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The ultracold family: Bosons & 
Fermions
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Geometry control for ultracold atoms

Magnetic harmonic potential: V ( x , y , z )=
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Achievements & Perspectives
Bose-Einstein condensation of bosonic gases

Feshbach resonances, superfluidity and rotating 
condensates, spinorial condensates

Polarized (=ideal) Fermi gases at T
F

Optical lattices 

Dipolar gases

Interacting fermions 

Anderson localization

Mott insulators for fermions
...

1995

1995-…

1998

2001

2005

2005-2006

2008

2009
...

quantum devices quantum simulators



Realization by purpose of a model or quantum 
states of interest (microscopic or 
phenomenological) in an experimental setup with 
highly tunable parameters

Quantum Simulations

Need to:
-  compute from the microscopics the parameters of the model
- check how reliable is the “simulation” of the desired 
Hamiltonian (e.g., how the observable quantities match) 
 



Example

Desired Hamiltonian: Hubbard model (i.e., 
interacting particles on a lattice)

H=−t∑
i

b i
+ b i+1+

U
2 ∑

i

ni(ni−1)+V ∑
i

ni ni+1

→ use (suitable) ultracold atoms in a 
(suitable) optical lattice...



Ultracold bosons in an optical 
lattice

e.g., a 1D lattice 

It is possible to control:
- barrier height
- interaction term
- the shape of the network
- the dimensionality (1D, 2D, …)
- the tunneling among planes or 
among tubes (in order to have a 
layered structure)
…

V opt ( x)=V 0 sin
2(kx)



n̂i≡b̂i
+ b̂i NT number of particles on N sites filling f =

NT

N
Bose-Hubbard Hamiltonian
[D. Jaksch et al., PRL (1999)]

Effective Hamiltonian for ultracold 
bosons in optical lattices

Ĥ=−t ∑
<i , j>

( b̂i
+ b̂ j+h.c. )+

U
2 ∑

i

n̂i( n̂i−1)

t/U>>1  Superfluid 
dynamics described by the classical 
Bose-Hubbard [A. Trombettoni and 
A. Smerzi, PRL (2001)]

t/U<<1  Mott 
insulator quantum 
fluctuations dominate



Main available “ingredients”
 Bosons and/or fermions

 Geometry (1D / 2D) 

 Long-range interactions

 Add disorder

 Simulate a magnetic field through a rotation or with 
optical tools

 Time-dependence (and to a certain extent space-
dependence) of the parameters of the Hamiltonian 

 Explicit tuning of the interactions via Feshbach 
resonances

 Optical lattices (i.e., periodic potentials and minima of 
the potential located on a lattice) 
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Available tools

 Bosons and/or fermions

 Geometry (1D) 

 Long-range interactions

 Add disorder

 Time-dependence (and to a certain extent space-dependence) 
   of the parameters of the Hamiltonian

 Explicit tuning of the interactions via Feshbach resonances

 Simulate a magnetic field through a rotation or 
   with optical tools

 Optical lattices (i.e., periodic potentials having minima located on   
   a lattice) 

 …



Low-energy Hamiltonian for 
ultracold bosons in optical lattices

H BH=−t∑
i

bi
+ bi+ 1+

U
2 ∑

i

ni(ni−1)+V ∑
i

ni ni+1

ni≡bi
+ bi NT number of particles on L sites filling f =

NT

L

(Bose-Hubbard Hamiltonian)

For U infinite and filling f half-integer only two states are relevant:

∣f −
1
2

〉 , ∣f +
1
2
〉

Putting 

si
z
=ni−f

one gets.. 



… the XXZ Hamiltonian:

H XXZ=−J∑
i

(s i
x si+1

x
+s i

y s i+1
y

−Δ s i
z si+1

z
)

J=2t ( f +
1
2
) J Δ=V

integrable in 1D 

A lot is known also about correlation functions in the thermodynamic
limit:

(Luther and Peschel, PRB 1975) 



Also the correlation amplitudes are known (Lukyanov and Zamolodchikov, Nucl. Phys. B 

1998, Lukyanov, PRB 1999):

(results available also for the XXZ finite chain) 



Finite U effective Hamiltonian:

Similarity RG procedure 
(Glazek and Wilson, PRB 1993)

+ 
Luttinger representation

an effective XXZ Hamiltonian with renormalized 
parameters is found, giving correlation functions 

in excellent agreement with numerical results 
from the Bose-Hubbard model

[D. Giuliano, D. Rossini, P. Sodano, and A. Trombettoni, PRB (2013)]

What happens at finite U? The effective 
Hamiltonian is not an XXZ chain, but...



