Beyond tree-level Majorana neutrino masses: the two-loop case

Diego Aristizabal

IFPA, Universite de Liege, Belgium

Prepared for NuNews

WORK IN PROGRESS
A. Degeé (IFPA), L. Dorame (IFIC, VLC)

Martin Hirsch (IFIC, VLC)

Some remarks on neutrino masses...

Majorana neutrino masses

Model independent approach: induced by $\mathscr{O}_{5} \sim L L \Phi \Phi \Rightarrow \Delta L=2$

Minkowski, 1977
Mohapatra \& Senjanovic, 1980
Schechter \& JWFV, 1980 ...

Schechter, JWFV, 1980 ...

Higher order

Insisting on only $d=5$ and not slightly broken $U(1)_{L}$:

Phenomenological constraints however rule out $D^{(i)}>D^{(4)} \ldots$ and perhaps even $D^{(i)}>D^{(3)} \ldots$

$$
\begin{aligned}
m_{\nu} & \sim\left(\frac{1}{16 \pi^{2}}\right)^{4} m_{F}^{4} y^{5} \mu^{3} \int d^{16} k\left(\frac{1}{k^{2}-m_{S}^{2}}\right)^{7}\left(\frac{1}{k^{2}-m_{F}^{2}}\right)^{4} \\
& \sim\left(\frac{1}{16 \pi^{2}}\right)^{4} \frac{m_{F}^{4}}{m_{S}^{6}} y^{5} \mu^{3} \sim 10^{3} y^{5} \mathrm{eV} \Rightarrow \boldsymbol{\mathcal { O }}(\boldsymbol{y}) \sim \mathbf{0 . 1}
\end{aligned}
$$

$$
\mathrm{BR}_{\mathrm{LFV}}>\mathrm{BR}_{\mathrm{LFV}}^{\mathrm{Exp}}
$$

For $D^{(3)}$ one can calculate $\mathscr{O}(\boldsymbol{y}) \sim \mathbf{0 . 0 5}$. Some three-loop models analyzed at about ~ 2000-2003:

Until 2011 MEGA bound: $\mathrm{BR}_{e \gamma}^{\mu} \lesssim 2.1 \times 10^{-11}$ MEG bound as 2013: $\mathrm{BR}_{e \gamma}^{\mu} \lesssim 5.7 \times 10^{-13}$

3-loop models might be already ruled out (!?)

Warming up: some examples

Basically, viable realizations are reduced to one and two loops:

Some remarks on neutrino

 masses.- Majorana neutrino masses - Higher order - Warming up: some examples - High scale approaches
- Underpinning the
mechanism?
- Addressing item I

First step: topologies

Second step: Field insertions

Zee model

Scalar sector: $h^{ \pm}, H_{1,2}: \mathcal{L}=f \bar{L}^{c} L h^{+}+\underbrace{\mu H_{1} H_{2} h^{+}}_{\Delta L=2}$

General version: Type-III 2HDM Viable!!
At the light of LHC data worth exploring!!

Cheng-Li-Babu-Zee model

Scalar sector: $h^{+}, k^{++}: \mathcal{L}=f \bar{L}^{c} L h^{+}+h \bar{e}^{c} e k^{++}+\underbrace{\mu h^{+} h^{+} k^{--}}_{\Delta L=2}$
Rich LFV and collider phenomenology
$\operatorname{Br}(\mu \rightarrow e \gamma)$ can place stringent constraints

Recently reanalyzed by Herrero et. al./Schwetz et. al.
Worth exploring at the LHC and/or ILC!

High scale approaches

Some remarks on neutrino

 masses."Conventional wisdom": Neutrino acquire their masses via the type-I seesaw (standard seesaw):

- No direct prove possible given the large scale involved $M_{N} \sim \Lambda_{\text {GUT }}$

■ No indirect test possible:
$\left\{9\left|\lambda_{i j}\right|, 6\right.$ CP phases, $\left.3 M_{N}\right\} \quad$ vs $\left\{3\left|\theta_{i j}\right|, 3\right.$ CP phases, $\left.3 m_{v_{i}}, n_{\Delta B}\right\}$

The Lagrangian parameters can not be reconstructed

A "novel" path can be followed to "test" these approaches

Underpinning the mechanism?

