Interplay of flavour and CP symmetries

C. Hagedorn
EC 'Universe', TUM, Munich, Germany

Workshop "News in Neutrino Physics", 07.04.2014-02.05.2014, NORDITA, Stockholm, Sweden

Outline

- lepton mixing: parametrization and data
- combination of flavour and CP symmetries
- general idea
- examples: $G_{f}=S_{4}$ and $G_{f}=\Delta(48)$
- predictions for leptogenesis
- conclusions \& outlook

Parametrization of lepton mixing

- charged lepton and (Majorana) neutrino mass terms

$$
e_{a}^{c} m_{e, a b} l_{b} \quad \text { and } \quad \nu_{a} m_{\nu, a b} \nu_{b}
$$

cannot be diagonalized simultaneously

- going to the mass basis

$$
U_{e}^{\dagger} m_{e}^{\dagger} m_{e} U_{e}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right) \text { and } U_{\nu}^{T} m_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

leads to non-diagonal charged current interactions

$$
\bar{l} W^{-} U_{P M N S} \nu \text { with } U_{P M N S}=U_{e}^{\dagger} U_{\nu}
$$

Parametrization of lepton mixing

Parametrization (PDG)

$$
U_{P M N S}=\tilde{U} \operatorname{diag}\left(1, e^{i \alpha / 2}, e^{i(\beta / 2+\delta)}\right)
$$

with

$$
\tilde{U}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

and $s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$

Data on lepton mixing

Latest global fits

Data on lepton mixing

Latest global fits

Data on lepton mixing

Latest global fits $\mathrm{NH}[\mathrm{IH}] \quad$ (Capozziet al. ('133))

$$
\left.\left.\begin{array}{c}
\text { best fit and } 1 \sigma \text { error } \\
3 \sigma \text { range } \\
\sin ^{2} \theta_{13}=0.0234[9]_{-0.0018[21]}^{+0.0022[1]} \\
\sin ^{2} \theta_{12}=0.308_{-0.017}^{+0.017}
\end{array}\right) 0.0 .259 \leq \sin ^{2} \theta_{12} \leq 0.359\right][8] \leq \sin ^{2} \theta_{13} \leq 0.0297[300] ~\left\{\begin{array}{cl}
\sin ^{2} \theta_{23}=\left\{\begin{array}{cl}
0.425[37]_{-0.027[9]}^{+0.029[59]} & 0.357[63] \leq \sin ^{2} \theta_{23} \leq 0.641[59] \\
{\left[0.531 \leq \sin ^{2} \theta_{23} \leq 0.610\right]}
\end{array}\right. \\
\delta=1.39[5] \pi_{-0.27[39] \pi}^{+0.33[24] \pi} & 0 \leq \delta \leq 2 \pi \\
\alpha, \beta & \text { unconstrained }
\end{array}\right.
$$

Data on lepton mixing

Latest global fits $\mathrm{NH}[\mathrm{IH}] \quad$ (Capozzi et al. ('13))

$$
\left\|U_{P M N S}\right\| \approx\left(\begin{array}{ccc}
0.82 & 0.55 & 0.15 \\
0.40[39] & 0.65 & 0.64[5] \\
0.40[2] & 0.52 & 0.75[4]
\end{array}\right)
$$

and no information on Majorana phases
\Downarrow
Mismatch in lepton flavour space is large!

General idea

- interpret this mismatch in lepton flavour space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a
finite, discrete, non-abelian symmetry G_{f} and CP
(Feruglio et al. ('12,'13), Holthausen et al. ('12), Grimus/Rebelo ('95))
[Masses do not play a role in this approach.]

General idea

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

$$
G_{f} \& \mathrm{CP}
$$

neutrinos
G_{ν}
charged leptons
G_{e}

General idea

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

$$
G_{f} \& \mathrm{CP}
$$

neutrinos
assume 3 generations
of Majorana neutrinos
charged leptons
distinguish 3 generations

General idea

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

$$
G_{f} \& \mathrm{CP}
$$

neutrinos

$$
G_{\nu}=Z_{2} \times \mathrm{CP}
$$

charged leptons

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

An example: $\mu \tau$ reflection symmetry (Harrison/Scott ('O2;'04), Grimus/Lavoura ('O3))

General idea

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_{f}
- "maximize" predictability of approach

General idea

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}
$$

with X is unitary and symmetric

General idea

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}
$$

with X is unitary and symmetric; apply $C P$ twice

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star} \xrightarrow{\mathrm{CP}} X X^{\star} \phi=\phi
$$

