Interplay of flavour and CP symmetries

C. Hagedorn

EC 'Universe', TUM, Munich, Germany

Workshop "News in Neutrino Physics", 07.04.2014-02.05.2014, NORDITA, Stockholm, Sweden

Outline

- lepton mixing: parametrization and data
- combination of flavour and CP symmetries
 - general idea
 - examples: $G_f = S_4$ and $G_f = \Delta(48)$
 - predictions for leptogenesis
- conclusions & outlook

Parametrization of lepton mixing

charged lepton and (Majorana) neutrino mass terms

$$e_a^c \, m_{e,ab} \, l_b$$
 and $\nu_a \, m_{\nu,ab} \, \nu_b$

cannot be diagonalized simultaneously

going to the mass basis

$$U_e^\dagger m_e^\dagger m_e U_e = \mathrm{diag}(m_e^2, m_\mu^2, m_\tau^2) \quad \text{and} \quad U_\nu^T m_\nu U_\nu = \mathrm{diag}(m_1, m_2, m_3)$$

leads to non-diagonal charged current interactions

$$ar{l}W^-U_{PMNS}\,
u$$
 with $U_{PMNS}=U_e^\dagger U_
u$

Parametrization of lepton mixing

Parametrization (PDG)

$$U_{PMNS} = \tilde{U} \operatorname{diag}(1, e^{i\alpha/2}, e^{i(\beta/2+\delta)})$$

with

$$\tilde{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

and $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$

Latest global fits

(Capozzi et al. ('13))

Latest global fits

(Capozzi et al. ('13))

Latest global fits NH [IH] (Capozzi et al. ('13))

best fit and 1σ error

$$3\sigma$$
 range

$$\sin^2 \theta_{13} = 0.0234[9]_{-0.0018[21]}^{+0.0022[1]}$$

$$0.0177[8] \le \sin^2 \theta_{13} \le 0.0297[300]$$

$$\sin^2 \theta_{12} = 0.308^{+0.017}_{-0.017}$$

$$0.259 \le \sin^2 \theta_{12} \le 0.359$$

$$\sin^2 \theta_{23} = \begin{cases} 0.425[37]_{-0.027[9]}^{+0.029[59]} \\ [0.531 \le \sin^2 \theta_{23} \le 0.610] \end{cases}$$

$$0.357[63] \le \sin^2 \theta_{23} \le 0.641[59]$$

$$\delta = 1.39[5] \,\pi_{-0.27[39] \,\pi}^{+0.33[24] \,\pi}$$

$$0 \le \delta \le 2\pi$$

$$\alpha$$
, β

unconstrained

Latest global fits NH [IH] (Capozzi et al. ('13))

$$||U_{PMNS}|| \approx \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.40[39] & 0.65 & 0.64[5] \\ 0.40[2] & 0.52 & 0.75[4] \end{pmatrix}$$

and no information on Majorana phases

Mismatch in lepton flavour space is large!

- interpret this mismatch in lepton flavour space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to $G_
 u$ and G_e
- this symmetry is in the following a combination of a

finite, discrete, non-abelian symmetry G_f and CP (Feruglio et al. ('12,'13), Holthausen et al. ('12), Grimus/Rebelo ('95))

[Masses do not play a role in this approach.]

<u>Idea</u>:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

$$G_f$$
 & CP

neutrinos
assume 3 generations
of Majorana neutrinos

charged leptons distinguish 3 generations

Idea:

neutrinos

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and CP

An example: $\mu \tau$ reflection symmetry (Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

$$G_f$$
 & CP \searrow neutrinos charged leptons $G_
u=Z_2 imes {\sf CP}$ $G_e=Z_N$ with $N\geq 3$

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_f
- "maximize" predictability of approach

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \stackrel{\mathsf{CP}}{\longrightarrow} X_{ij} \phi_j^{\star}$$

with X is unitary and symmetric

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \stackrel{\mathsf{CP}}{\longrightarrow} X_{ij} \phi_j^{\star}$$

with X is unitary and symmetric; apply CP twice

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star} \xrightarrow{\mathsf{CP}} X X^{\star} \phi = \phi$$

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \stackrel{\mathsf{CP}}{\longrightarrow} X_{ij} \phi_j^{\star}$$

with X is unitary and symmetric.

