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Forming the one-dimensional
quantum wire

Metal gates Two-dimensional
which form wire . sheet of electrons

Semiconductor

Narrow channel or structure
‘quantum wire’
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Energy of spin-polarised 1D
1D subbands
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DC-bias measurements

@ A powerful way of probing an energy spectrum.

@ Can give information about a subband when it is
partially populated.

@ Useful for studying the restructuring of energy
spectrum at crossings.



“Half-plateaux” caused by DC-bias




Peaks for each subband split into two
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Half-Plateaus induced by a dc source-drain bias
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Splitting of the transconductance peaks in an in-plane
magnetic field
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Preceding Results All Follow One-Electron Considerations
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DC-bias '0.25' structure at
B=0. 8 and 16T
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DC Conductance allied to Differential Conductance G,
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Enhancement of g Value
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Consequences of Spin Polarisation — Spin Locking
and Topological Features, Spin Lattices Controlled
by Rashba Fields.

* Electron Focusing
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Collector Voltage for Different Settings When Spin Degeneracy
is Lifted.
Constant Current,l, is Injected
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Measured Voltage is a Constant Except When Both Emitter and
Collector are Set to Spin Polarisation



pin Detection — FPOTOK, Viarcus et a

{ﬂ} I I I I I I I I
29l T =300 mK _
o~ (0.5:0.5) / (2:2)
20 -2 (05:2) [ (2:2)
_ = (2 :05)/ (2:2)
o
o 1.8 —
-
x 1.8F :
]
_E
T 14| & _
o
i
el -] .
A A - - 8 = = A
L o 1:: L) - "_-.-" —?
101 | | | | | | |
0 1 2 3 4 6 7

B, (T)



The Rise in the Ratio due to Spin Polarisation Induced

(b)
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First Evidence of 1D Density of States by
Berggren et al Due to Magneto-Electric

Subbands Produced by Strong Confinement and
Magnetic Field — Modified Shubnikov-de Haas.

Wide 1D Electron Gas, Energy Levels
Dominated by Electron Interactions and Size
Quantisation



Control of carrier concentration and width
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Formation of lattice due to interactions in weakly confined
1D channel, ( Matveev, Meyer)




Double Zig-Zag
(Berggren and Yakimenko)
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Characteristics Following a Constant Change in Carrier Concentration Induced by Top Gate —
Inversion of the Ground State
An anti-crossing is observed in the behaviour of the lowest two energy levels.
The closeness of the curves following the anti-crossing arises from the increase in capacitance between
the split gates and the electron gas which is now in a new ground state- the former first excited state.
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Ground State Wavefunction Observed By Split Gate Capacitance
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Coupling and Increasing Source-Drain Voltage
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a),Anti-Crossed coupled rows; b) a) in 16T; c¢) 2 uncoupled rows; d) and e)
gray scale plots of a) and b);f) single wire strongly confined showing typical

absence of 0.5. Above traces moved along voltage axis for clarity.



Wavefunction Hybridisation as Found Experimentally,
There Will Be Distortion Due to Interaction

Independent rows
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Increase in Carrier Concentration Results in a Crossing and Direct Jump to 4e%/h Followed by Anti-Crossing
for B=0 as Former Ground State Passes Through Higher Levels.
For B Parallel =12 Tesla Spins Split, Crossings Due to Opposite Spins and Complex Pattern as 21 Becomes
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= Wavefunction hybridisation and manipulation with in-plane B
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v" As the confinement weakens,

the 0-state passes through the 1-
state giving rise to an anti-
crossing and a jump to 4e*/h as
indicated in the ‘blue’ trace.
Further weakening the
confinement results in
reintroduction of 2e?/h, and
jump to 2e?/h, as 1-state being
the new ground

Application of 12T lifts spin-
degeneracy and plateaus appear
at ne*/h.

Widening the channel results in
complex pattern of overlapping
levels, the ground state crosses
through the higher levels
Reintroduction of e*/h suggests
the 21 dropping through many
states to become the new ground

The 0-state passes through several levels during its trajectory as the confinement wedk@¥&.- which indicates e-e interaction
affects the ground state more significantly than the higher energy levels.
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Examples of Row Formation and Movement
of Energy Levels Within Channel
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Weakly conf ned 1D . Right hand side is strong conf nement and
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Effects of 7 Tesla Field on conductance, strong confinement on
right, weak on left.
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Direction-resolved transport and possible many-body effects in one-dimensional thermopower

N. J. Appleyard, J. T. Nicholls, M. Pepper. W. R. Tribe, M. Y. Simmons.* and D. A. Ritchie
Cavendish Laboratory, Madingley Road, Cambridee, CB3 OHE, United Kingdom
(Received 20 October 2000)

A single-particle theory due to Mott predicts a proportionality between the diffusion thermopower and the
energy derivative of the logarithm of the conductance. Measurements of a ballistic 1D wire show that the Mott
theory remains valid in the presence of a finite current, and that it leads to a direction-sensitive probe of
electron transport. We observe an apparent violation of the Mott model at low electron densities. when there is
a nonquantized plateau in the conductance at 0.7(2e>//). There is as yet no successful theoretical explanation
of this so called 0.7 structure, but the distinctive thermopower signature, which deviates from single-particle
predictions. may provide the key to a better understanding.
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FIG. 4. (a) The conductance G and (b) thermopower S for
sample C when the in-plane magnetic field B is incremented from
D to 16 T in steps of 1 T. Lifting of spin degeneracy at high fields
restores the zero in S that is predicted by single-particle theory [Eq.
(1)]. The traces in (b) are offset vertically.
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Split Gate Voltage Vg, (V)
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16 Tesla Parallel Field
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Plot dG/dVg as function of DC-bias and
gate-voltage
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G (in units of 2e%/h)

Ballistic Quantisation
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Enhancement of the g-factor in a 1D channel
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FIG. 3: Differential conductance of an Ing »5(ag os As quan-
tum wire at T'=1.5K under a source-drain bias V,;. From
left to right, V.4 is increased from -0.1mV to +4.0mV (traces
are laterally offset). Note the appearance of a 0.25(2e% /)
and 0.75(2* /h) plateanx for the fist 1D subband, while only
a 1.5(2e% /h) plateau appears for the second subband.



