On the interacting Majorana chain

Dirk Schuricht (Utrecht)

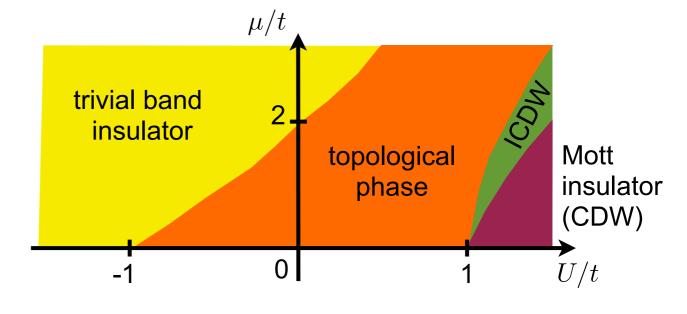
with

Niklas Gergs (Utrecht)

Fabian Hassler (Aachen)

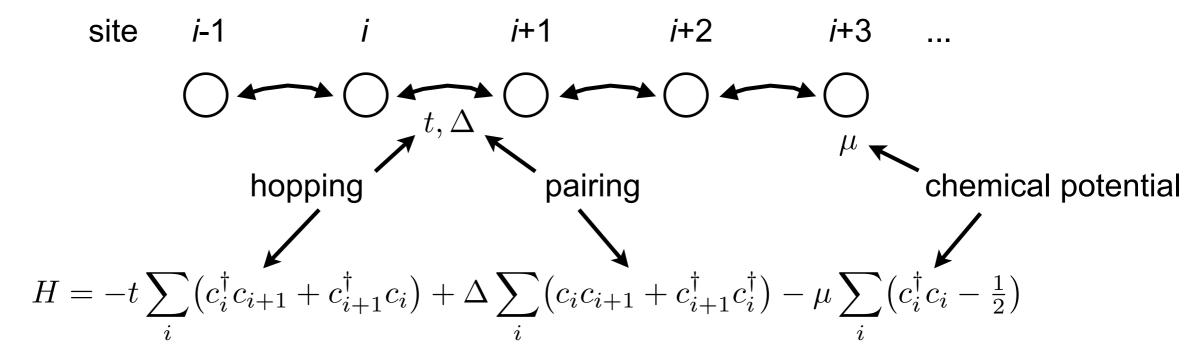
Hosho Katsura (Tokyo)

Masahiro Takahashi (Gakushuin)

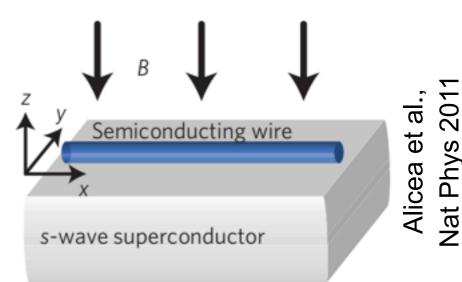


Kitaev chain

consider a chain of spinless fermions (Kitaev, Phys Usp 2001)



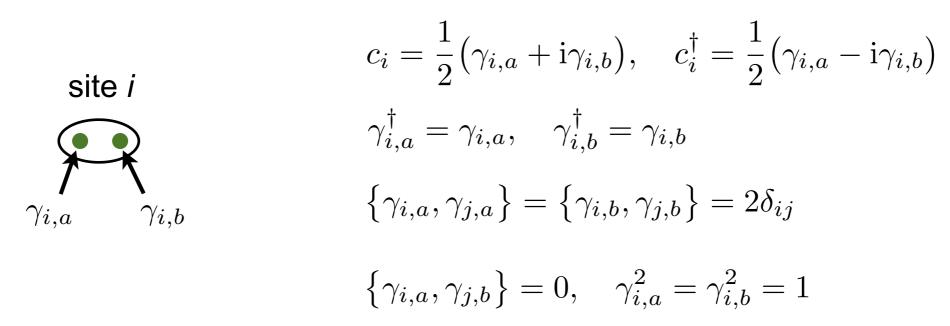
proposal: semiconductor nanowires with spin-orbit interaction in a magnetic field and proximity to superconductor (Lutchyn et al., PRL 2010; Oreg et al., PRL 2010)

