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Bottom Line 
•  The issue of temporal decoherence of BEC is critical for potential 

applications. For a simple system (BEC dimer ~ Bosonic Josephson 
Junction=BJJ) we show that coherence is enhanced near fixed 
points of classical analog system, including self-trapped regions but 
is supressed near separatrix  

•  We do this by introducing “global phase space” (GPS) portraits of 
quantum observables including 1) the “condensate fraction”; and 2) 
entanglement  as functions of time for different values of the key 
parameters of the system. We show that much of the observed 
behavior  can be understood by studying the phase space of a 
related classical nonlinear dynamical system, BUT 

•  We predict some novel quantum effects, including tunneling 
between self-trapped states, which should be observable in near-
term experiments.  

•  Further, introducing dissipation (atom loss), we find surprising result 
that coherence and entanglement can be enhanced by dissipation. 

 



Outline 
•  Background  (cf. Krüger, Eisert, and Trombettoni talks this morning) 

–  Bose-Einstein Condensates 
–  Optical Lattices 
–  Physical Context: BEC dimer= Bose Josephson Junction (BJJ) 
–  Some relevant experiments 

•  Models 
–  Bose-Hubbard Model 
–  Liouville Dynamics (skip today) 
–  Gross-Pitaevski Equation: Discrete NLSE  

•  Results: “Global Phase space” study of quantum vs. classical 
–  Without dissipation 
–  With dissipation  

•  Summary and Conclusions 
•  References: Phys. Rev. A 86 051604(R) (2012); Phys. Rev. A 88 

063606 (2013);  in preparation 



Background: BEC 
•  Bose Einstein condensation 

–  Macroscopic occupancy of single quantum state by large 
number of identical bosons 

–  Predicted in 1925 by Einstein for non-interacting bosons 
–  Observed in 1995 by two groups, Wieman/Cornell and Ketterle: 

Nobel Prize in 2001 



Background: BECs in Optical Lattice 

Image from I. Bloch Nature 453 1016-1022 (2008)  

    Counter-propagating laser pulses creating standing 
wave that interacts with atoms, so that the BEC 
experiences a periodic potential of the form: 

    UL(x,y) is transverse confining potential, λ is the laser 
wavelength (typically 850 nm) and “z” is the direction of 
motion. 



Physical Context and Models 

•  Single coherent BEC in a “double well” potential or two internal 
(hyperfine) states with resonant interactions in single well.  

–  Analogous to two-site “dimer” system and therefore called “BEC dimer” but also 
to Josephson Junction therefore called Bosonic Josephson Junction (BJJ).  

–  Parameters: number of particles in BEC (N) and in each of two “wells”/states (N1 
and N2), z= N1-N2, phase difference between two condensates ( ϕ = ϕ1 – ϕ2), 
resonant coupling/tunneling between two wells (J), interaction of Bosons within 
condensate (U); single parameter in simple models Λ = (NU)/J 

•  Three Models: 
–  Bose-Hubbard Hamiltonian (BHH) : fully quantum * 
–  Liouville Dynamics (LD) : semi-classical in this system (not today) 
–  Gross-Pitaevskii equation (GPE): corresponds to integrable classical dynamical 

system* in (z, ϕ) for this case 

*   NB: Quantum dimer also intergrable by Bethe Ansatz: solution not  
     useful for calculating physical observables 



Different realizations of Dimer 

   T. Zibold et al. Phys. Rev. Lett. 105, 204101 (2010) 

•  Two-well optical lattice 

•  Two internal atomic states 



Bose-Hubbard dimer 

•  hopping •  repulsive interaction 

•  Atoms in a double-well optical trap 
•  Two spin states of atoms trapped in one well 

•  Observables of interest: 

Single-particle density matrix (Condensate Fraction/ 
purity) 

Entanglement measure 



Semiclassical approximation 

•  population imbalance 

•  phase difference 

•  Operators replaced with c-numbers 



Equivalent Nonlinear Dynamical System 
•  Let Ψj = bj eiθj , where bj and θj are real. Define  
                            
    
     one can show that 
 

       a simple one degree of freedom (=>integrable) dynamical system,              
       like a pendulum with length dependent on its momentum 
•  Analysis of FPs shows for  
           Λ < 1, two stable FPs, (z,φ)= (0,0) and (0,π) and for 
           Λ > 1, three stable FPs, (z,φ)=(0,0), (z+,π), and (z-,π) 
              z+/-= +/- (Λ2 – 1)1/2/Λ ≈ +/- 1 for Λ => ∞ 
•  Next slides show how quantum dynamics of the dimer/BJJ  follows 

(or does not follow) classical phase portraits of this system: first plot 
c(z,ϕ;T) and then p(z,T) at fixed ϕ. 