Realize direct product of $Z_2 \subset G_f$ and CP

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \stackrel{\mathsf{CP}}{\longrightarrow} X_{ij} \phi_j^{\star}$$

with *X* is unitary and symmetric.

Realize direct product of $Z_2 \subset G_f$ and CP; Z generates Z_2

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star} \xrightarrow{Z_2} X Z^{\star} \phi^{\star} \quad \mathsf{and} \quad \phi \xrightarrow{Z_2} Z \phi \xrightarrow{\mathsf{CP}} Z X \phi^{\star}$$

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \stackrel{\mathsf{CP}}{\longrightarrow} X_{ij} \phi_j^{\star}$$

with X is unitary and symmetric.

Realize direct product of $Z_2 \subset G_f$ and CP; Z generates Z_2

$$XZ^{\star} - ZX = 0$$

• neutrino sector: $Z_2 \times \mathsf{CP}$ preserved

neutrino mass term $\nu_a\,m_{
u,ab}\,\nu_b$ is invariant under $\nu_\alpha\to Z_{\alpha\beta}\,\nu_\beta$ is invariant under generalized CP transformation $\nu_\alpha\to X_{\alpha\beta}\,\nu_\beta^\star$

• charged lepton sector: Z_N , $N \ge 3$, preserved

charged lepton mass term $e^c_a \, m_{e,ab} \, l_b$ is invariant under $l_\alpha \to Q_{e,\alpha\beta} \, l_\beta$

- neutrino sector: $Z_2 \times \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ fulfills

$$Z^T m_{
u} Z = m_{
u}$$
 and $X m_{
u} X = m_{
u}^{\star}$

• charged lepton sector: Z_N , $N \geq 3$, preserved

charged lepton mass term $e^c_a \, m_{e,ab} \, l_b$ is invariant under $l_{\alpha} \to Q_{e,\alpha\beta} \, l_{\beta}$

- neutrino sector: $Z_2 \times \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ fulfills

$$Z^T m_{
u} Z = m_{
u}$$
 and $X m_{
u} X = m_{
u}^{\star}$

- charged lepton sector: Z_N , $N \geq 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• neutrino sector: $Z_2 imes \mathsf{CP}$ preserved and generated by $(
u = \Omega_{
u} \,
u')$

$$X=\Omega_{
u}\Omega_{
u}^{T}$$
 and $Z=\Omega_{
u}Z^{diag}\Omega_{
u}^{\dagger}$
$$Z^{diag}={
m diag}\left(-1,1,-1
ight) \ {
m and} \ \Omega_{
u} \ {
m unitary}$$

- charged lepton sector: Z_N , $N \ge 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

- neutrino sector: $Z_2 \times \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ fulfills

$$Z^{diag}[\Omega_{\nu}^T m_{\nu} \Omega_{\nu}] Z^{diag} = [\Omega_{\nu}^T m_{\nu} \Omega_{\nu}] \quad \text{and} \quad [\Omega_{\nu}^T m_{\nu} \Omega_{\nu}] = [\Omega_{\nu}^T m_{\nu} \Omega_{\nu}]^{\star}$$

- charged lepton sector: Z_N , $N \geq 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

- neutrino sector: $Z_2 imes \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ is diagonalized by

$$\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$$

- charged lepton sector: Z_N , $N \geq 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

- neutrino sector: $Z_2 \times \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ is diagonalized by

$$\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$$

• charged lepton sector: Z_N , $N \geq 3$, preserved and generated by

$$egin{aligned} Q_e &= \Omega_e Q_e^{diag} \Omega_e^\dagger & ext{with} \quad \Omega_e & ext{unitary} \ Q_e^{diag} &= ext{diag} \left(\omega_N^{n_e}, \omega_N^{n_\mu}, \omega_N^{n_ au}
ight) \ & ext{and} \quad n_e
eq n_\mu
eq n_ au & ext{and} \quad \omega_N = e^{2\pi i/N} \end{aligned}$$