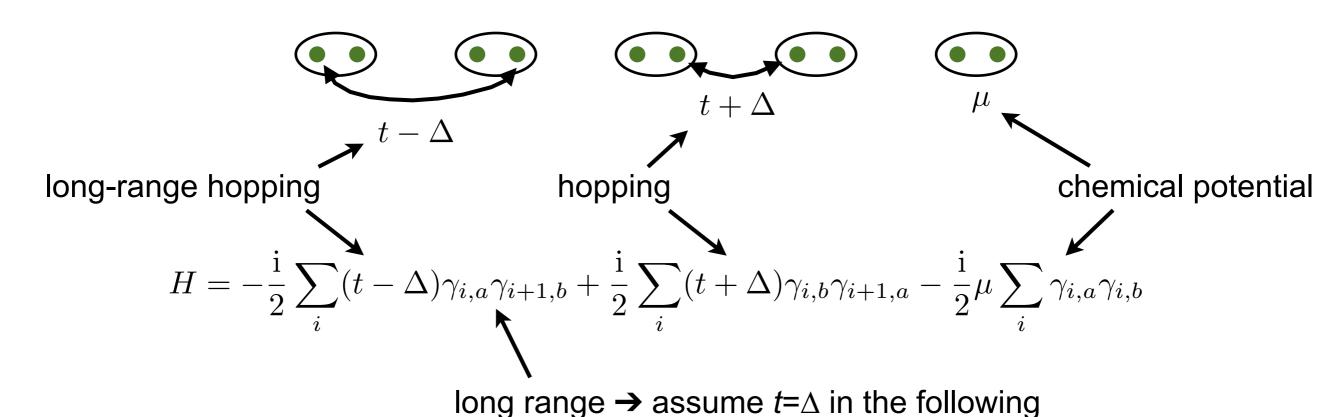


Nat Phys 2011

Kitaev chain

introduce two Majorana fermions per site





Phases in the Kitaev chain

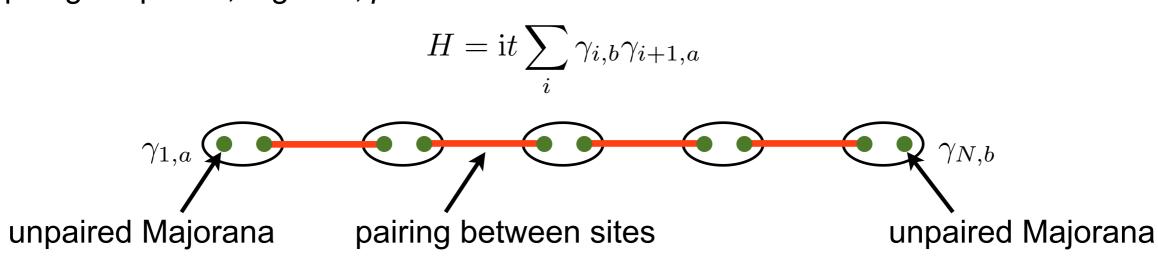
• trivial phase, e.g. $t=\Delta=0$

$$H = -\mu \sum_{i} \left(c_{i}^{\dagger} c_{i} - \frac{1}{2} \right) = -\frac{1}{2} \mu \sum_{i} \gamma_{i,a} \gamma_{i,b}$$
Site pairing
filled or empty fermionic sites

on-site pairing

- filled or empty fermionic sites
- band insulator

• topological phase, e.g. $t=\Delta$, $\mu=0$



two-fold degenerate ground state

$$|\pm\rangle$$
 with $(-1)^{\mathrm{F}}|\pm\rangle=\prod_{i}\mathrm{i}\gamma_{i,a}\gamma_{i,b}=\pm|\pm\rangle$

new, non-local fermionic mode

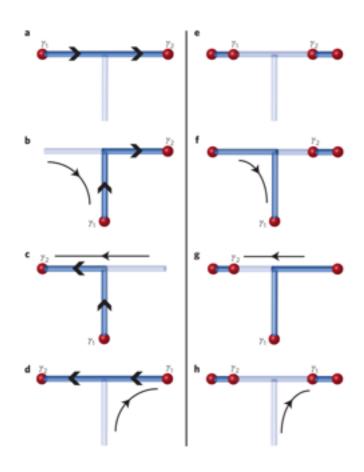
$$d = \frac{1}{2} (\gamma_{1,a} + i\gamma_{N,b})$$

Majorana fermions

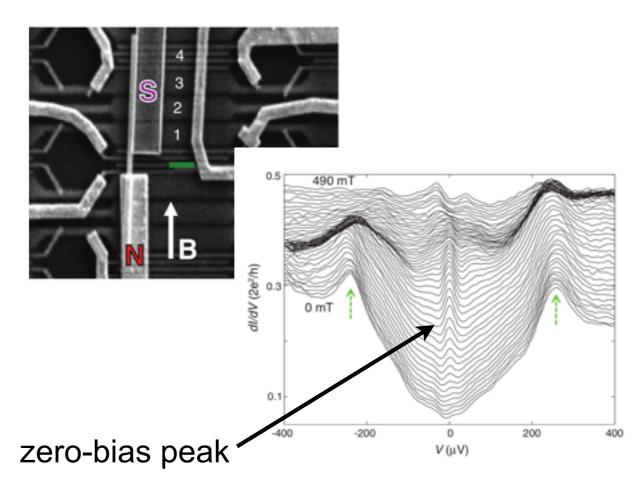
 non-local fermion mode can serve as topologically protected q-bit

$$|0\rangle, |1\rangle = d^{\dagger} |0\rangle$$

 Majorana fermions exhibit non-Abelian braiding statistics (Alicea et al., Nat Phys 2011)



can be seen in experiments?
 (Mourik et al., Science 2012)



→ Majorana fermion?

we will not discuss these topics, but ...

Question

What is effect of interaction on topological phase and phase diagram?

$$H_U = U \sum_{i} (2c_i^{\dagger}c_i - 1)(2c_{i+1}^{\dagger}c_{i+1} - 1)$$

Outline

What is effect of interaction on topological phase and phase diagram?

$$H_U = U \sum_{i} (2c_i^{\dagger} c_i - 1)(2c_{i+1}^{\dagger} c_{i+1} - 1)$$

- rewrite interaction term in Majorana fermions
- possible realisation in Josephson junction arrays
- mapping to effective spin model
- discuss phase diagram
 - repulsive interactions stabilise topological phase
- signatures in tunneling conductance

Interacting Majorana chain

chain of interacting spinless fermions with $t=\Delta$

$$H = -t \sum_{i} \left(c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i} - c_{i} c_{i+1} - c_{i+1}^{\dagger} c_{i}^{\dagger} \right) - \mu \sum_{i} \left(c_{i}^{\dagger} c_{i} - \frac{1}{2} \right) + U \sum_{i} \left(2c_{i}^{\dagger} c_{i} - 1 \right) \left(2c_{i+1}^{\dagger} c_{i+1} - 1 \right)$$

mapping to Majorana fermions as before

$$c_i = \frac{1}{2} (\gamma_{i,a} + i\gamma_{i,b}), \quad c_i^{\dagger} = \frac{1}{2} (\gamma_{i,a} - i\gamma_{i,b})$$

interacting Majorana chain with $t=\Delta$

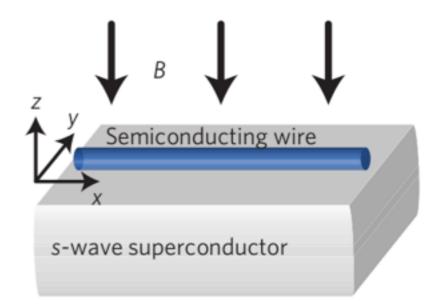
$$H = it \sum_{i} \gamma_{i,b} \gamma_{i+1,a} - \frac{i}{2} \mu \sum_{i} \gamma_{i,a} \gamma_{i,b} \left(U \sum_{i} \gamma_{i,a} \gamma_{i,b} \gamma_{i+1,a} \gamma_{i+1,b} \right)$$

interaction

Interacting nanowires

semiconductor nanowire with spin-orbit interaction in a magnetic field and proximity to superconductor (Lutchyn et al., PRL 2010; Oreg et al., PRL 2010)