Models involving LHC physics are based in the following possibilities:
Bonnet, Hernandez, Ota and Winter [arXiv:0907.3143]

Some remarks on neutrino

 masses...1. \mathscr{O}_{5} arising at the one or two loop order.
2. $\mathscr{O}_{5}=0$ and so Majorana neutrino masses generated from $d=7$ effective operators.
3. \mathscr{O}_{5} involving small parameters related with slightly broken L.

IDEAL/NAIVE PROGRAM

I. Systematically classify the viable \mathscr{O}_{5} one and two loop realizations.
II. Classify the different possibilities in sets, according to their collider signals.

Addressing item I.

A systematic classification of the possible realizations is feasible through the following "recipe"

Bonnet, Hirsch, Ota and Winter [arXiv:arXiv:1204.5862]

Algorithm

1. Identify possible topologies.
2. For all possible external legs configurations $(2 \Phi+2 L)$ insert internal lines (fermion or boson) subject to renormalizability conditions.
3. Calculate loop integrals
4. Assuming the internal fermion/bosons are $S U(3)_{C}$ singlets fix the $S U(2)_{L} \times U(1)_{Y}$ quantum numbers.

Items 1 \& 2 can be done by using FeynArts cleverly

Following different approach, partially done at the 1-loop level by E. Ma [hep-ph/9805219]

Following "algorithm", task completed by Bonnet, Hirsch, Ota, Winter for 1-loop. arXiv:1204.5862

Farzan et. al. arXiv:1208.2732
Volkas et. al. arXiv:1212.6111

Some remarks on neutrino masses...

First step: topologies

- Two-loop case: topologies (I)
- Two-loop case: topologies (II)
- Selecting criteria

Second step: Field insertions
Third step: Two-loop integrals

Fourth step: Quantum numbers

Summary

Two-loop case: topologies (I)

Ask FeynArts to calculate $2 \leftrightarrow 2$ "scattering" for only ID and without self-energies and tadpoles
$\mathscr{O} \sim 200$ diagrams HOPELESS?

$$
\text { Topological equivalence } \Leftrightarrow 29
$$ masses...

Non-renormalizable

$T 2_{1}^{\mathrm{NR}}$

$T 2_{4}^{\text {NR }}$

$T 2_{2}^{\text {NR }}$

$T 2_{5}^{\text {NR }}$

$T 2_{3}^{\text {NR }}$

$T 2_{6}^{\text {NR }}$

$T 2_{9}^{\mathrm{NR}}$

$T 2_{10}^{\mathrm{NR}}$

$T 2_{11}^{\mathrm{NR}}$

Two-loop case: topologies (II)

```
Some remarks on neutrino
masses...
First step: topologies
Two-loop case: topologies (I)
O Two-loop case: topologies (II)
- Selecting criteria
```

Second step: Field insertions
Third step: Two-loop integrals
Fourth step: Quantum numbers
Summary

Box-based

$T 2_{4}^{B}$

Triangular-based

$T 2_{1}^{T}$

$T 2_{7}^{T}$

$T 2_{2}^{T}$

$T 2_{5}^{T}$

$T 2_{8}^{T}$

$T 2_{3}^{T}$

$T 2_{6}^{T}$

$T 2_{9}^{\mathrm{T}}$

Selecting criteria

Selecting relevant topologies should be done systematically as well, and this requires a "tasty recipe".

Renormalizability criteria: 3PVs: $F^{2} S, S^{3}$ and 4PV: $S^{4} \Rightarrow$ Topologies involving two external 4PVs are in general NR.