- neutrino sector: $Z_2 imes \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ is diagonalized by

$$\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$$

- charged lepton sector: Z_N , $N \geq 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$\Omega_e^\dagger(Q_e) m_e^\dagger m_e \Omega_e(Q_e)$$
 is diagonal

- neutrino sector: $Z_2 \times \mathsf{CP}$ preserved
 - ightarrow neutrino mass matrix $m_{
 u}$ is diagonalized by

$$\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$$

- charged lepton sector: Z_N , $N \geq 3$, preserved
 - ightarrow charged lepton mass matrix m_e fulfills

$$\Omega_e^\dagger(Q_e) m_e^\dagger m_e \Omega_e(Q_e)$$
 is diagonal

conclusion: PMNS mixing matrix reads

$$U_{PMNS} = \Omega_e^\dagger \Omega_\nu R(\theta) K_\nu \quad \text{in} \quad \bar{l} W^- U_{PMNS} \, \nu$$

$$U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$$

- U_{PMNS} contains one parameter θ
- permutations of rows and columns of U_{PMNS} possible
- 3 unphysical phases are removed by $\Omega_e \to \Omega_e K_e$

Predictions:

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

We want to consistently combine G_f and the generalized

CP transformation $\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_i^{\star}$

"closure" relations have to hold

We want to consistently combine G_f and the generalized CP transformation $\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$

"closure" relations have to hold:

assume ϕ transforms as 3-dim rep of G_f , then

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star} \xrightarrow{G_f} X A^{\star} \phi^{\star} \xrightarrow{\mathsf{CP}} X A^{\star} X^{\star} \phi = (X^{\star} A X)^{\star} \phi$$

We want to consistently combine G_f and the generalized CP transformation $\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$

"closure" relations have to hold:

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

We want to consistently combine G_f and the generalized CP transformation $\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$

"closure" relations have to hold:

 $(X^{\star}AX)^{\star}=A'$ with in general $A\neq A'$ and $A,A'\in G_f$

compare to relation for having direct product of Z_2 and CP

$$XZ^{\star} - ZX = 0$$

We want to consistently combine G_f and the generalized CP transformation $\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$

 $\downarrow \downarrow$

"closure" relations have to hold:

 $(X^{\star}AX)^{\star}=A'$ with in general $A\neq A'$ and $A,A'\in G_f$

compare to relation for having direct product of Z_2 and CP

$$(X^*ZX)^* = Z$$

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_f (Chen et al. ('14)):

all representations transform into complex conjugate under ${\cal CP}$

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_f (Chen et al. ('14)):

all representations transform into complex conjugate under *CP*

[mathematically: mapping induced via X has to be 'class-inverting' automorphism $(A' \sim A^{-1})$]

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_f (Chen et al. ('14)):

all representations transform into complex conjugate under CP

• if not fulfilled or not possible to fulfill for G_f \Rightarrow constraints on representations [S_4 fulfilled;

 $\Delta(48)$ not fulfilled in general, only for certain representations]

Generators in rep. 3':

$$(\omega = e^{2\pi i/3})$$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} , \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} , \quad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which fulfill

$$S^2 = 1$$
, $T^3 = 1$, $U^2 = 1$,
 $(ST)^3 = 1$, $(SU)^2 = 1$, $(TU)^2 = 1$, $(STU)^4 = 1$

A transformation X in rep. $\mathbf{3}'$ for Z=S is

$$X_{\mathbf{3'}} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

which fulfills

$$XX^{\dagger} = XX^{\star} = \mathbb{1}$$

 $(X^{\star}AX)^{\star} = A'$, $XZ^{\star} - ZX = 0$

A transformation X in rep. 3' for Z = S is

$$X_{\mathbf{3'}} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

which fulfills

$$XX^{\dagger} = XX^{\star} = \mathbb{1}$$

 $(X^{\star}AX)^{\star} = A' , \quad XZ^{\star} - ZX = 0$

Residual symmetry G_e is generated by T.