DC-bias data at
B=0.8 and 16T
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Effect of source-drain bias on the "0.7 structure"
and the spin-split plateau
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Evolution of the "0.7 structure" in a dc source-drain
bias at zero magnetic field
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Forming the one-dimensional
quantum wire

Metal gates Two-dimensional
which form wire . sheet of electrons

Semiconductor

Narrow channel or structure
‘quantum wire’



Level Crossing Behaviour

For low or zero source-drain bias, behaviour akin to a magnetic phase transition is

observed when opposite spin levels approach.
At finite source drain bias it is possible to have opposite spin levels with only one

direction of momentum. Then an anti-crossing is found.



Spin Coherence Introduced by Magnetic Field
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Formation of lattice due to interactions in weakly conf ned
1D channel
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* Resultson the optimisation of doublerowsin aquas 1D wire

Independent rows
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S p
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Vo)
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H!c!ae‘ !epper

Incipient Wigner
[ #ﬁﬁﬁglﬂ peratures a one-dimensional line of electrons will attempt to
' aration forming an antiferromagnetic Heisenberg spin chain.
Recent theories of interacting 1D electrons have shown that when the confinement
potential is sufficiently weak there will be a lateral rearrangement of the electrons
to form a zig-zag array, with many possible spin phases depending on ring
exchange interactions. Decreasing the electron confinement, or increasing the

interaction, results in the electron repulsion breaking the array into two distinct
rows, termed as IWL

v' The IWL which arises as a result of a 1D-2D wavefunction transition is a
dynamic self-organisation, unlike the static case in a quantum dot.

* One of the objectives of the Programme Grant is to understand and
optimise the formation of the IWL, and to use the IWL as a provider of
entangled electrons.

* Attempt to block one of the rows using a bar gate to look for Mott
Insulator
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Window of Ground State Splitting Into Two Followed by
Disannearance of Hiaher Plateau
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DC bias characteristics of the double rows and inf uence of transverse B (B,,)
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v" (a)-(d) show plots of differential conductance characteristics for source-
drain bias of 0 to -3 mV in the presence of B, 0f 0, 0.2, 0.3 and 0.45 T,
respectively.; (e)-(h) represent greyscale plots of (a)-(d), respectively,
red regions are the regions of conductance risers and black regions are
of conductance plateaux.

v" The coupling between the rows evident from the presence of 0.5(2e¥h)
in the strong dc-bias ((a) and (e)), smears out with an increase in small
B, ((b)-(d) and (f)-(h)) where the structure at 0.25(2e*/h) remains

unaffected.

v" Plateaux become broader and sharper due to the additional magnetic
confinement and the suppression of backscattering.
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Transverse

Conductance (Zezlh)
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f eld

= Transverse B enhanced double rows

> A low density device from a modulation doped GaAs/AlGaAs heterostructure with a
mobilitv in the dark of 1.23x10° cm?/Vs and electron density of 4.5x10%cm2

S
< v' In the absence of B, plateaux were not resolved very well
8 v" Increase Btr helped resolving the plateaux
% 2 v" At 0.3T, weakening the confinement resulted in smearing out of
R3] v' 2e%h and direct jump to 4e%/h was observed
,g ql v" Further increase in Btr to 0.4T removed double jump and standard
g plateaux are observed
O

l-\)o

Magnetic enhancement of double rows can not be attributed to spin effects
as small fields has no effect on lifting spin degeneracy

WA v" Therefore double row enhancement is attributed to a change in the

/ / (b) confinement potential for small Btr such that cyclotron energy hw <<E,,

/ ,.J ////////////// /d / B,=0.4T where E, is ground state confinement energy.
i 777777 v" If the increase in the electron-electron repulsion caused by the increasing
/ / confinement can exceed the energy difference between the 0- and 1-states,

which is approximately the energy required for row formation, then double
row will be created.
Vie=-1.75V.v" At higher B,,,. The cycotron energy can be equal or exceed E,, thus

)
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Conductance (2¢)
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S 15 1 0.5 increasing the gap between E and E1, so 2e*h reappears
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Level Crossing in Weakly Conf ned 1D In
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Blocking row experiments

When a blocking gate 1s placed next to the double rows so that one row is
localised and the other, which is free to move, is then trapped in the potential
minima of the first row. As the carrier concentration in the rows 1s always equal
so the Mott insulator may be studied as the separation 1s reduced.

Objective

To nvestigate theoretical suggestions that the effective electron charge is
renormalised to take the value ¢/(2)!2, an example of charge fractionalisation in the
absence of a magnetic field.
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Device design, optmisation of Results are for the device with BR 300nm from the edge of the split gate
the bar gate, separated from the Other results:
split gate from 100-400nm. Swept B, at af xed G of the split-gates for different bar gate voltage

Oscillations like A-B were observed, needs further measurements. 67
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DC-bias '0.25' structure at
B=0. 8 and 16T
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Enhancement of g Value
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Magnetic Field Removal of Kondo Screening at 0.1K
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Conversion of a Channel to a Quasi-Dot

(a) AV=+1.2V G (2¢/h) (b) T=1.2K
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Increasing Offset Voltage Squeezes Electron Gas and Removes Beating
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Classical Row Formation, Piacente et al
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