 

z = − 1− z2 sinϕ

ϕ = Λz + zcosϕ
1− z2

z = [b1
2 − b2

2 ] / N = [N1 − N2 ] / N , ϕ = θ2 −θ1



 Classical Nonlinear Dynamics 

 Λ = 0.5                               Λ= 1.5                            Λ = 5 



Relevant experiments 

•  Zibold et al., PRL 105 204101 (2010) 



Observables and Results 

•  We study the time evolution of quantum observables: discuss two today  
       1) “condensate fraction”—C(z,ϕ) ≅	
 λmax /N ≤ 1, λmax = largest  

 eigenvalue of single particle density matrix   
       2) “entanglement”— E ≅	
 |<a1

*a2>|2 -<a1
*a1a2

*a2>, E > 0 for entangled          
 state    

•  Results 
–  Both C(z,ϕ) and E generally “track” classical orbits in GPS 
–  C(z,ϕ) decreases dramatically near classical separatrix, remains large at 

classical fixed point and especially in self-trapped region=> regular motion 
enhances coherence, chaotic motion destroys coherence 

–  Symmetry z => - z of classical equations is broken by quantum dynamics 
–  “Ridge” of enhanced coherence exists in quantum but not in LD or GPE 

(classical) or dynamics 
–  Overlap of initial coherent state with eigenfunctions of BHH is minimal along 

separatrix, high near fixed points 

    
 
 
  



Classical phase space, quantum dynamics 

•  Hennig et al., PRA 86, 051604(R) (2012) 



Condensate Fraction at T=1 sec Λ = 1.5 

Note considerable variation in C(z,ϕ,T=1) and how it generally 
follows contours of classical dynamics 

Orbits around FP (0,0): 
have <z>=<ϕ>=0 

Separatrix 

Orbits around FP+ and FP- are macroscopic self-trapped states, <z>≠0, <ϕ>=π 

z=>-z symmetry broken 

“π-phase” orbits still exist, <z>=0, <ϕ>=π 

Constant energy contours 



Initial State overlap with Eigenfunctions 

Color code shows 
A(ϕ,z)≅maxn<ϕ,z|En>, where  
En  is an eigenstate of the BH 
dimer Conclusion: localization 

in phase space (FPs) 
maintains coherence, 
delocalization 
(separatrix) induces 
decoherence. 

Λ = 5.0:  Λ = 1.5 



What do quantum orbits really look like? 

•  Large Λ, near fixed point, green is classical orbit 



Dissipationless Quantum Dynamics 



Quantum „orbits,” interesting features 

•  „thick” orbits •  two frequencies in EPR, 
condensate fraction 



Explain two frequencies: High frequency 

•  High frequency is mean-field (semiclassical) 

•  Conversion to seconds 

• Data from power spectrum of EPR: 



Low-frequency oscillations 

•  Low frequency quantum revival 

•  In the limit J/U = 0, for any state 
and                  : 

 Greiner et al., Nature 419 51 (2002) 

•  But revivals seen also for J/U > 0 (or, Λ < ∞) 



Summary: Dynamics near the FP 

•  High frequency is mean-field (semiclassical) 

• Low frequency is a quantum revival: 

But how far from the fixed point 
is this a good picture? 



Projections as Interpretation of Two Frequencies 

• Three eigenstates produce beats in observables: 

• Energy eigenstate expansion: 

• Projection onto „most important” states: 

• Replacing the full state with the projection should work well where, 



How informative is the projection? GPS view 

2 states: only fast motion 3 states: fast and slow motion 



How informative is the projection? Cond. Fraction 



How informative is the projection? Entanglement 



How informative is the projection? Quantitative 

•  For z = 0.95, Φ = π the contributions of three 
highest eigenstates are  
                       a0 = 0.9353,  
                       a1 = 0.3474,  
                       a2 = 0.0653 so that  
 
                     |a0|2 + |a1|2 + |a2|2 = 0.9997 
 
•  And eigenfrequency differences fit with 

observed frequencies in numerics almost to 
within 3 % 



Low-Λ anomaly: Husimi density 

Semi-classical approximation poor for Λ close to 1; observe quantum  
   tunneling : should be seen in experiments !! 



Dissipation in a BEC dimer 

•  Focused electron beam removes atoms from one of 
the wells 

•  Open quantum system: quantum jump method 

Gericke et al., Nature Phys. 4, 949 (2008) 

Dalibard et al., PRL 68(5) 580 (1992) 
Garraway and Knight, PRA 49(2) 1266 (1994) 
Witthaut et al., PRA 83(6) 1 (2011) 



Dissipation-induced coherence 



Dissipative Quantum Dynamics 

Λ = 5 



Results: phase space 



Results: condensate fraction 



Results: EPR entanglement 



Summary of Results 
•  Results for 1) “condensate fraction”—C(z,ϕ) ≅	
 λmax /N ≤ 1, λmax = largest  
      eigenvalue of single particle density matrix and “entanglement”— 
       E ≅	
 |<a1

*a2>|2 -<a1
*a1a2

*a2>, E > 0 for entangled  state   
–  Both C(z,ϕ) and E generally “track” classical orbits in GPS 
–  C(z,ϕ) decreases dramatically near classical separatrix, remains large at 

classical fixed point and especially in self-trapped region=> regular motion 
enhances coherence, chaotic motion destroys coherence 

–  Symmetry z => - z of classical equations is broken by quantum dynamics 
–  “Ridge” of enhanced coherence exists in quantum but not in LD or GPE 

(classical) or dynamics 
–  Overlap of initial coherent state with eigenfunctions of BHH is minimal along 

separatrix, high near fixed points 
–  Quantum “orbits” show two frequencies: one semiclassical, the other 

quantum revival ; interpretation in terms of three leading eigenfrequencies 
–  See Josephson tunneling at small Λ, as in experiments 
–  Dissipation can enhance coherence for both C and E 

  



Beyond the Dimer 

            QUESTIONS ? 

For spatially extended systems, “Intrinsic Localized Modes”/ “Discrete 
Breathers” are natural generalization of dimer’s self-trapped states: ILMs 
may serve as means of maintaining quantum coherence in large optical 
lattices or  macromolecules. Current experiments being done by the 
Greiner group at Harvard may answer this question. 
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