Maximal θ_{23} and δ from $G_e=Z_3$, Z=S and $X_{\mathbf{3}'}$

(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta + i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - i\sqrt{3}\cos\theta \\ -\cos\theta - i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + i\sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$$
, $\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}$, $\sin^2 \theta_{23} = \frac{1}{2}$

and

$$|\sin \delta| = 1$$
, $|J_{CP}| = \frac{|\sin 2\theta|}{6\sqrt{3}}$, $\sin \alpha = 0$, $\sin \beta = 0$

Maximal θ_{23} and δ from $G_e=Z_3$, Z=S and $X_{3'}$ (Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta + i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - i\sqrt{3}\cos\theta \\ -\cos\theta - i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + i\sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\sin^2 \theta_{13} \approx 0.023$$
, $\sin^2 \theta_{12} \approx 0.341$, $\sin^2 \theta_{23} = \frac{1}{2}$

and

$$|\sin \delta| = 1$$
 , $|J_{CP}| \approx 0.0348$, $\sin \alpha = 0$, $\sin \beta = 0$ for $\theta \approx 0.185$

Maximal $heta_{23}$ and δ from $G_e=Z_3$, Z=S and $X_{{f 3}'}$ (Feruglio et al. ('12,'13))

Maximal $heta_{23}$ and δ from $G_e=Z_3$, Z=S and $X_{{f 3}'}$ (Feruglio et al. ('12,'13))

Generators in rep. 3:

 $(\omega = e^{2\pi i/3})$

(Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07))

$$a = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} , \quad c = \frac{1}{3} \begin{pmatrix} 1 & 1 - \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & 1 & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix} , \quad d = a^{-1}ca$$

which satisfy

$$a^{3} = 1$$
, $c^{4} = 1$, $d^{4} = 1$, $cd = dc$, $aca^{-1} = c^{-1}d^{-1}$

A transformation X in rep. 3 for $Z=c^2$ is

(Ding/Zhou ('13))

$$X_3 = d \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which fulfills

$$XX^{\dagger} = XX^{\star} = \mathbb{1}$$

 $(X^{\star}AX)^{\star} = A' , \quad XZ^{\star} - ZX = 0$

A transformation X in rep. 3 for $Z=c^2$ is

(Ding/Zhou ('13))

$$X_3 = d \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which fulfills

$$XX^{\dagger} = XX^{\star} = \mathbb{1}$$

 $(X^{\star}AX)^{\star} = A' , \quad XZ^{\star} - ZX = 0$

Residual symmetry G_e is generated by a.

Angles and phases from $G_e=Z_3$, $Z=c^2$ and $X_{f 3}$ (Ding/Zhou ('13))

$$||U_{PMNS}|| = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sqrt{4 - (\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 + (\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \frac{1}{\sqrt{2}} \sqrt{4 + (-\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 - (-\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \sqrt{2 + \sqrt{2}\cos 2\theta} & \sqrt{2} & \sqrt{2 - \sqrt{2}\cos 2\theta} \end{pmatrix}$$

$$\sin^2 \theta_{13} = \frac{1}{12} \left(4 + (\sqrt{2} + \sqrt{6}) \cos 2\theta \right) , \quad \sin^2 \theta_{12} = \frac{4}{8 - (\sqrt{2} + \sqrt{6}) \cos 2\theta} ,$$

$$\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{\sqrt{6}(\sqrt{3} - 1) \cos 2\theta}{8 - (\sqrt{2} + \sqrt{6}) \cos 2\theta} \right) , \quad |J_{CP}| = \frac{|\sin 2\theta|}{6\sqrt{3}}$$

