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Quantum quenches

system prepared in t=0

an eigenstate of *

system forced to time
evolve (non-trivially) with

We will be interested in quenches in 1D Bose gases involving
changes in the one-body potential of the gas:

V

><>cozmng confining
gas in a parabolic potential, t<0 gas in a cosine potential, t>0
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Integrable quantum quenches in 1D Bose gases

‘ First consider a quantum quench where we prepare the gas in the ground \

Vconfining(x) Vconfining(x)
‘_\ ; ; i t=0 l
[
X 4j=r”////’—\\\\\\“\=_.)(
gas in a parabolic potential, t<0 gas unconfined, t>0
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H=- E 2+2€E§(zj—zk)

2m <= oz

In the absence of a confining potential, the dynamics of the gas are governed by an
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Conserved Quantities, Q;, in the Lieb-Liniger Model

The N-particle eigenfunctions of Lieb-Liniger model are characterized by N
distinct rapidities, A, which are solutions of the Bethe equations:

N
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’L?vl
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=1
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Quantum Newton’s Cradle

T. Kinoshita, T. Wenger, and D. Weiss, Nature 440, 900 (2006)

t 5r/8
Counter-propagating clouds of

/2 1D Bose condensates are seen
not to thermalize.

3r/8
It is believed that the long time
dynamics are controlled by a
non-Gibbsian thermodynamic

/4

/8
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Non-integrable quenches: release of gas into weak cosine

potential
conﬁnlng Vconﬁning
gas in a parabolic potential, t<0 gas in a cosine potential, t>0

For t>0, because the gas is in a cosine potential, the dynamics are no

Is the behavior of the gas now completely ergodic? Or is there a smooth

Another way of asking this question is whether there is some sort of
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Classical KAM theorem

What does classical KAM say? Take a Hamiltonian weakly deformed from its

Hean(piy @) = Hintegrable(Pi) + €Hpert (P4, ;)

p;: action variables
q;: angle variables

_ aHintegrable _
9 = o =4y
Pj

KAM say that when the perturbation is turned on, certain quasi-periodic trajectories

for e=0 where the frequencies, w‘-, satisfy a non-resonancy condition continue to

ST . r— I'
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Nekhoroshev estimates

Nekhoroshev says that for any trajectory of the full
Hamiltonian, the time dependence of the action variables

|pj (t) — pj (0)| < e% n is the number of

degrees of freedom

[for times, t, less than _ |

t < exp(c(

We have found a construction for the quantum case of Lieb-

9
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Crossing over from integrability to chaos in a quantum system

Berry-Tabor conjecture: Energy level spacing statistics (LSS)
iIndicate whether model is quantum

small magnetic field — moderate magnetic field — strong magnetic field —
weak integrability breaking moderate integrability breaking strong integrability breaking

P(s)

" and LSS interpolates between  P® gnd LSS is near-GUE

Poissian and GUE

and LSS are near-Poissonian

tricritical Ising + magnetic field

‘ Integrable models have LSS \ ‘ Non-integrable models have LSS \
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Quasi-conserved operators in a non-integrable setting

We will demonstrate that it is possible to construct a sequence
of operators Q.4;/i=1,2,3,.... that are quasi-conserved on the low

> energy

~0

Qeﬁ,i = ~O

‘ The quality of this conservation is controlled by the strength of the \
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Time evolution of quantities post-quench

We construct such nearly conserved charges by exploiting our ability

gas in a parabolic potential, t<0 gas in a cosine potential, t>0
2.0
So for example, we can compute L5

the time evolution of the density =

profile of the gas post-quench. /— —\
We do so using a numerical
renormalization group (NRG) that

exploits the integrability of Lieb-Liniger.
J.-S. Caux and RMK: PRL 109, 175301 (2012)

Density profile of gas with 14 particles
as a function of time with ¢ =10



Time evolution post-quench

gas in a parabolic potential, t<0 gas in a cosine potential, t>0

If we can write initial condition as a linear combination of

PO)= Y e

cosine
eigenstates

cosine

we can determine the time dependence of the wavefunction

P@O)= > el

cosine

eigenstates B II OOKHH"E“
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Numerical renormalization group for determining low-
lying spectrum of perturbed integrable models

