Hybrid atom-membrane optomechanics

Philipp Treutlein

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher Department of Physics • University of Basel • Switzerland

Theory: B. Vogell, K. Stannigel, P. Zoller (Innsbruck), K. Hammerer (Hannover)

Hybrid quantum systems

Atoms coupled to mechanical oscillators

Ultracold atoms in a trap

Sophisticated toolbox for

- ground state cooling
- coherent control of internal state + motion
- measurements on single quantum level

... developed since the 1980's

Micro- and nanofabricated mechanical oscillators

New player in the field of quantum science

- novel laser cooling and control methods
 → optomechanics
- optomechanical analog of EIT, dressed states, Mollow triplet, ...
- sensitive force detection (AFM)
- quantum *mechanics* of massive objects

... developed over the past few years!

review: M. Aspelmeyer et al., arXiv:1303.0733

review: S. Chu, Nature 416, 206 (2002)

Atoms coupled to mechanical oscillators

Use atoms to prepare, detect, manipulate quantum states of mechanical oscillators

• make atomic physics toolbox available for control of mechanical devices

Mechanical oscillators as a new ingredient of atomic physics experiments

• on-chip RF source, optical lattice with micromechanical mirrors, ...

Mechanical oscillators as transducers

• interfacing atoms with solid-state spin systems, ...

Theory proposals: Hammerer, Zoller, Meystre, Genes, Vitali, Tombesi, Ritsch, Sun, Nori, Paternostro, Jonson, Bariani, Bienert, Rabl, Marquardt, ...

Review: P. Treutlein et al., arXiv:1210.4151 (2012)

Sympathetic cooling of a membrane with ultracold atoms

Experiment: A. Jöckel et al., arXiv:1407.6820 (2014)

Theory: B. Vogell et al., PRA 87, 023816 (2013)

Other experiments (in preparation):

Polzik, Geraci, Vengalattore, Bowen, Kimble, Dantan, Sengstock, ...

Membrane optomechanics

Optomechanical systems

Mirror on cantilever

Membrane oscillator

Optomechanical crystal

$$\Omega_m/2\pi = \text{Hz}\dots 10 \text{ GHz}$$

 $m_{eff} = \text{kg}\dots \text{pg}$

review: Aspelmeyer, Kippenberg, Marquardt, arXiv:1303.0733

SiN membrane oscillators

SiN film (d = 40 nm)tensile stress S = 0.9 GPa

 $\Omega_{1,1}/2\pi = 270 \text{ kHz}$ $m_{eff} = 60 \text{ ng}$

Extraordinary mechanical and optical properties!

Mechanical quality factor: $Q_m = 3 \times 10^6$ (300 K, fundamental) $Q_m = 5 \times 10^7$ (higher modes)

reflectivity: $r_m = 0.42$ @ 780 nm absorption: $< 10^{-5}$

frequencies/time scales nicely matched to atoms

see also Harris, Kimble, Polzik, Regal, Vengalattore, ...

Interferometric imaging of modes Chakram et al., PRL 112, 127201 (2014)

 $(10,6)\pm(6,10)$

Membrane inside an optical cavity

Aspelmeyer, Kippenberg, Marquardt, arXiv:1303.0733 Kippenberg + Vahala, Science 321, 1172 (2008)

J. D. Thompson et al., Nature 452, 72 (2008)

Membrane inside an optical cavity

Aspelmeyer, Kippenberg, Marquardt, arXiv:1303.0733 Kippenberg + Vahala, Science 321, 1172 (2008)

J. D. Thompson et al., Nature 452, 72 (2008)

Ultracold atoms in optical lattice

Optical lattices - perfect artificial crystals

I. Bloch, Nature Phys. 1, 23 (2005)

Atom-membrane coupling

Optomechanical coupling of atoms and membrane

Experiment: A. Jöckel et al., arXiv:1407.6820 (2014) **Theory**: B. Vogell et al., PRA 87, 023816 (2013)

SiN membrane in cavity (single-sided, finesse $\mathcal{F}, \Omega_m \ll \kappa$) Laser-cooled ⁸⁷Rb atoms in optical lattice