General idea

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}
$$

with X is unitary and symmetric.
Realize direct product of $Z_{2} \subset G_{f}$ and $C P$

General idea

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}
$$

with X is unitary and symmetric.
Realize direct product of $Z_{2} \subset G_{f}$ and $C P ; Z$ generates Z_{2}

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star} \xrightarrow{Z_{2}} X Z^{\star} \phi^{\star} \quad \text { and } \phi \xrightarrow{Z_{2}} Z \phi \xrightarrow{\mathrm{CP}} Z X \phi^{\star}
$$

General idea

Definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}
$$

with X is unitary and symmetric.
Realize direct product of $Z_{2} \subset G_{f}$ and $C P ; Z$ generates Z_{2}

$$
X Z^{\star}-Z X=0
$$

General idea

- neutrino sector: $Z_{2} \times$ CP preserved
neutrino mass term $\nu_{a} m_{\nu, a b} \nu_{b}$
is invariant under $\nu_{\alpha} \rightarrow Z_{\alpha \beta} \nu_{\beta}$
is invariant under generalized CP transformation $\nu_{\alpha} \rightarrow X_{\alpha \beta} \nu_{\beta}^{\star}$
- charged lepton sector: $Z_{N}, N \geq 3$, preserved charged lepton mass term $e_{a}^{c} m_{e, a b} l_{b}$

$$
\text { is invariant under } l_{\alpha} \rightarrow Q_{e, \alpha \beta} l_{\beta}
$$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z^{T} m_{\nu} Z=m_{\nu} \quad \text { and } \quad X m_{\nu} X=m_{\nu}^{\star}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved charged lepton mass term $e_{a}^{c} m_{e, a b} l_{b}$ is invariant under $l_{\alpha} \rightarrow Q_{e, \alpha \beta} l_{\beta}$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z^{T} m_{\nu} Z=m_{\nu} \quad \text { and } \quad X m_{\nu} X=m_{\nu}^{\star}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved and generated by $\left(\nu=\Omega_{\nu} \nu^{\prime}\right)$

$$
\begin{aligned}
& X=\Omega_{\nu} \Omega_{\nu}^{T} \text { and } Z=\Omega_{\nu} Z^{\text {diag }} \Omega_{\nu}^{\dagger} \\
& Z^{\text {diag }}=\operatorname{diag}(-1,1,-1) \text { and } \Omega_{\nu} \text { unitary }
\end{aligned}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

General idea

- neutrino sector: $Z_{2} \times$ CP preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z^{\text {diag }}\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] Z^{\text {diag }}=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] \quad \text { and } \quad\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]^{\star}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} is diagonalized by

$$
\Omega_{\nu}(X, Z) R(\theta) K_{\nu}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} is diagonalized by

$$
\Omega_{\nu}(X, Z) R(\theta) K_{\nu}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved and generated by

$$
\begin{aligned}
& Q_{e}=\Omega_{e} Q_{e}^{\text {diag }} \Omega_{e}^{\dagger} \text { with } \Omega_{e} \text { unitary } \\
& Q_{e}^{\text {diag }}=\operatorname{diag}\left(\omega_{N}^{n_{e}}, \omega_{N}^{n_{\mu}}, \omega_{N}^{n_{\tau}}\right) \\
& \text { and } n_{e} \neq n_{\mu} \neq n_{\tau} \quad \text { and } \omega_{N}=e^{2 \pi i / N}
\end{aligned}
$$

General idea

- neutrino sector: $Z_{2} \times$ CP preserved
\rightarrow neutrino mass matrix m_{ν} is diagonalized by

$$
\Omega_{\nu}(X, Z) R(\theta) K_{\nu}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger}\left(Q_{e}\right) m_{e}^{\dagger} m_{e} \Omega_{e}\left(Q_{e}\right) \text { is diagonal }
$$

General idea

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} is diagonalized by

$$
\Omega_{\nu}(X, Z) R(\theta) K_{\nu}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger}\left(Q_{e}\right) m_{e}^{\dagger} m_{e} \Omega_{e}\left(Q_{e}\right) \text { is diagonal }
$$

- conclusion: PMNS mixing matrix reads

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu} R(\theta) K_{\nu} \quad \text { in } \quad \bar{l} W^{-} U_{P M N S} \nu
$$

General idea

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}
$$

- $U_{P M N S}$ contains one parameter θ
- permutations of rows and columns of $U_{P M N S}$ possible
- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$