in principle there is a short-range interaction between the electrons



Alicea et al., Nat Phys 2011

$$H_{\mathrm{NW}} = -\int \! \mathrm{d}x \, \Psi^\dagger \bigg(\frac{\partial_x^2}{2m} + \mu + \mathrm{i}\alpha \sigma^y \partial_x + B \sigma^z \bigg) \Psi + \int \! \mathrm{d}x \bigg(\Delta \Psi_\uparrow \Psi_\downarrow + \mathrm{h.c.} + U_0 |\Psi_\uparrow(x)|^2 |\Psi_\downarrow(x)|^2 \bigg)$$
 spin orbit Zeeman $\Psi = \big(\Psi_\uparrow, \Psi_\downarrow \big)$ pairing interaction

but mapping to single-band model reduces interaction

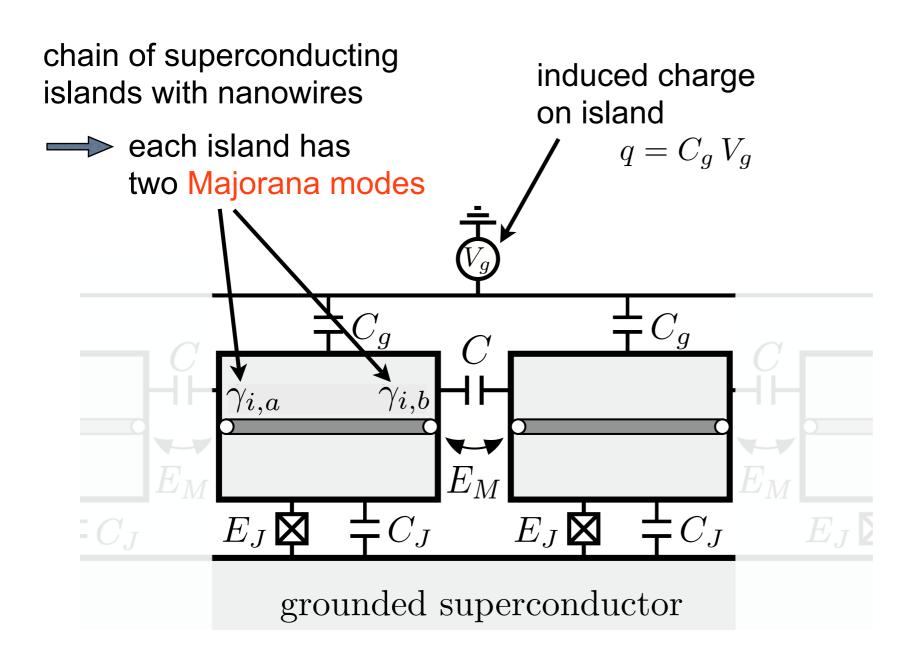
$$\Psi_{\downarrow} = \frac{\alpha}{2B} (\vec{e}_y + i\vec{e}_x) \partial_x \Psi_{\uparrow}$$

$$\frac{U}{t} = \frac{mU_0\alpha^2}{LB^2} \ll 1$$

nanowires are in
weak-coupling regime
(cf. Stoudenmire et al., PRB 2011)

Josephson junction array

$$H = it \sum_{i} \gamma_{i,b} \gamma_{i+1,a} - \frac{i}{2} \mu \sum_{i} \gamma_{i,a} \gamma_{i,b} - U \sum_{i} \gamma_{i,a} \gamma_{i,b} \gamma_{i+1,a} \gamma_{i+1,b}$$



$$E_J \gg E_M, E_C$$

superconducting phases pinned

relation of parameters

$$t=E_{M}$$
 $\mu=2\Gamma_{\mu}\cos(\pi q/e)$ $U=\Gamma_{U}\cos(2\pi q/e)$ non-trivial functions of $E_{J},\,C_{J},\,C_{g},\,C$

Mapping to spin chain

interacting Majorana chain
$$H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}-U\sum_i\gamma_{i,a}\gamma_{i,b}\gamma_{i+1,a}\gamma_{i+1,b}$$

Jordan-Wigner transformation

$$\sigma_i^z = 2c_i^{\dagger}c_i - 1 = i\gamma_{i,a}\gamma_{i,b}$$

local transformation

$$\sigma_i^x = \prod_{j < i} \left(1 - 2c_j^{\dagger} c_j\right) \left(c_i^{\dagger} + c_i\right)$$

non-local transformation

$$\Rightarrow i\gamma_{i,b}\gamma_{i+1,a} = \sigma_i^x \sigma_{i+1}^x$$

effective spin model

$$H = t \sum_{i} \sigma_i^x \sigma_{i+1}^x - \frac{\mu}{2} \sum_{i} \sigma_i^z + U \sum_{i} \sigma_i^z \sigma_{i+1}^z$$

invariant under $t \to -t$ and $\mu \to -\mu$ via $\sigma_i^{x,y} \to (-1)^i \sigma_i^{x,y}, \ \sigma_i^{x,z} \to -\sigma_i^{x,z}$

 \longrightarrow consider $t \rightarrow -t$ with $t, \mu > 0$ in the following

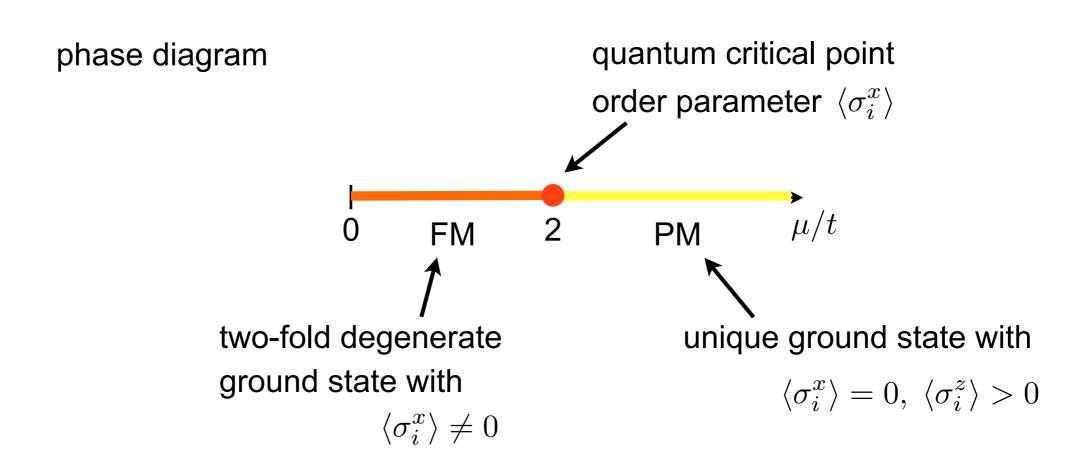
Question: What is phase diagram?