Only Box-based and triangular-based topologies are relevant in the general problem

Come remarks on neutrino
Somes
masses...
Fecond step: Field insertions
Full sequential insertion
Results for double-box
topology
Another example:
non-coplanar diagrams
Summary
Second step: rèsumè Quantum numbers
Third step: Two-loop integrals
Genuine diagrams

Second step: Field insertions

Approach

Focusing only on fermions and scalar bosons [Not considering gauge

 bosons]:| Some remarks on neutrino
 masses... |
| :--- |
| First step: topologies |
| Second step: Field insertions |
| O Approach |

- Approach

- Full sequential insertion
- Results for double-box
topology
- Another example:
non-coplanar diagrams
- Second step: rèsumè
- Order-2-uniqueness
- Genuine diagrams

Third step: Two-loop integrals

Fourth step: Quantum numbers

Summary

Ask FeynArts to insert fermions and bosons

$$
=D_{1}^{T 2 B}
$$

$=D_{2}^{T 2_{1}^{B}}$

Full sequential insertion

 masses...
First step: topologies

Second step: Field insertions

- Results for double-box
topology
- Another example:
non-coplanar diagrams
- Second step: rèsumè
- Order-2-uniqueness
- Genuine diagrams
Third step: Two-loop integrals

By following that procedure one can find the diagrams associated to each of the relevant topologies. For $T 2_{1}^{B}$:

V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	Diagram
LSF	FSF	FSL	HSS	SSS	SSH	$D_{1}^{T 2{ }_{1}^{B}}$
		FFH	LFS	SSS	SSH	$D_{2}^{T 21_{1}}$
			HFF	FSF	$F S L$	$D_{3}^{T 2{ }_{1}^{B}}$
	FFS	$S F L$	HFF	$F F S$	SSH	$D_{4}^{T 2{ }_{1}^{B}}$
			LFS	SFF	FSL	\boldsymbol{x}
		SSH	HSS	SFF	$F S L$	$D_{5}^{T 2{ }_{1}^{B}}$
			LSF	FFS	SSH	$D_{6}^{T 2{ }_{1}^{B}}$
LFS	SFF	FFH	LFS	SFF	FFH	$D_{7}^{T 2{ }_{1}}$
			HFF	FFS	SFL	$D_{8}^{T 2{ }_{1}^{B}}$
		FSL	LSF	FFS	SFL	X
			HSS	SFF	FFH	$D_{4}^{T 2 B}$
	SSS	$S F L$	LFS	SSS	SFL	X
			HFF	FSF	FFH	$D_{9}^{T 2{ }_{1}^{B}}$
		SSH	LSF	FSF	FFH	$D_{2}^{T 2{ }_{1}^{B}}$
			HSS	SSS	SFL	$D_{10}^{T 2 B}$

Results for double-box topology

Some remarks on neutrino

 masses.First step: topologies
Second step: Field insertions

- Approach
- Full sequential insertion
- Results for double-box

topology

- Another example:
non-coplanar diagrams
- Second step: rèsumè
- Order-2-uniqueness
- Genuine diagrams

Third step: Two-loop integrals

Fourth step: Quantum numbers

Summary

$D_{1}^{T 2 \mathrm{~B}}$

$D_{4}^{T 2{ }_{1}^{\mathrm{B}}}$

$D_{7}^{T 2{ }_{1}^{B}}$

$D_{2}^{T 2{ }_{1}^{\text {B }}}$

$D_{5}^{T 2{ }_{1}^{\text {B }}}$

$D_{8}^{T 2_{1}^{\mathrm{B}}}$

$D_{6}^{T 2{ }_{1}^{\mathrm{B}}}$

$D_{9}^{T 2{ }_{1}^{\text {B }}}$

Another example: non-coplanar diagrams

For the non-coplanar box-based topology the tree-like structures and sequential vertex insertion lead to:

Some remarks on neutrino

 masses...First step: topologies

Second step: Field insertions

- Approach
- Full sequential insertion
- Results for double-box
topology
- Another example:
non-coplanar diagrams
- Second step: rèsumè
- Order-2-uniqueness
- Genuine diagrams

Third step: Two-loop integrals
Fourth step: Quantum numbers

Summary

$D_{2}^{T 2{ }_{3}^{\mathrm{B}}}$

$D_{5}^{T 2{ }_{3}^{\mathrm{B}}}$

$D_{7}^{T 2{ }_{3}^{B}}$

$D_{3}^{T 2{ }_{3}^{B}}$

$D_{6}^{T 2{ }_{3}^{\mathrm{B}}}$

$D_{9}^{T 2_{3}^{\mathrm{B}}}$

Second step: rèsumè

Some remarks on neutrino masses.