Predictions:

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

General idea: consistency conditions

We want to consistently combine G_{f} and the generalized CP transformation $\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}$
\Downarrow
"closure" relations have to hold

General idea: consistency conditions

We want to consistently combine G_{f} and the generalized CP transformation $\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}$
\Downarrow
"closure" relations have to hold:
assume ϕ transforms as 3-dim rep of G_{f}, then

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star} \xrightarrow{G_{f}} X A^{\star} \phi^{\star} \xrightarrow{\mathrm{CP}} X A^{\star} X^{\star} \phi=\left(X^{\star} A X\right)^{\star} \phi
$$

General idea: consistency conditions

We want to consistently combine G_{f} and the generalized CP transformation $\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}$
\Downarrow
"closure" relations have to hold:
$\left(X^{\star} A X\right)^{\star}=A^{\prime}$ with in general $A \neq A^{\prime}$ and $A, A^{\prime} \in G_{f}$

General idea: consistency conditions

We want to consistently combine G_{f} and the generalized CP transformation $\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}$
\Downarrow
"closure" relations have to hold:
$\left(X^{\star} A X\right)^{\star}=A^{\prime}$ with in general $A \neq A^{\prime}$ and $A, A^{\prime} \in G_{f}$
compare to relation for having direct product of Z_{2} and $C P$

$$
X Z^{\star}-Z X=0
$$

General idea: consistency conditions

We want to consistently combine G_{f} and the generalized CP transformation $\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star}$
\Downarrow
"closure" relations have to hold:
$\left(X^{\star} A X\right)^{\star}=A^{\prime}$ with in general $A \neq A^{\prime}$ and $A, A^{\prime} \in G_{f}$
compare to relation for having direct product of Z_{2} and $C P$

$$
\left(X^{\star} Z X\right)^{\star}=Z
$$

General idea: consistency conditions

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_{f} (Chen et al. ('14)):
all representations transform into complex conjugate under $C P$

General idea: consistency conditions

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_{f} (Chen et al. ('14)):
all representations transform into complex conjugate under $C P$
[mathematically: mapping induced via X has to be 'classinverting' automorphism $\left(A^{\prime} \sim A^{-1}\right)$]

General idea: consistency conditions

- fulfilling these conditions ensures a consistent theory, but can lead to enlarged symmetry group
- additional requirement in order not to change representation content of G_{f} (Chen et al. ('14)):
all representations transform into complex conjugate under $C P$
- if not fulfilled or not possible to fulfill for G_{f}
\Rightarrow constraints on representations
[S_{4} fulfilled;
$\Delta(48)$ not fulfilled in general, only for certain representations]

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Generators in rep. $\mathbf{3}^{\prime}$:

$$
\left(\omega=e^{2 \pi i / 3}\right)
$$

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad, \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) \quad, \quad U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

which fulfill

$$
\begin{aligned}
& S^{2}=\mathbb{1}, \quad T^{3}=\mathbb{1}, \quad U^{2}=\mathbb{1} \\
& (S T)^{3}=\mathbb{1}, \quad(S U)^{2}=\mathbb{1}, \quad(T U)^{2}=\mathbb{1}, \quad(S T U)^{4}=\mathbb{1}
\end{aligned}
$$

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

A transformation X in rep. 3^{\prime} for $Z=S$ is

$$
X_{\mathbf{3}^{\prime}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

which fulfills

$$
\begin{aligned}
& X X^{\dagger}=X X^{\star}=\mathbb{1} \\
& \left(X^{\star} A X\right)^{\star}=A^{\prime}, \quad X Z^{\star}-Z X=0
\end{aligned}
$$

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

A transformation X in rep. 3^{\prime} for $Z=S$ is

$$
X_{\mathbf{3}^{\prime}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

which fulfills

$$
\begin{aligned}
& X X^{\dagger}=X X^{\star}=\mathbb{1} \\
& \left(X^{\star} A X\right)^{\star}=A^{\prime}, \quad X Z^{\star}-Z X=0
\end{aligned}
$$

Residual symmetry G_{e} is generated by T.