Non-interacting Majorana chain

non-interacting Majorana chain
$$H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}$$

transverse field Ising chain

$$H = -t\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - \frac{\mu}{2} \sum_{i} \sigma_{i}^{z}$$

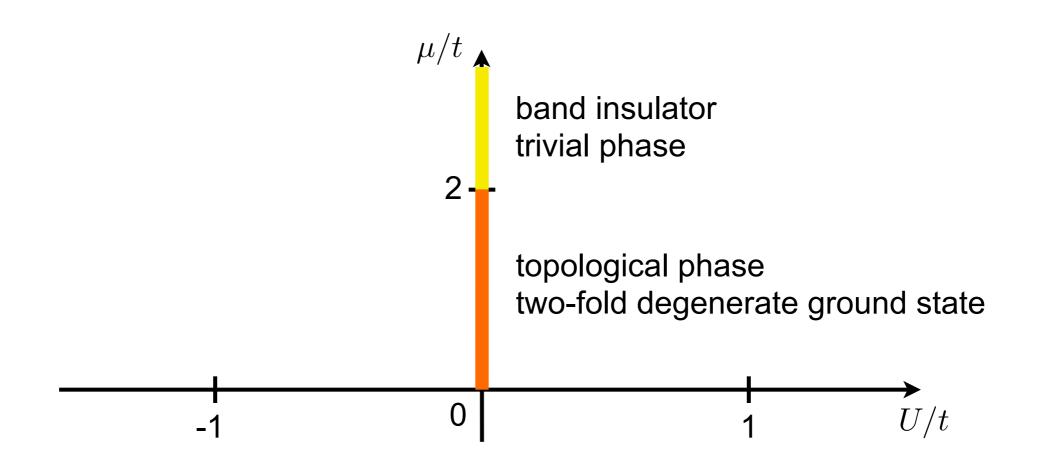


(and zero-energy boundary modes)

non-interacting Majorana chain
$$H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}$$

transverse field Ising chain

$$H = -t\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - \frac{\mu}{2} \sum_{i} \sigma_{i}^{z}$$



Interacting Majorana chain (μ =0)

interacting Majorana chain
$$H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-U\sum_i\gamma_{i,a}\gamma_{i,b}\gamma_{i+1,a}\gamma_{i+1,b}$$

effective spin model

$$H = -t\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + U\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}$$

duality transformation

$$\tau_i^z = \sigma_i^x \sigma_{i+1}^x, \ \tau_i^x = \prod_{j < i} \sigma_j^z$$

non-local transformation

$$\longrightarrow H = -t\sum_{i} \tau_{i}^{z} + U\sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$

two decoupled Ising chains

phase transitions at $U/t = \pm 1$

Interacting Majorana chain (μ =0)

reminder $\sigma_i^z = 2c_i^{\dagger}c_i - 1$

interacting Majorana chain

$$H = it \sum_{i} \gamma_{i,b} \gamma_{i+1,a} - U \sum_{i} \gamma_{i,a} \gamma_{i,b} \gamma_{i+1,a} \gamma_{i+1,b}$$

effective spin model

$$H = -t\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + U\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}$$

duality transformation

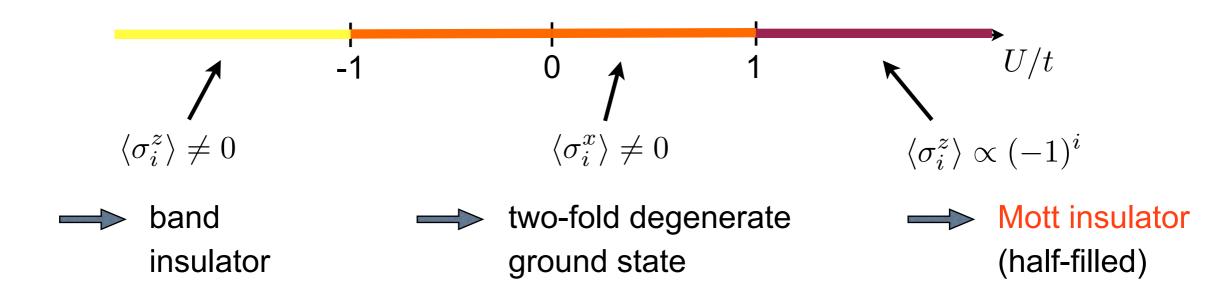
$$\tau_i^z = \sigma_i^x \sigma_{i+1}^x, \ \tau_i^x = \prod_{j < i} \sigma_j^z$$

non-local transformation

$$\longrightarrow H = -t\sum_{i} \tau_{i}^{z} + U\sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$

two decoupled Ising chains

phase diagram



Interacting Majorana chain

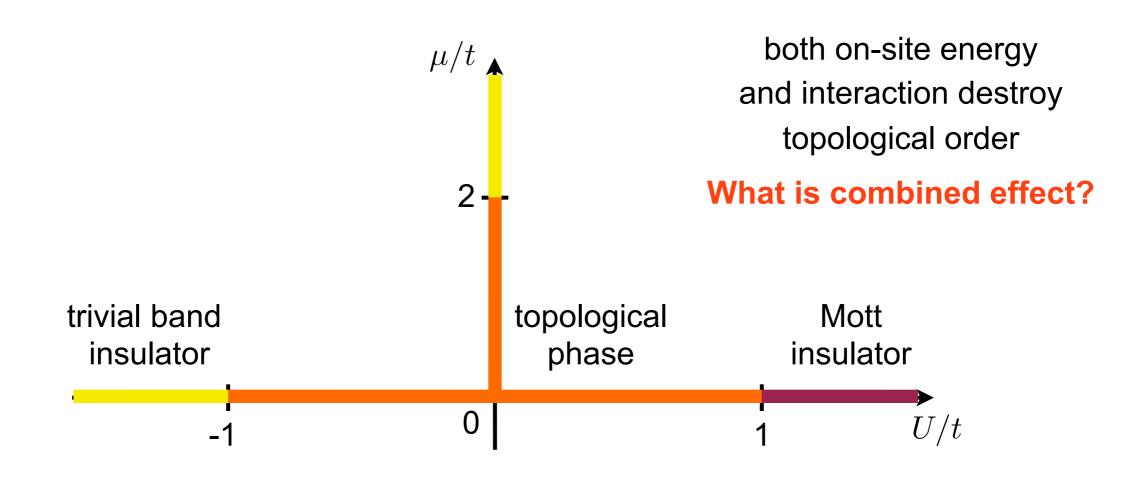
interacting Majorana chain $H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}-U\sum_i\gamma_{i,a}\gamma_{i,b}\gamma_{i+1,a}\gamma_{i+1,b}$