We use a numerical renormalization group B _62'5
designed to describe perturbations of integrable 65 ¢ 5 - B e
oL b -1 s
H=H Integrable/CFT + (I)Perturbation I % % B o _ 61
— ~ _ — —— _ E E _
Lieb-Liniger model trapping potential 55 - —— - .
m C - — o - 7003
This method works on the same principle as sob = - — _60
Wilson’s NRG for quantum impurity problems. -
It works well on a wide variety of perturbed 45— . . —
integrable and conformal models. It works
best for perturbations that are relevant in 40

Excitation spectrum of N=14,
c=7200 1D Bose gas in a cosine
potential of amplitude A=0.35E.
Analytics (red), NRG Numerics

(black) _
BROOKHREVEN

Brookhaven Science Associates NATIONAL LABORATORY




Time evolution of (formerly) conserved charges

So like for the density operator, we can compute the time evolution

1.4

1.2

Q4 1 hl‘.

\l\

Brookhaven Science A

550

600

650

700HRATEN

\BORATORY



Poincaré sections of time evolution of Q,
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New quasi-conserved charges

4 Charges 2 Charges

8 Charges

We can construct charges that are linear combinations

The more charges in the linear
combination, N, the better the

1AW ) Gmay)1?

N-1 2N-2
2V A(N,)
(mw,)* (N -1)!

2n(N 0 2)
I ’
. 27N
1 (g, ) ~1- 2
] L 2’n/lcosine

- N = number of particles

500 550

Brookhaven Science Associates

700 L = system length
m = mass of particle

- No=# of charges in lin. comb.

in gas




New conserved charges: more than one

4 Charges 2 Charges

8 Charges

0.1F

0.05

-0.05
0.1F

01
0.05

0.05 -
0.1F
01
0.05
0.05 -
0.1F
500
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\We can construct more than one charge: |

Qeff (1)=a,+ E a0,

Again the more charges
in the linear combination
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Charges are conserved as operators
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Why can we find quasi-conserved charges?

We have constructed the new effective charges such that a particular expectation value

(athff (t)>initia1 condition — Z a; 0y (Qz (t)>init.cond. ~ 0

This is similar to what Essler, Kehrein, Manmana, and Robinson (arXiv-1311.4557) and
Kollar, Wolf, Eckstein PRB 84, 054304 (2011) did in the case of the spinless fermions.

: t?
athff — Z[‘/;:osinea Qeff] - t[V;:osinea [‘/;:osiney Qeﬁ']] — 1 [‘/cosine: V;:osinea [V;:osinea Qeff]]] +---=0

2

if restricted to finite energy Hilbert space
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Why can we find quasi-conserved charges?

We can choose the a, such that for a given quantum number, n_..,, states

<
~

S
,

A
[frst order | states

involving
<S [V eosine Copr | S'> =0 quantum numbers 0

less than n_ .,

number of charges needed for a given niiii: v

NQ=nmax+2

d ord states
‘Secon or er‘ involving

<s’[Vcosine,[K0ﬁne,Qeﬁ,] sv> = (0 quantum numbers
less than

n...-N(K)

max

cosine

third order is O for states with qguantum numbers less than n_...-2n(K)......., efc.



Conclusions

conﬁnlng Vconﬁning
gas in a parabolic potential, t<0 gas in a cosine potential, t>0

We are able to describe post-quench dynamics in the
perturbed Lieb-Liniger model out to long finite times.

Using this, we have been able to construct quasi-conserved
quantities taken as linear combinations of the Lieb-Liniger
charges.