Angles and phases from $G_e=Z_3$, $Z=c^2$ and $X_{f 3}$ (Ding/Zhou ('13))

$$||U_{PMNS}|| = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sqrt{4 - (\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 + (\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \frac{1}{\sqrt{2}} \sqrt{4 + (-\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 - (-\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \sqrt{2 + \sqrt{2}\cos 2\theta} & \sqrt{2} & \sqrt{2 - \sqrt{2}\cos 2\theta} \end{pmatrix}$$

$$|\sin \alpha| = \left| \frac{1 + \sqrt{3} - 2\sqrt{2}\cos 2\theta + (-1 + \sqrt{3})\sin 2\theta}{-4 + (\sqrt{2} + \sqrt{6})\cos 2\theta} \right| ,$$

$$|\sin \beta| = \left| \frac{2\sin 2\theta}{-4 + (2 + \sqrt{3})\cos^2 2\theta} \right|$$

Angles and phases from $G_e=Z_3$, $Z=c^2$ and $X_{f 3}$ (Ding/Zhou ('13))

$$||U_{PMNS}|| = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sqrt{4 - (\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 + (\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \frac{1}{\sqrt{2}} \sqrt{4 + (-\sqrt{2} + \sqrt{6})\cos 2\theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4 - (-\sqrt{2} + \sqrt{6})\cos 2\theta} \\ \sqrt{2 + \sqrt{2}\cos 2\theta} & \sqrt{2} & \sqrt{2} - \sqrt{2}\cos 2\theta \end{pmatrix}$$

 $\sin^2 \theta_{13} pprox 0.023 \; , \quad \sin^2 \theta_{12} pprox 0.341 \; , \quad \sin^2 \theta_{23} pprox 0.426 \; \; , \quad |J_{CP}| pprox 0.0254 \; \; ,$ and

 $\sin \delta | \approx 0.735$, $|\sin \alpha| \approx 0.732$, $|\sin \beta| \approx 1$ for $\theta \approx 1.437$

Angles and phases from $G_e=Z_3$, $Z=c^2$ and X_3

Angles and phases from $G_e=Z_3$, $Z=c^2$ and X_3

Angles and phases from $G_e=Z_3$, $Z=c^2$ and X_3

Angles and phases from $G_e=Z_3$, $Z=c^2$ and X_3

baryon asymmetry of the Universe is measured well

$$Y_B = \left. \frac{n_B - n_{ar{B}}}{s} \right|_0 = (8.77 \pm 0.24) \times 10^{-11}$$
 (WMAP ('08), Planck ('13))

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))

baryon asymmetry of the Universe is measured well

$$Y_B = \left. \frac{n_B - n_{ar{B}}}{s} \right|_0 = (8.77 \pm 0.24) \times 10^{-11}$$
 (WMAP ('08), Planck ('13))

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))
- simplest scenario:

thermal leptogenesis in which asymmetry stems from N_1 decay (with no flavour effects)

baryon asymmetry of the Universe is measured well

$$Y_B = \left. \frac{n_B - n_{ar{B}}}{s} \right|_0 = (8.77 \pm 0.24) \times 10^{-11}$$
 (WMAP ('08), Planck ('13))

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))
- simplest scenario:

 $Y_B \sim 10^{-3} \, \epsilon \, \eta$ with ϵ CP asymmetry, η washout factor

• CP asymmetry ϵ

$$\epsilon_{\alpha\alpha} = \frac{\Gamma(N_1 \to H l_{\alpha}) - \Gamma(N_1 \to H^* \bar{l}_{\alpha})}{\Gamma(N_1 \to H l) + \Gamma(N_1 \to H^* \bar{l})}$$

• computation of ϵ in case of unflavoured leptogenesis

$$\epsilon = \frac{1}{8\pi} \sum_{j \neq 1} \frac{\operatorname{Im}\left((\hat{Y}_D \hat{Y}_D^{\dagger})_{j1}^2\right)}{(\hat{Y}_D \hat{Y}_D^{\dagger})_{11}} f(x_j)$$

with $\hat{Y}_D = U_R^\dagger Y_D$ and $U_R^\dagger M_R U_R^\star = \mathrm{diag}(M_1, M_2, M_3)$