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and $X_{3^{\prime}}$
(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$
\begin{gathered}
U_{P M N S}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 \cos \theta & \sqrt{2} & 2 \sin \theta \\
-\cos \theta+i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta-i \sqrt{3} \cos \theta \\
-\cos \theta-i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta+i \sqrt{3} \cos \theta
\end{array}\right) K_{\nu} \\
\sin ^{2} \theta_{13}=\frac{2}{3} \sin ^{2} \theta, \quad \sin ^{2} \theta_{12}=\frac{1}{2+\cos 2 \theta}, \quad \sin ^{2} \theta_{23}=\frac{1}{2} \\
\text { and } \\
|\sin \delta|=1, \quad\left|J_{C P}\right|=\frac{|\sin 2 \theta|}{6 \sqrt{3}}, \quad \sin \alpha=0, \quad \sin \beta=0
\end{gathered}
$$

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and $X_{3^{\prime}}$
(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$
\begin{gathered}
U_{P M N S}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 \cos \theta & \sqrt{2} & 2 \sin \theta \\
-\cos \theta+i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta-i \sqrt{3} \cos \theta \\
-\cos \theta-i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta+i \sqrt{3} \cos \theta
\end{array}\right) K_{\nu} \\
\sin ^{2} \theta_{13} \approx 0.023, \quad \sin ^{2} \theta_{12} \approx 0.341, \\
\text { and } \sin ^{2} \theta_{23}=\frac{1}{2}
\end{gathered}
$$

$$
|\sin \delta|=1, \quad\left|J_{C P}\right| \approx 0.0348, \quad \sin \alpha=0, \quad \sin \beta=0 \text { for } \theta \approx 0.185
$$

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and $X_{3^{\prime}}$ (Feruglio et al. ('12,'13))

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and $X_{3^{\prime}}$ (Feruglio et al. ('12,'13))

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Generators in rep. 3:

$$
\left(\omega=e^{2 \pi i / 3}\right)
$$

(Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07))

$$
a=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad, \quad c=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1-\sqrt{3} & 1+\sqrt{3} \\
1+\sqrt{3} & 1 & 1-\sqrt{3} \\
1-\sqrt{3} & 1+\sqrt{3} & 1
\end{array}\right) \quad, \quad d=a^{-1} c a
$$

which satisfy

$$
\begin{aligned}
& a^{3}=\mathbb{1}, \quad c^{4}=\mathbb{1}, \quad d^{4}=\mathbb{1} \\
& c d=d c, \quad a c a^{-1}=c^{-1} d^{-1}
\end{aligned}
$$

Study of $\Delta(48)$ and $C P$

A transformation X in rep. 3 for $Z=c^{2}$ is
(Ding/Zhou ('13))

$$
X_{\mathbf{3}}=d\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

which fulfills

$$
\begin{aligned}
& X X^{\dagger}=X X^{\star}=\mathbb{1} \\
& \left(X^{\star} A X\right)^{\star}=A^{\prime}, \quad X Z^{\star}-Z X=0
\end{aligned}
$$

Study of $\Delta(48)$ and $C P$

A transformation X in rep. 3 for $Z=c^{2}$ is
(Ding/Zhou ('13))

$$
X_{\mathbf{3}}=d\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

which fulfills

$$
\begin{aligned}
& X X^{\dagger}=X X^{\star}=\mathbb{1} \\
& \left(X^{\star} A X\right)^{\star}=A^{\prime}, \quad X Z^{\star}-Z X=0
\end{aligned}
$$

Residual symmetry G_{e} is generated by a.

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and $X_{3} \quad$ (Ding/Zhou ('13))

$$
\left\|U_{P M N S}\right\|=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \sqrt{4-(\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4+(\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\
\frac{1}{\sqrt{2}} \sqrt{4+(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4-(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\
\sqrt{2+\sqrt{2} \cos 2 \theta} & \sqrt{2} & \sqrt{2-\sqrt{2} \cos 2 \theta}
\end{array}\right)
$$

$$
\sin ^{2} \theta_{13}=\frac{1}{12}(4+(\sqrt{2}+\sqrt{6}) \cos 2 \theta), \quad \sin ^{2} \theta_{12}=\frac{4}{8-(\sqrt{2}+\sqrt{6}) \cos 2 \theta},
$$

$$
\sin ^{2} \theta_{23}=\frac{1}{2}\left(1+\frac{\sqrt{6}(\sqrt{3}-1) \cos 2 \theta}{8-(\sqrt{2}+\sqrt{6}) \cos 2 \theta}\right), \quad\left|J_{C P}\right|=\frac{|\sin 2 \theta|}{6 \sqrt{3}}
$$