- **Features:** membrane vibrations couple to atomic c.o.m. vibrations
 - long-distance coupling mediated by laser light
 → modular setup
 - laser cooling of atoms on \rightarrow sympathetic cooling of membrane
 - laser cooling off \rightarrow coherent dynamics

membrane \rightarrow atoms

membrane \rightarrow atoms x_m $\Delta \phi_r \propto \mathcal{F} x_m$ optical dipole force on atomic c.o.m. P_{circ} ϕ_r ϕ_r

radiation pressure force on membrane

radiation pressure force on membrane

atoms \rightarrow membrane (back-action)

radiation pressure force on membrane

Sympathetic cooling of a membrane with ultracold atoms

Sympathetic cooling of membrane with atoms

Vogell et al., PRA 87, 023816 (2013) Bennett et al., New J Phys 16, 083036 (2014)

Experimental setup

peak area $\langle x_m^2 \rangle \sim T$

SiN membrane in cavity

 $\Omega_{\rm m}/2\pi$ = 274 kHz, Q = 3×10⁶, a < 10⁻⁵ $\Gamma_{\rm m} = \Omega_{\rm m}/Q$ = 0.6 s⁻¹

Single-sided cavity F = 140-300 Laser-cavity detuning Δ = -0.02 k

Atoms in lattice:

N = 2×10⁷, P₀ = 16.5 mW, $\Delta_{at}/2\pi$ = -8 GHz Γ_a = 2π×1.6 kHz

Sympathetic cooling of membrane with atoms

- 1. atoms off-resonant $\Omega_{a} \ll \Omega_{m}$
- 2. atoms resonant $\Omega_a \approx \Omega_m$
- 3. Molasses cooling off

laser slightly red detuned to avoid parametric instability

Sympathetic cooling of membrane with atoms

Three-step sequence:

- 1. atoms off-resonant $\Omega_{\text{a}} \ll \Omega_{\text{m}}$
- 2. atoms resonant $\Omega_a \approx \Omega_m$
- 3. Molasses cooling off

laser slightly red detuned to avoid parametric instability

Membrane cooled from **300 K** to **650 ± 230 mK** by coupling to atoms

Atoms cool membrane even though Nm_a/m_{eff} = 10⁻¹⁰!

- Data *without* atoms well-described by cavity optomechanics theory
- Current limit: technical laser noise
- Sympathetic cooling stronger than cavity optomechanics cooling $\Gamma_{sym} \! > \! \Gamma_{opt}$

- Data *without* atoms well-described by cavity optomechanics theory
- Current limit: technical laser noise
- Sympathetic cooling stronger than cavity optomechanics cooling $\Gamma_{sym} \! > \! \Gamma_{opt}$

- Data *without* atoms well-described by cavity optomechanics theory
- Current limit: technical laser noise
- Sympathetic cooling stronger than cavity optomechanics cooling $\Gamma_{sym} \! > \! \Gamma_{opt}$

Dependence on lattice detuning and beam power

BASEL

 $\int \int \int \int \int \int \int \int \int \int U_{dip}(r) \propto \frac{I(r)}{\Delta_{at}}$

Perspectives: ground-state cooling and quantum control

Improvements of the system

Vogell et al., PRA 87, 023816 (2013)

N = 1×10⁶, \mathcal{F}_{a} = 80 Q_m = 10⁷, \mathcal{F}_{m} = 360

Bennett et al.,

 Atoms can provide ground-state cooling where optomechanical cavity cooling or feedback cooling cannot

$$C > \overline{n}_{th}$$
 but $c_m < \overline{n}_{th}/8$

- resolved-sideband regime **not** required ($\Omega_m \ll \kappa$)
- Strong atom-membrane coupling without strong coupling to light

Internal state of atoms can be controlled with higher fidelity

- cooling = optical pumping
- tunable transition frequency: $\Omega_a = kHz GHz$
- inverted collective spin = oscillator with negative mass
 → EPR entanglement
 - \rightarrow "trajectories without quantum uncertainties"

Use techniques developed for ensemble-based QIP

- Rydberg blockade \rightarrow two-level system
- non-classical states of membrane, atom-membrane entanglement

Towards quantum interfaces of atoms, photons and phonons!

Bariani et al., arXiv:1407.1073 (2014)

Hammerer, Polzik et al., PRL 102, 020501 (2009) arXiv:1405.3067 (2014)

Carmele et al., New J Phys 16, 063042 (2014)

Basel ultracold atoms group

Theory collaboration: K. Hammerer **(Hannover)**, B. Vogell, K. Stannigel, C. Genes, P. Zoller **(Innsbruck)**