29^{\circ} / \sqrt{E_{\nu} / \mathrm{GeV}}$	5 yr	$12.5(3.7 \sigma)$	$12.0(3.6 \sigma)$

	$\mathrm{L}(\mathrm{km})$	Off-axis angle	ν flux peak	Detector	$\mathrm{M}(\mathrm{kt})$	Years $(\nu, \bar{\nu})$
NO $\nu \mathrm{A}$	810	14 mrad	2 GeV	TASD	13 kt	$(3,3)$
LBNE-10(34) kt	1290	-	2.5 GeV	LAr	$10(34) \mathrm{kt}$	$(5,5)$

Long-baseline experiments

Long-baseline experiments

Blennow, Coloma, Huber and Schwetz, 1311.1822 [hep-ph]

Synergies between different experiments

Blennow, Schwetz, 1203.3388 [hep-ph] (see also Ghosh, Thakore, Choubey, 1212.1305 [hep-ph])