effective spin model

$$H = -t\sum_{i} \sigma_i^x \sigma_{i+1}^x - \frac{\mu}{2} \sum_{i} \sigma_i^z + U \sum_{i} \sigma_i^z \sigma_{i+1}^z$$

duality transformation

$$H = -t\sum_{i} \tau_{i}^{z} - \frac{\mu}{2} \sum_{i} \tau_{i}^{x} \tau_{i+1}^{x} + U \sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$



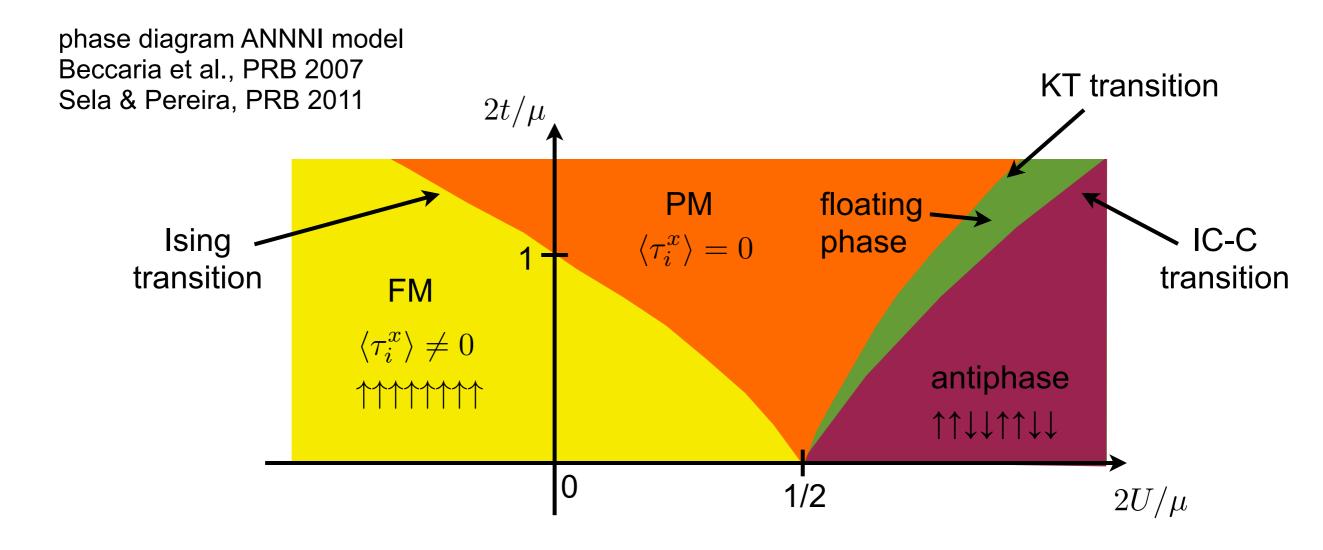
ANNNI model

axial next-nearest-neighbour Ising chain

$$H_{\text{ANNNI}} = -t \sum_{i} \tau_{i}^{z} - \frac{\mu}{2} \sum_{i} \tau_{i}^{x} \tau_{i+1}^{x} + U \sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$

$$= -\frac{\mu}{2} \sum_{i} \left(\tau_{i}^{x} \tau_{i+1}^{x} - \frac{2U}{\mu} \tau_{i}^{x} \tau_{i+2}^{x} + \frac{2t}{\mu} \tau_{i}^{z} \right)$$

many studies in statistical mechanics (Selke, Phys Rep 1988)



Phase diagram

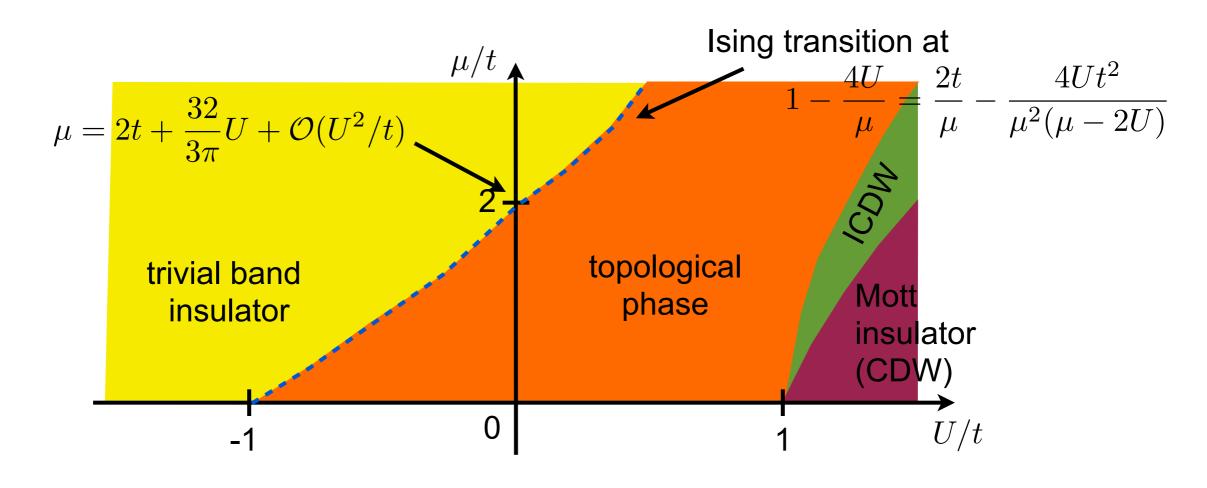
interacting Majorana chain $H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}-U\sum_i\gamma_{i,a}\gamma_{i,b}\gamma_{i+1,a}\gamma_{i+1,b}$

effective spin model

$$H = -t\sum_{i} \sigma_i^x \sigma_{i+1}^x - \frac{\mu}{2} \sum_{i} \sigma_i^z + U \sum_{i} \sigma_i^z \sigma_{i+1}^z$$

duality transformation

$$H = -t\sum_{i} \tau_{i}^{z} - \frac{\mu}{2} \sum_{i} \tau_{i}^{x} \tau_{i+1}^{x} + U \sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$



