Nordita Apr 23 2014

NEUTRINO RESULTS FROM WIGGLEZ

Signe Riemer-Sørensen (University of Oslo & University of Queensland)

Review in PASA arXiv:1301.7102 (Riemer-Sørensen, Parkinson, Davis) Results in 1306.4153 (PRD), 1210.2131(APJ)

 $(\mathbf{B}$

Outline

- Σm_{ν} from Large Scale Structure
- Can we measure hierarchy?
- N_{eff} measurements
- KeV ν_{s} dark matter (nothing to do with WiggleZ)

Neutrinos wipe out structure

Large scale structure

Increase Σm_{ν}

 Suppress power on small scales

WiggleZ Dark Energy Survey 15

- 3D galaxy map from Anglo Australian Telescope (AAT)
- ~240,000 starforming blue emission line galaxies
- 4 redshift (distance) bins

GiggleZ simulations

Gigaparsec WiggleZ Survey Simulations 2160³ particles 1 Gpc³ Resolve 1.5x10¹¹M_{sun}/h

Power spectra

Simulated halos

Importance of modeling

$$P_{\text{gal}}^{\text{trial}}(k) = b^2 P_{\text{hf}}^{\text{trial}}(k) \frac{P_{\text{poly}}^{\text{fid}}(k)}{P_{\text{hf}}^{\text{fid}}(k)}$$

The best constraints

• Planck + WP + high I + BAO $\Sigma m_{\nu} < 0.23 \text{eV}$ (Planck Collaboration 2013) • Planck + BAO + WiggleZ $\Sigma m_{\nu} < 0.18 \text{ eV}$ (Riemer-Sørensen et al. 2013)

Priors

- Massive neutrinos not favoured by cosmology... BUT
 - Particle physics justifies parameter
 - Lower limit: 0.04 eV (~95% confidence)
- No consistency in literature (most quote without)
- Important!
 - Planck + BAO + WiggleZ (3ν) $\Sigma m_{\nu} < 0.25 eV \rightarrow 0.18 eV$

What we know

Hierarchies

Different hierarchies

$3\nu: \Sigma m_{\nu} < 0.25eV$ 2+1ν: Σm_ν < 0.23eV 1+2ν: Σm_ν < 0.18eV

Measuring hierarchy

Sterile species

- N_{eff} parametrisation of radiation density before matter radiation equality
- Does not have to be integer
- Planck + BAO + WiggleZ (low prior)
- 3ν : $\Sigma m_{\nu} < 0.34 \text{ eV}$ Neff = 3.36 ± 0.15
- 1+2 ν : $\Sigma m_{\nu} < 0.34 \text{ eV}$ Neff = 3.32 ± 0.19

Neutrino decoupling

Fermi-Dirac phase space

Single temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

Density:

$$\rho_{v} = N_{eff} \frac{7\pi^{2}}{120} T_{v}^{4}$$

 $\begin{array}{c} \text{energy density}\\ \text{in one family}\\ \text{with temp T} \end{array}\\ \text{Ultra relativistic}\\ \text{if } m_{\nu} < 1\text{eV} \end{array}$

Measuring neutrino decoupling

- N_{eff} is not measured directly
- Expansion rate $H^2(z) \approx \frac{8\pi G}{3} \left(\rho_{\gamma} + \rho_{\nu} \right)$

Increase N_{eff}

 Suppress power on small scales

Changing Σm_{ν} and N_{eff}

Measurements

review) arXiv:1301.7102 (2013 Riemer-Sørensen et al. Modified floth

Nucleosynthesis constraints

- Increased expansion -> increased He and D fractions
- N_{eff} = 3.50±0.20 (Cooke et al. 2014, Izotov et al. 2013)
- Sensitive to fitting formula (Giusarma et al. 2014, CMB +DR11+WZ+HST):
- 3.25±0.25 (95%CL, locco et al. 2009)
- 3.52±0.27(95%CL, Steigman 2012)

BICEP2 results

Planck+BICEP2+BAO doesn't

3.5 keV X-ray line

- 3.5 keV X-ray line
 - Stacked cluster spectra (Bulbul et al. 2014)
 - Andromeda galaxy and Perseus cluster (Boyarsky et al. 2014)

Sterile neutrino dark matter

- ν MSM neutrino mass generation and flavour oscillations
 - baryon asymmetry
 - dark matter, keV mass -> non-relativistic before CMB
 - resonantly produced, non-thermal, require lepton asymmetry
 - keV emission

$$\sin^2(2\theta) \le 1 \times 10^{18} \left(\frac{F_{\text{det}}}{\text{erg cm}^{-2} \text{ s}^{-1}} \right) \times \left(\frac{m_{\text{s}}}{\text{keV}} \right)^{-5} \left[\frac{(M_{\text{fov}}/M_{\odot})}{(D_L/\text{Mpc})^2} \right]^{-1}$$

(Dodelson & Widrow 1994, Asaka & Shaposhnikov 2005, Blanchet, Asaka & Shaposhnikov 2005, Laine & Shaposhnikov 2008, Shi & Fuller 2008, reviewed in Boyarsky et al. 2009, Kusenko 2009, Boyarsky et al. 2012)

How about the Milky Way?

- Chandra observations of Sgr A*
- Conservative cored profile

Emission line searches: Bullet Cluster, Milky Way, M31, Ursa Minor (Boyarsky et al., Watson et al. Loewenstein et al., Abazajian et al., Yüksel et al.)

Summary

- Best upper limit from Planck+BAO+WiggleZ
 - $\Sigma m_{\nu} < 0.18 \text{ eV}$ (no low prior)
- Close to lower limit -> assumptions play a role
 - Hierarchy 3ν , $2+1\nu$, $1+2\nu$
 - Priors, 0.04 eV (95% cl lower limit)
 - Neff, still 2σ above 3
- Degeneracy with $\Omega_{\,\text{M}}$ and H_{0} prevents us from measuring hierarchy

Perspective

• If a proton was a humpback whale...