Final step: passing to Jordan-Wigner 
fermions and bosonizing via the Luttinger 
representation  

Collecting all together:



Final result



Comparison between (XXZ) analytical and 
(Bose-Hubbard) numerical results (I):

Black: numerical Bose-Hubbard results

U=10t
V=0.5t
filling=0.5
L=150
J/U=0.2 

Red: XXZ numerical results
Green: XXZ analytical results
Blue: infinite U result 

relative error 



Comparison between (XXZ) analytical and 
(Bose-Hubbard) numerical results (II):

Black: numerical Bose-Hubbard results
Red: XXZ numerical results
Green: XXZ analytical results
Blue: infinite U result 
Magenta: XXZ results with non GW rotated operators



Stability of results varying the size...

Black: numerical Bose-Hubbard results
Red: XXZ numerical results
Blue: infinite U result 

U=10t; V=0.5t; filling=0.5; J/U=0.2 



...and varying the interaction

Black: numerical Bose-Hubbard results
Red: XXZ numerical results
Blue: infinite U result 

V=0.5t; filling=0.5; L=150 → J/U=0.1, 0.2, 0.4, 0.6 



Outline
 

 Ultracold atoms for quantum engineering  
 of states and devices: a brief introduction

 An example of quantum engineering of 
   states with ultracold atoms in optical 
   lattices → quantum simulation of the XXZ 
   chain

 An example of quantum engineering of 
 devices with ultracold atoms in optical 

   lattices → implementation of a fermionic  
   Josephson junction



Main available “ingredients”
 Bosons and/or (attractively interacting) fermions

 Geometry (1D / 2D) 

 Long-range interactions

 Add disorder

 Simulate a magnetic field through a rotation or with 
optical tools

 Time-dependence (and to a certain extent space-
dependence) of the parameters of the Hamiltonian 

 Explicit tuning of the interactions via Feshbach 
resonances

 Optical lattices or double well potentials



Ultracold atoms as quantum 
simulators of:

 Strongly interacting lattice systems (e.g., 
Fermi and/or Bose Hubbard-like models )

 Quantum magnetism

 Dirac and relativistic field theories

 Low-dimensional systems

 Quantum Hall physics

 (BCS) Superconductors with Cooper pairs

 Josephson junctions

 …
 



Ultracold weak link: a Josephson 
junction

A two-component Fermi mixture in a double well (T<TC) 
is a fermionic Josephson junction [bosonic junctions → 
F.S. Cataliotti et al., Science (2001) – M. Albiez et al. PRL (2005)]:



Single system (I)

We describe a single, uncoupled, system by the so-
called Richardson model: N levels, M pairs

Introducing the pair operator

and ignoring single fermions (only pairs) one gets 

The model is solvable by Bethe ansatz [R.W. Richardson, 

Phys. Lett. (1963)] and it gives a fair description of the BCS-
BEC crossover for systems with few attractively 
interacting fermions [G. Ortiz and M. Dukelsky, PRA (2005)].



Single system (II)

µ vs g

M=N/2-1

...typical of the BCS/BEC 
crossover



Weakly coupled systems

The Hamiltonian for two coupled Richardson models is:

The effective Hamiltonian for weak coupling λ<<1 is 
[B.D. Josephson, Phys. Lett (1962); D. Gobert, U. Schollwock, and J. von Delft, 

Eur. Phys. J. B (2004)] reads:



Tunneling dynamics

We studied the exact dynamics up to 20 total levels 
(and 15 pairs): we choose an umbalaced initial state



Definition and formation of 
the relative phase 

We considered two different ways of defining a relative 
phase (when the relative phase is well defined they 
should agree):

A typical result:
For each system: 
N=8, M=4,
g=0.6 
Initial state with D=2
(λ=0.1)

[F. Buccheri and A. Trombettoni, PRB (2013)]



Definition and formation of 
the relative phase: results 

Example of 
relative phase vs 
time

Time average of the variance of the relative phase (bottom) << time 
average of its mean (top) – notice that this is valid also for numbers 

of pairs as low 10



Phase portrait and Josephson coupling 

Population imbalance-
relative phase portrait

N=10 – M=7
g=0.5

Current vs relative phase 
for different times

Josephson frequency vs g: 
maximum at the unitary limit 

[in qualitative agreement with results obtained 
by mean-field /  Bogoliubov-De Gennes 
approaches by the groups of Camerino (PRL  
2007, Phys.  Rep. 2010), Padova (PRA 2008, PRA 
2009) and Trento (PRA 2008, PRA 2009)].

[F. Buccheri and A. Trombettoni, PRB (2013)]



Summary
 Ultracold atoms are routinely used/proposed for   

quantum engineering of states and devices 

 Optical lattices can be added, realizing lattice models 
and Josephson physics with ultracold atoms

 Quantum simulation of the XXZ chain → 
from one side, ultracold bosonic lattices can be used to perform a 
quantum simulation of the XXZ chain 
from the other correlation functions of the Bose-Hubbard model 
at half-filling very well captured by analytical formulas from an 
effective (integrable) XXZ model

 Josephson junctions realizable with ultracold fermions 
in double-well or multi-well potentials →  a definite 
relative phase forms also for rather small number of fermions (as 
low as 10)



Thank you!
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