- leptogenesis has been studied in several models with ${\cal A}_4$ or ${\cal S}_4$ flavour symmetry
 - (Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_f o G_e$ in charged lepton sector and m_e is diagonal
- $G_f \to G_{\nu} = Z_2(\times Z_2)$ in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure

- leptogenesis has been studied in several models with A_4 or S_4 flavour symmetry
 - (Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_f o G_e$ in charged lepton sector and m_e is diagonal
- $G_f \to G_{\nu} = Z_2(\times Z_2)$ in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure
- for generations in 3 and Y_D invariant under G_f ϵ vanishes

• leptogenesis has been studied in several models with ${\cal A}_4$ or ${\cal S}_4$ flavour symmetry

(Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))

- $G_f o G_e$ in charged lepton sector and m_e is diagonal
- $G_f \to G_{\nu} = Z_2(\times Z_2)$ in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure
- if residual G_{ν} is broken at level ε ,

 $\epsilon \propto \varepsilon^2$ $\,$ for unflavoured leptogenesis

 $[\epsilon \propto \varepsilon \;\;\; ext{for flavoured leptogenesis}]$

- leptogenesis has been studied in several models with ${\cal A}_4$ or ${\cal S}_4$ flavour symmetry
 - (Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_f o G_e$ in charged lepton sector and m_e is diagonal
- $G_f \to G_{\nu} = Z_2(\times Z_2)$ in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure
- if residual G_{ν} is broken at level ε ,
 - $\epsilon \propto arepsilon^2$ for unflavoured leptogenesis
- if CP is also a symmetry of the theory, constraints on sign of ϵ can be expected

Consider the following scenario

- S_4 & CP $\to G_e$ in charged lepton sector and m_e is diagonal
- S_4 & CP $\to G_{\nu} = Z_2 \times$ CP in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure
- assume small breaking in Y_D at level ε which is real
- fit of reactor mixing angle requires $0.16 \lesssim \theta \lesssim 0.21$

Result for ϵ from N_1 decays vs lightest neutrino mass m_0 $\varepsilon=\lambda^4\approx 1.6\times 10^{-3};$ normal ordering and best fit values of Δm_{ij}^2 (Capozzi et al. ('13)) assumed

Consider the following scenario

- $\Delta(48)$ & CP $\to G_e$ in charged lepton sector and m_e is diagonal
- $\Delta(48)$ & CP $\rightarrow G_{\nu} = Z_2 \times$ CP in neutrino sector and M_R encodes mixing, while Y_D has trivial flavour structure
- assume small breaking in Y_D at level ε which is real
- fit of reactor mixing angle constrains θ : $1.40 \le \theta \le 1.48$

Result for ϵ from N_1 decays vs lightest neutrino mass m_0 $\varepsilon=\lambda^4\approx 1.6\times 10^{-3};$ normal ordering and best fit values of Δm_{ij}^2 (Capozzi et al. ('13)) assumed

Notice: phases in K_{ν} can change sign of ϵ

Conclusions & outlook

- approach with flavour and CP symmetry strongly constrains lepton mixing
- results for $G_f = S_4$ or $G_f = \Delta(48)$ are encouraging
- leptogenesis can be studied in this approach

Conclusions & outlook

- continue study of different groups G_f ($\Delta(3n^2)$ and $\Delta(6n^2)$) and CP: new mixing patterns, consistent definition of CP, ...
- explore more phenomena which involve CP phases: $0\nu\beta\beta$ decay, electric dipole moments, phases of soft supersymmetry breaking terms, CKM phase, ...

Thank you for your attention.

Back up

Maximal $heta_{23}$ and δ from $G_e=Z_3$, Z=S and $X_{{f 3}'}$ (Feruglio et al. ('12,'13))