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and $X_{3} \quad$ (Ding/Zhou ('13))
$\left\|U_{P M N S}\right\|=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} \sqrt{4-(\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4+(\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\ \frac{1}{\sqrt{2}} \sqrt{4+(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4-(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\ \sqrt{2+\sqrt{2} \cos 2 \theta} & \sqrt{2} & \sqrt{2-\sqrt{2} \cos 2 \theta}\end{array}\right)$

$$
\begin{aligned}
& |\sin \alpha|=\left|\frac{1+\sqrt{3}-2 \sqrt{2} \cos 2 \theta+(-1+\sqrt{3}) \sin 2 \theta}{-4+(\sqrt{2}+\sqrt{6}) \cos 2 \theta}\right|, \\
& |\sin \beta|=\left|\frac{2 \sin 2 \theta}{-4+(2+\sqrt{3}) \cos ^{2} 2 \theta}\right|
\end{aligned}
$$

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and $X_{3} \quad$ (Ding/Zhou ('13))

$$
\begin{gathered}
\left\|U_{P M N S}\right\|=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \sqrt{4-(\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4+(\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\
\frac{1}{\sqrt{2}} \sqrt{4+(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} & \sqrt{2} & \frac{1}{\sqrt{2}} \sqrt{4-(-\sqrt{2}+\sqrt{6}) \cos 2 \theta} \\
\sqrt{2+\sqrt{2} \cos 2 \theta} & \sqrt{2} & \sqrt{2-\sqrt{2} \cos 2 \theta}
\end{array}\right) \\
\sin ^{2} \theta_{13} \approx 0.023, \quad \sin ^{2} \theta_{12} \approx 0.341, \sin ^{2} \theta_{23} \approx 0.426, \quad\left|J_{C P}\right| \approx 0.0254, \\
\text { and }
\end{gathered}
$$

$$
|\sin \delta| \approx 0.735, \quad|\sin \alpha| \approx 0.732, \quad|\sin \beta| \approx 1 \text { for } \theta \approx 1.437
$$

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and X_{3}
(Ding/Zhou ('13))

Study of $\Delta(48)$ and $C P$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and X_{3}
(Ding/Zhou ('13))

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and X_{3}
(Ding/Zhou ('13))

Study of $\Delta(48)$ and $\boldsymbol{C P}$

Angles and phases from $G_{e}=Z_{3}, Z=c^{2}$ and X_{3}
(Ding/Zhou ('13))

Basics of leptogenesis

- baryon asymmetry of the Universe is measured well

$$
Y_{B}=\left.\frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}=(8.77 \pm 0.24) \times 10^{-11} \quad(\text { WMAP ('08), Planck ('13)) }
$$

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))

Basics of leptogenesis

- baryon asymmetry of the Universe is measured well

$$
\left.Y_{B}=\left.\frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}=(8.77 \pm 0.24) \times 10^{-11} \quad \text { (WMAP ('08), Planck (}{ }^{(113)}\right)
$$

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))
- simplest scenario:
thermal leptogenesis in which asymmetry stems from N_{1} decay (with no flavour effects)

Basics of leptogenesis

- baryon asymmetry of the Universe is measured well

$$
Y_{B}=\left.\frac{n_{B}-n_{\bar{B}}}{s}\right|_{0}=(8.77 \pm 0.24) \times 10^{-11} \quad \text { (WMAP ('08), Planck (133)) }
$$

- this asymmetry can be explained by decay of heavy right-handed neutrinos (Fukugita/Yanagida ('86))
- the three Sakharov conditions are fulfilled (Sakharov ('67))
- simplest scenario:
$Y_{B} \sim 10^{-3} \epsilon \eta$ with $\in \mathrm{CP}$ asymmetry, η washout factor

Basics of leptogenesis

- CP asymmetry ϵ

$$
\epsilon_{\alpha \alpha}=\frac{\Gamma\left(N_{1} \rightarrow H l_{\alpha}\right)-\Gamma\left(N_{1} \rightarrow H^{\star} \bar{l}_{\alpha}\right)}{\Gamma\left(N_{1} \rightarrow H l\right)+\Gamma\left(N_{1} \rightarrow H^{\star} \bar{l}\right)}
$$

- computation of ϵ in case of unflavoured leptogenesis

$$
\epsilon=\frac{1}{8 \pi} \sum_{j \neq 1} \frac{\operatorname{Im}\left(\left(\hat{Y}_{D} \hat{Y}_{D}^{\dagger}\right)_{j 1}^{2}\right)}{\left(\hat{Y}_{D} \hat{Y}_{D}^{\dagger}\right)_{11}} f\left(x_{j}\right)
$$

with $\hat{Y}_{D}=U_{R}^{\dagger} Y_{D}$ and $U_{R}^{\dagger} M_{R} U_{R}^{\star}=\operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right)$