First step: topologies

Second step: Field insertions

- Approach

- Full sequential insertion
- Results for double-box
topology
- Another example:
non-coplanar diagrams - Second step: rèsumè

At this point the number of possible diagrams can be already determined. However with certain caution!

Box-based topologies

TOPOLOGY	$T 2_{1}^{B}$	$T 2_{2}^{B}$	$T 2_{3}^{B}$	$T 2_{4}^{B}$	$T 2_{5}^{B}$	$T 2_{6}^{B}$	$T 2_{7}^{B}$	$T 2_{8}^{B}$	$T 2_{9}^{B}$	TOTAL
\# OF DIAG	10	14	9	3	1	12	4	2	3	58

Triangle-based topologies

TOPOLOGY	$T 2_{1}^{T}$	$T 2_{2}^{T}$	$T 2_{3}^{T}$	$T 2_{4}^{T}$	$T 2_{5}^{T}$	$T 2_{6}^{T}$	$T 2_{7}^{T}$	$T 2_{8}^{T}$	$T 2_{9}^{T}$	TOTAL
\# OF DIAG	2	1	2	2	1	2	1	1	1	13

Order-2-uniqueness applied to resulting diagrams

Order-2-uniqueness

Order-2-uniqueness: $D 2_{i}$ present while $D 1_{i}$ absent.

Some remarks on neutrino masses.

First step: topologies

RECIPE

1. Identify the diagram from which $D 2_{i}$ originates (one-loop box or triangle)
2. Assign arbitrary charges q_{i} to all fields (new symmetry, gauge symmetry itself).
3. Impose q_{i} conservation vertex by vertex and derive $C^{2 i}$ and $C^{1_{i}}$.

$$
\begin{aligned}
\text { Solutions are } C^{1_{i}} \subset C^{2_{i}} & \Rightarrow \text { Non-genuine diagram } \\
\text { Solutions are such that } C^{1_{i}} \not \subset C^{2_{i}} & \Rightarrow \text { Genuine diagram }
\end{aligned}
$$

Genuine diagrams

Some remarks on neutrino masses...

First step: topologies

- Full sequential insertion
- Results for double-box
topology
- Another example:
non-coplanar diagrams
- Second step: rèsumè
- Order-2-uniqueness - Genuine diagrams

Third step: Two-loop integrals Fourth step: Quantum numbers Summary

GROUP 1

GROUP 2

Some remarks on neutrino masses...

First step: topologies

Second step: Field insertions

Third step: Two-loop integrals

- Number of relevant integrals

Fourth step: Quantum numbers

Summary

Number of relevant integrals

External Higgs legs determine the type of interactions needed for a certain diagram to be constructed: essential in the determination of the different realizations.

Scalar mixing

Group 2

J. Herrero et. al. [arXiv:1104.4068] P.W.Angel et. al. [arXiv:1308.0463]

Some remarks on neutrino masses...

First step: topologies

Second step: Field insertions

Third step: Two-loop integrals

Fourth step: Quantum numbers

- Approach

Summary

Approach

The lepton and Higgs GSM quantum numbers can be used to "fix" the quantum numbers of the BSM fields:

Yukawas

$$
\begin{array}{|l}
\hline \text { Unique } \\
\hline
\end{array}
$$

Not Unique

Quartic couplings

Not Unique

Vertices involving more than one BSM field allow in principle infinite choices

Stick to EW singlets, doublets and triplets and fix $Q<3$

Summary

Rèsumè

- Loop-induced neutrino masses allow for low-scale (TeV) physics, in some cases testable at LHC.
- Testing the origin of neutrino masses can be done by experimentally studying the signals arising from these realizations.
- Systematic analysis of categories is needed.

At the 2-loop order such a task is possible and worth doing!