1st order

states
involving
C = <s’[V o S'> =0 quant. nums.
less than
Nmax
2nd.3rd orders
states
C. = <S‘[V ' ’C1] S'>= 0 involving
cosine quant. nums.
| h
C < ‘[ cosme’ '>= 0 [\?SSt an
max
4th.5th orders states
involving
C, = <s|[ V oines CslI 8 ]| > quant. nums.
less than
CS = <S’[ cosine ? > Nmax'ncos

6th-7th orders  gtates

involving
C,= <s|[Vcosine,C | s'> = (0 quant. nums.
= (Ve

less than
S'> =0 Nmax'zncos




1st order

2nd order

Cyr ' = (s|vhr !

cosine

C,

s'>=0

3rd order

Cyr ' = (s

cosine

C,|

s'>=0

mth order

cosine m—I]

chrh=(s|virt,c

s'>=0

states
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quant. nums.
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N

max

<—>

states
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N n

max ' 'cos

states
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N mn

{

max" cos




1st order

C, = (8] IV,uesQ1|s") = 0
2nd order

C, = (8] 1V;ues G157 = 0
3rd order

C, = (][Vpguer Co|s) = 0
mth order

C = <s|[Vcosine,Cm_1]|s'> =0

states
involving
quant. nums.
less than

N

max

states
involving
quant. nums.
less than
N n

max_ ' 'cos

states
involving
quant. nums.

less than
Nmax'zncos

states
involving
quant. nums.
less than

N__.-mn

max" cos




t=0
rvconfining(x) j ‘ Vconfining(x)
X X

gas in a parabolic potential, t<0 gas in a cosine potential, t>0




Generalized Gibbs Ensemble

In an attempt to understand this experiment, it was conjectured that

. e 1
PGibbs = Tre—BH

but by a thermodynamic ensemble that knows of all the conserved

PGeneralized Gibbs — Tre— S B:Qi

n— — —

M. Cazalilla, PRL 97 156403 (2006)
P. Calabrese, F.H.L. Essler, and M. Fagotti, PRL 106, 227203 (2011)
J. Stat. Mech. (2012) P04017 and P07022
D. Rossini, A. Silva, G. Mussardo, and G. Santoro, PRL 102, 127204 (2009)
T. Barthel and U. Schollwéck, PRL 100, 100601 (2008)

D. Fioretti and G. Mussardo, New J. Phys. 12, 055015 (2010). BR“MEN
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Numerical Renormalization Group for Perturbed Integrable
Theories

H=H

conformal/integrable theory trapping potential
i.e. Lieb-Liniger model

known + (I)

perturbation

Consider the model on a finite sized ring of R
circumference, R
E

Spectrum of H, ..., then becomes + E. I ~1/R
discrete and we can order states E,

E3

E2

E1

BEROOKHEVEN
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We are able to compute matrix /s : ‘
‘ ;= (P o | My,
Truncate Hilbert space, making it finite dimensional.
This allows one to write full Hamiltonian as a finite
i En+1
E, @, ceveernnnennnes D, A:-______E_I
. nl
e, L : : |
H — E 00,.” E : ® E3:
- ’0.. . |
E En—l (I)n—ln : Ez i
. | Eq,
() PPN o  E | L

Diagonalize H numerically and extract spectrum




Second Step of Numerical Renormalization Group

The next step is to find a way to include states previously tossed away

spin impurity
t,> t, >ty >t >t >t
map to ‘Kondo lattice’
YN\ S | ATATATATATAN

spin impurity living on a semi-infinite

lattice where the electrons on the
‘ impurity interacting with bath \ i i ' i
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Second Step of Numerical Renormalization Group

i EEEEE p——

— . I
‘ 1. First diagonalize \ Y NN
‘ 2. Throw away high \ CAYAN

t> t, >t

‘ 3. Add a site to truncated \ @rf\ﬁ.

t, > t, >t

4. Diagonalize new system ATATEN

t, > t, >t >t

| | ATAYA WA
BROOKHAVEN

Brookhaven Science Associates NATIONAL LABORATORY




Numerical Renormalization Group for Continuum Theories

= — ——— —

ELico-Lini
— eb-Liniger
H=H Known/Exactly Solvable + Pperturbation > ¢—o—o—o—o0—o—o—)>
\ ) \ ) We “map” our perturbed Lieb-Liniger
! ! to a lattice on which are arranged the
Lieb-Liniger trap potential states of Hyp 4jniger In Order of

increasing energy.