Leptogenesis in flavour models

- leptogenesis has been studied in several models with A_{4} or S_{4} flavour symmetry
(Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_{f} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $G_{f} \rightarrow G_{\nu}=Z_{2}\left(\times Z_{2}\right)$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure

Leptogenesis in flavour models

- leptogenesis has been studied in several models with A_{4} or S_{4} flavour symmetry
(Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_{f} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $G_{f} \rightarrow G_{\nu}=Z_{2}\left(\times Z_{2}\right)$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure
- for generations in 3 and Y_{D} invariant under $G_{f} \epsilon$ vanishes

Leptogenesis in flavour models

- leptogenesis has been studied in several models with A_{4} or S_{4} flavour symmetry
(Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_{f} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $G_{f} \rightarrow G_{\nu}=Z_{2}\left(\times Z_{2}\right)$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure
- if residual G_{ν} is broken at level ε,
$\epsilon \propto \varepsilon^{2}$ for unflavoured leptogenesis
[$\epsilon \propto \varepsilon$ for flavoured leptogenesis]

Leptogenesis in flavour models

- leptogenesis has been studied in several models with A_{4} or S_{4} flavour symmetry
(Jenkins/Manohar ('08), H et al. ('09), Bertuzzo et al. ('09), Aristizabal Sierra et al. ('09))
- $G_{f} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $G_{f} \rightarrow G_{\nu}=Z_{2}\left(\times Z_{2}\right)$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure
- if residual G_{ν} is broken at level ε,

$$
\epsilon \propto \varepsilon^{2} \text { for unflavoured leptogenesis }
$$

- if $C P$ is also a symmetry of the theory, constraints on sign of ϵ can be expected

Leptogenesis in models with flavour and $\boldsymbol{C P}$

Consider the following scenario

- $S_{4} \& \mathrm{CP} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $S_{4} \& \mathrm{CP} \rightarrow G_{\nu}=Z_{2} \times \mathrm{CP}$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure
- assume small breaking in Y_{D} at level ε which is real
- fit of reactor mixing angle requires $0.16 \lesssim \theta \lesssim 0.21$

Leptogenesis in models with flavour and $\boldsymbol{C P}$

Result for ϵ from N_{1} decays vs lightest neutrino mass m_{0} $\varepsilon=\lambda^{4} \approx 1.6 \times 10^{-3}$; normal ordering and best fit values of $\Delta m_{i j}^{2}$ (Capozzi et al. ('13)) asSumed

Leptogenesis in models with flavour and $\boldsymbol{C P}$

Consider the following scenario

- $\Delta(48) \& \mathrm{CP} \rightarrow G_{e}$ in charged lepton sector and m_{e} is diagonal
- $\Delta(48) \& \mathrm{CP} \rightarrow G_{\nu}=Z_{2} \times \mathrm{CP}$ in neutrino sector and M_{R} encodes mixing, while Y_{D} has trivial flavour structure
- assume small breaking in Y_{D} at level ε which is real
- fit of reactor mixing angle constrains $\theta: 1.40 \lesssim \theta \lesssim 1.48$

Leptogenesis in models with flavour and $\boldsymbol{C P}$

Result for ϵ from N_{1} decays vs lightest neutrino mass m_{0} $\varepsilon=\lambda^{4} \approx 1.6 \times 10^{-3}$; normal ordering and best fit values of $\Delta m_{i j}^{2}$ (Capozzi et al. ('13)) asSumed

Notice: phases in K_{ν} can change sign of ϵ

Conclusions \& outlook

- approach with flavour and CP symmetry strongly constrains lepton mixing
- results for $G_{f}=S_{4}$ or $G_{f}=\Delta(48)$ are encouraging
- leptogenesis can be studied in this approach

Conclusions \& outlook

- continue study of different groups $G_{f}\left(\Delta\left(3 n^{2}\right)\right.$ and $\left.\Delta\left(6 n^{2}\right)\right)$ and CP:
new mixing patterns, consistent definition of CP, \ldots
- explore more phenomena which involve CP phases: $0 \nu \beta \beta$ decay, electric dipole moments, phases of soft supersymmetry breaking terms, CKM phase, ...

Thank you for your attention.

Back up

Study of \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and $X_{3^{\prime}}$ (Feruglio et al. ('12,'13))

