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Motivation
Thermoelectric effects	

      e.g. Seebeck effect:	

              Temperature difference → electric power	

              potentially very useful

Actually applications already exist,	

but still limited (low efficiency)



Thermoelectric Efficiency

e.g. Linear Response Regime

Carnot efficiency

“figure of merit” σ: electric conductivity  
S: Seebeck coefficient	

κ: thermal conductivity

Efficiency TL



current state-of-the-art thermoelectric materials

Minnich et al. Energy Environ. Sci. 2009



Is the “efficiency” practical?

The “maximum efficiency”  is usually achieved in	

the quasi-static limit (infinitesimal power output) 	

!

In the applications, we want a higher power output…

Discuss the efficiency at the maximum power 

thermodynamic constraint

“Curzon-Ahlborn upper bound”



- Curzon-Ahlborn bound is based on Onsager reciprocal 
relations 	


- Curzon-Ahlborn bound can be overcome by breaking 
time-reversal (magnetic field etc.)	


- Efficiency at maximum power depends on  
“figure of merit” and “asymmetry”



Construction of an example with a maximum power 
exceeding the Curzon-Ahlborn bound

Three-terminal device of	

free electrons,	

with a magnetic field	

(one terminal: “probe”)



With Interactions?

Three-terminal junction	

of Tomonaga-Luttinger Liquid,	


with magnetic flux?



The formulation developed in these papers can be	

applied to thermal conduction/thermoelectric effect.	

At this point, I only have results on thermal conductance,	

which I will report in this talk.



Tomonaga-Luttinger Liquid
Spinless fermions → 1-component free boson field theory

Right/Left-mover currents

g : Luttinger parameter	

(repulsive→ g<1,  free→ g=1, attractive→ g>1)

Thermal conduction of TLLs well-studied, but I give a 
reformulation based on boundary CFT to study junctions



Currents

Particle (charge) density:

Particle (charge) current:

Energy density:

Energy current:

Discuss the thermal conduction in linear response theory,	

in analogy to current conduction (a la Wong-Affleck etc.)



Setup
L

measure current

- Equilibrium (with temperature T) at t =0	

- Turn on an (infinitesimal) voltage/temperature 

difference over a section of length L	

- Measure current at one point, after infinite time	

- Result independent of L and the point of measurement	

- May not give what is measured in experiments 

(yields a “wrong” result ge2/h for conductance)

Fisher-Lee 1982
Nakano-Kubo 1953

The unrenormalized conductance e2/h, independent of g, was observed 
in experiments: can be understood theoretically by attaching Fermi 
liquid leads.  Maslov-Stone 1995, Safi-Schulz 1995 

Applied to Y-junction in Chamon-MO-Affleck 2003, 2006 but I will not	

discuss the leads in the present talk.



Kubo formula

Conductance

Kane-Fisher 1991

Thermal conductance

Kane-Fisher 1996

Let us verify first if the present approach reproduces	

the known results for the bulk (single TLL)



Half-Infinite Wire

Low-energy limit ↔ conformally invariant boundary condition

TLL:  “Neumann” or “Dirichlet”

“unfold” the system to infinite line w/o boundary, by

“cross term” between original JR and JL contribute

Neumann:

Dirichlet: (doubled)

cf.)



What do they mean?

Neumann: current conserved at the boundary	

“open end” → no conduction

Dirichlet:
current NOT conserved at	

the boundary	

represents the TLL attached to	

a gapped superconductor

Andreev reflection → conductance is doubled	

                                 but thermal conduction vanishes



Y-junction

Disconnected fixed point:  Neumann for each component

Low-energy limit of the junction↔	

	
 	
 conformally invariant b.c. of 3-component boson	


Define thermal conductance tensor	

κjk in a similar manner



Other fixed points

Current conservation at the junction	

(no reservoir/superconductor attachment)	

→  Φ0 always obeys Neumann,	

     but there is a freedom in choosing the b.c. for	

     the other two components Φ1, Φ2

New basis for the boson fields



DP/DN fixed points
Φ0: Neumann	

Φ1, Φ2: Dirichlet

Stable for g>3 (strongly attractive)

MO-Chamon-Affleck 2006

Thermal conductance suppressed by	

partial Andreev reflection!

Conductance enhanced by (partial) Andreev reflection

NEW!



Chiral Fixed Points
T-reversal broken (by magnetic flux)

Boundary condition in the new basis:

rotation matrix with	

angle ξ

Chamon-MO-Affleck 2003, 2006



Chiral Fixed Points
Thermal conductance

Asymmetry appears also in the thermal conductance

NEW!



g-dependence

1.5 2.0 2.5 3.0

0.6

0.7

0.8

0.9

1.0

1.1

G11

κ11

g
Diagonal conductance: non-monotonic dependence, 
enhanced by attractive interaction (but dependence 
disappears by attaching Fermi-liquid leads)	

Diagonal thermal conductance: monotonic dependence,	

suppressed by attractive interaction



Summary
- Reformulation of linear response theory of thermal  

conductance in TLLs, in terms of currents and 
boundary conditions	


- Although the “naive” thermal conductance is 
independent of Luttinger parameter g in the bulk, it 
can generally depend on g for at junctions	


- Andreev reflection enhances conductance but 
suppresses thermal conductance	


- Chiral fixed point of Y-junction exhibits an asymmetry 
also in thermal conductance; thermal conductance 
suppressed by the interaction



Open problems

Thermopower: work in progress

Efficiency (at maximum power and in other cases)

… and many others