Phase diagram

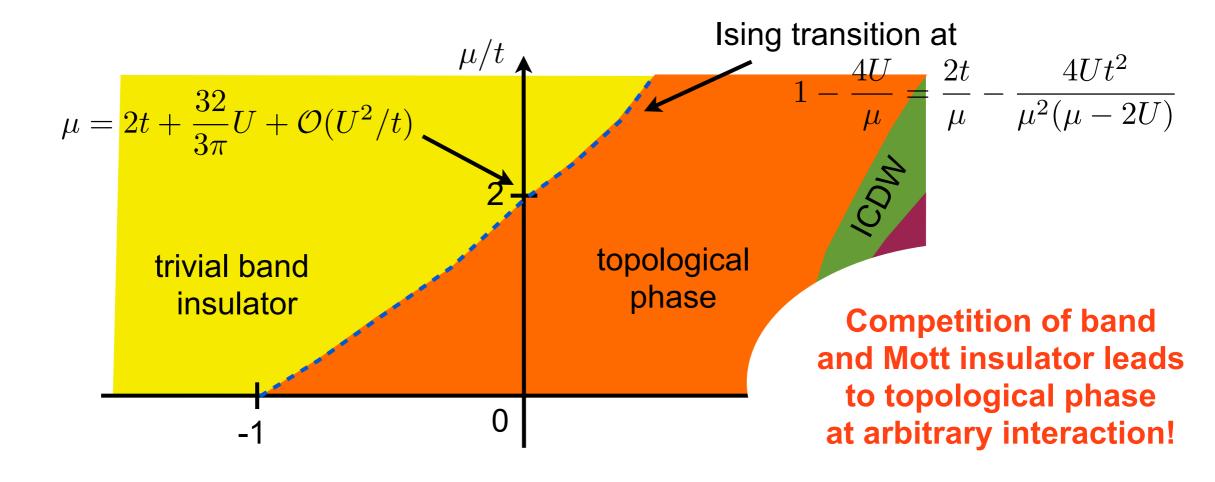
interacting Majorana chain $H=\mathrm{i}t\sum_i\gamma_{i,b}\gamma_{i+1,a}-\frac{\mathrm{i}}{2}\mu\sum_i\gamma_{i,a}\gamma_{i,b}-U\sum_i\gamma_{i,a}\gamma_{i,b}\gamma_{i+1,a}\gamma_{i+1,b}$

effective spin model

$$H = -t\sum_{i} \sigma_i^x \sigma_{i+1}^x - \frac{\mu}{2} \sum_{i} \sigma_i^z + U \sum_{i} \sigma_i^z \sigma_{i+1}^z$$

duality transformation

$$H = -t\sum_{i} \tau_{i}^{z} - \frac{\mu}{2} \sum_{i} \tau_{i}^{x} \tau_{i+1}^{x} + U \sum_{i} \tau_{i}^{x} \tau_{i+2}^{x}$$



Exactly solvable line

along $\mu = 4\sqrt{U(t+U)}$ two-fold degenerate ground state

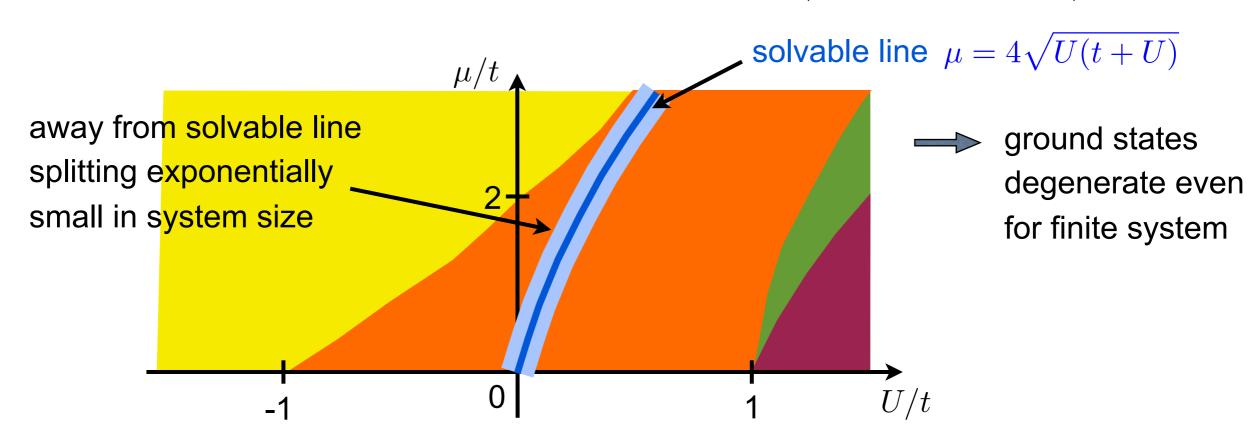
$$|\Psi_{\pm}\rangle = \prod_{i} \left(\cos\frac{\theta}{2} |+\rangle_{i} \pm \sin\frac{\theta}{2} |-\rangle_{i}\right), \quad \cos\theta = \frac{\mu}{4(t+U)}$$