The metric in the field theoretic Hilbert space is different but the idea is the same.

J. S. Caux and RK, PRL 109, 175301 (2012): 1D Bose Gases

RK and Y. Adamov, PRL 98, 147205 (2007): perturbed conformal minimal models

RK and Y. Adamov, PRL 102, 097203 (2009); Andrew James and RK, PRB 87, 241103 (2013):
2+1D Systems of Coupled Quantum Ising Chains

RK, PRL 106, 136805 (2011): Semiconducting Carbon Nanotubes

G. Brandino, RK, G. Mussardo, J. Stat. Mech. P07013 (2010) : Level spacing statistics in

perturbed CFTs
- ..M.Beria, G. Brandino, A. Luca, RK, G. Sierra, Nucl. Phys. B (2013): Perturbations of SU{Z} RUEN
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Excited Energy Spectra of Gas in Cosine Potential

Cosine Potential, N=14 ¢=7200

Spectrum

Analytics — Free fermion representation + 1/c corrections

A= 0.1

COS

1200 states

can be described
with 107(-4)
accuracy
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70k

65

A=3
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300 states

can be described
with 107(-4)
accuracy
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Conserved Quantities, Q;, in the Lieb-Liniger Model

The N-particle eigenfunctions of Lieb-Liniger model are characterized by N
distinct rapidities, A, which are solutions of the Bethe equations:

|S>:|>‘17"'7)‘N>; 6. =

‘ Once we know the A’ s, it is straightforward to write down the action of the \

N
Pz, An) = O M)A, An)
=1

N
H|)‘17"' 7)‘N> — (Z)‘zz)l)‘h 7)‘N>
=1

N
Q’nl)‘h"' 7)‘N> - (Z)‘?)l)‘h 7)‘N>
1=1

We use the Lieb-Liniger eigenstates as a computational basis making the

| computation of the fime evolution of the charges straightforward. __ ft+uen
Bro BORATORY



Why Can We Find Quasi-Conserved Charges?

e

: Ai — Aj +1c
A; L ? J
s) = A1, ANy e = .
A + A —1c
i#j v
. )\i—)\j-l—ic
|3):|)\1,---,)\N)=|n1,---,'n,N> 27Tni=L>\i+ZZlog(>\i_>\j_ic)

j#i

We will find a linear combination of charges @, = A a0, such that we

<S‘[I/cosine’Qeﬁr] S'> =(

™

s') are constructed with quantum numbers n,<n__

where the states,

BROOKHRWEN
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Why Can We Find Quasi-Conserved Charges?

We can choose the a, such that for a given quantum number, n_.,, states
s),/s') involvin ntum numbers n.<n r h that

. A
first order states

involving
<S IV cosines @ | S'> =0 quantum numbers 0

less than n

A
v

max

number of charges needed for N particles: v

(2nmax) ™

T 2(N —1)! P

states
second order involving 0

<s‘[Kosine,[Kosine,Qeﬁ] sv>= 0 quantum numbers
less than n ., -N(K)osine

Nq

third order is O for states with quantum numbers less than n.....-2n(k)......, etc.



Why Can We Find Quasi-Conserved Charges?

Things are considerably
better for the c=«. One
needs far fewer
charges

Ng = (N,./2)

max

to zero out a given
block and the block

1st order

2nd-3rd orders
C,= (s s')=0
s')=0

4th.5th orders
C,= (s s')=0

s")=10

6th-7th orders
s'> =
s')=10

[ cosine ?

[ cosine ?

C=<s

[ cosin:

C,= <s\leme, )

cosine’

C=<s

[ cosine ?

states
involving
quant. nums.
less than

n

max

states
involving
quant. nums.

<—>
0
<—>
less than 0
max
<—>
states
involving
quant. nums.

less than
-nk

=

max

<—>

states
involving
quant. nums.

less than
nmax'znk