fermion parity eigenstates

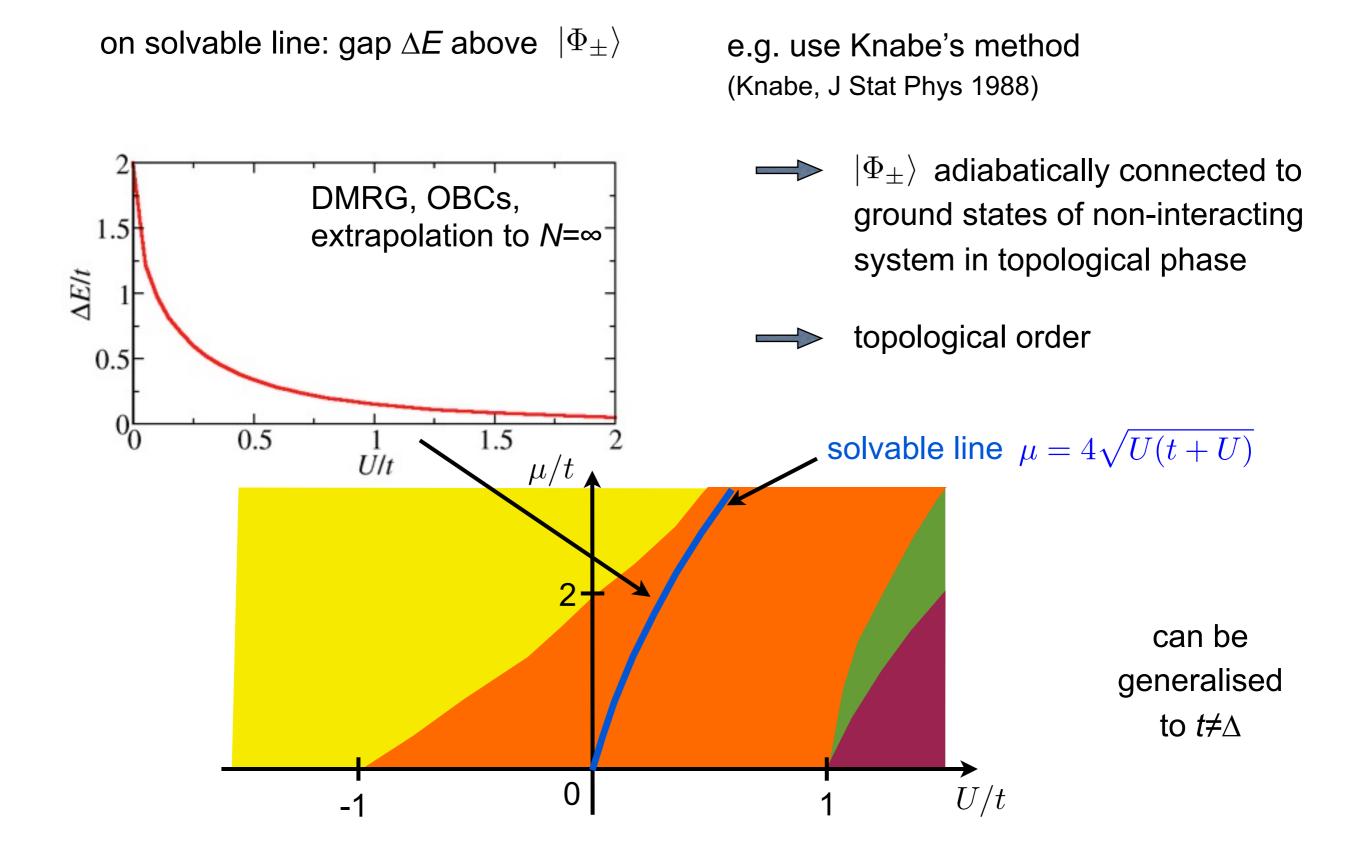
$$|\Phi_{\pm}\rangle = \frac{|\Psi_{+}\rangle \pm |\Psi_{-}\rangle}{\sqrt{2(1 \pm \cos^{N}\theta)}}, \quad (-1)^{F} |\Phi_{\pm}\rangle = \prod_{i} \sigma_{i}^{z} |\Phi_{\pm}\rangle = \pm |\Phi_{\pm}\rangle$$

ground states locally (in fermions) indistinguishable, e.g.

$$\langle \Phi_{+} | c_{i}^{\dagger} c_{i} | \Phi_{+} \rangle = \langle \Phi_{-} | c_{i}^{\dagger} c_{i} | \Phi_{-} \rangle, \quad \langle \Phi_{+} | c_{i} c_{i+1}^{\dagger} | \Phi_{+} \rangle = \langle \Phi_{-} | c_{i} c_{i+1}^{\dagger} | \Phi_{-} \rangle$$

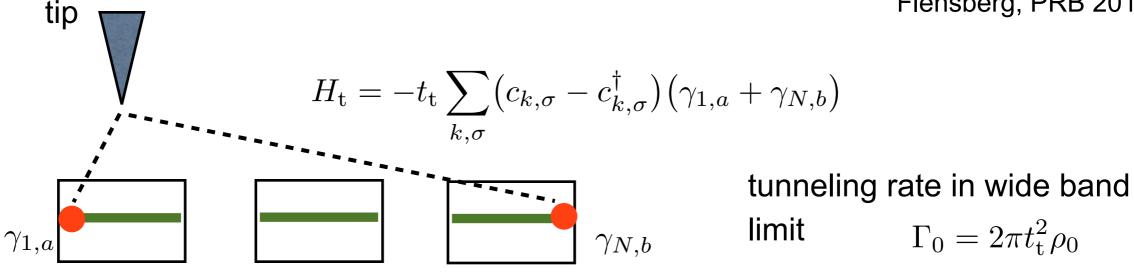


Exactly solvable line



Tunneling conductance

Law et al., PRL 2009 Flensberg, PRB 2010



consider effective two-level system

$$H_{\mathrm{eff}} = -\frac{\mathrm{i}}{2} \Delta E \, \gamma_{1,a} \gamma_{N,b}$$
 energy splitting

tunneling rates into Majorana modes

$$\Gamma_{ij} = \Gamma_0 \, \psi_i(x=1) \, \psi_j(x=1)$$

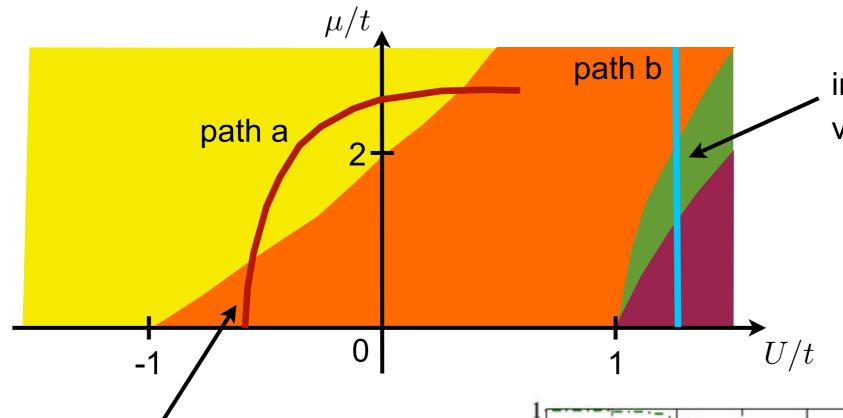
Majorana wave functions

tunneling current
$$I = \frac{e}{h} \int\!\mathrm{d}\omega\,\mathrm{tr} \Big[G^{\mathrm{R}}(\omega) \Gamma^*(-\omega) G^{\mathrm{A}}(\omega) \Gamma(\omega) \Big] \big[f(eV-\omega) - f(\omega-eV) \big]$$

broadened conductance

$$\bar{G} = \int_{-\Delta\omega/2}^{\Delta\omega/2} \frac{\mathrm{d}(eV)}{\Delta\omega} G(V) \qquad \Delta\omega \sim V, T, \dots$$

Tunneling conductance



individually tuneable gate voltages necessary

$$q_i = (-1)^i q$$

$$\mu = 2\Gamma_\mu \cos(\pi q/e)$$

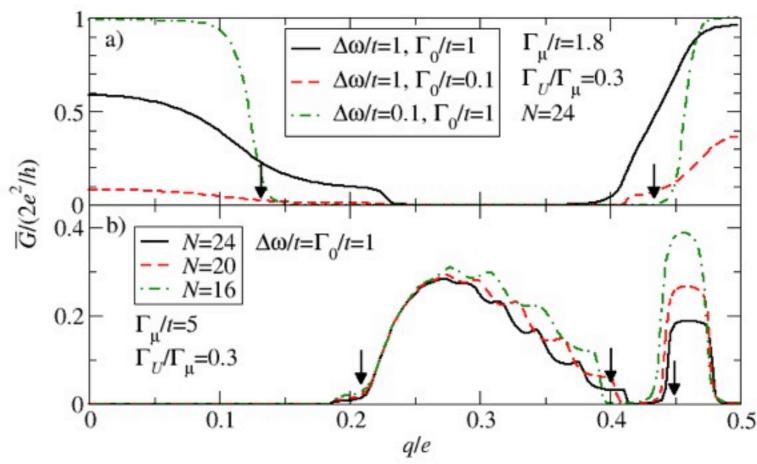
$$U = \Gamma_U$$

move around in phase diagram by varying induced charge q

$$\mu = 2\Gamma_{\mu}\cos(\pi q/e)$$

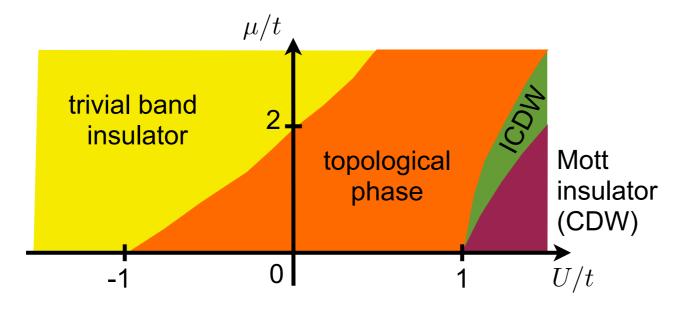
$$U = \Gamma_U \cos(2\pi q/e)$$

phase boundaries clearly visible

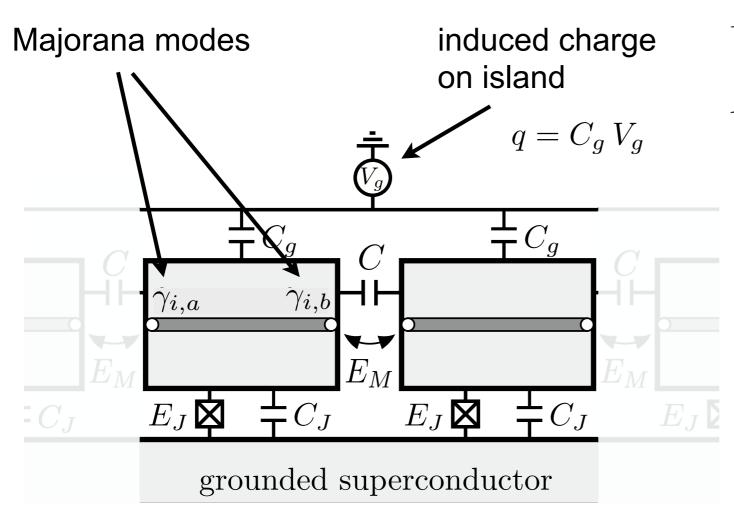


Conclusions

- studied effect of interactions on Majorana chain
- chemical potential and strong interactions individually destroy topological phase
- competition between band and Mott insulator leads to topological phase at arbitrary interactions
- Josephson junction array with Majorana fermions implements ANNNI model
- explicit results along Peschel-Emery line
- signatures of phases in tunneling conductance
- reference (for parts of this talk): Hassler & Schuricht, New J Phys 14, 125018 (2012)



Appendix: Josephson junction array



$$H_M = i t \sum_{i} \gamma_{i,b} \gamma_{i+1,a} \cos \frac{\phi_i - \phi_{i+1}}{2}$$

$$H_J = E_J \sum_{i} (1 - \cos \phi_i)$$

$$E_J \gg E_M, E_C$$

superconducting phases pinned

relation of parameters

$$t = E_M$$

$$\mu = 2\Gamma_{\mu} \cos(\pi q/e)$$

$$U = \Gamma_U \cos(2\pi q/e)$$

quasi-classical calculation of quantum phase slip rates yields

$$\Gamma_{\mu} \simeq E_C^{1/4} E_J^{3/4} e^{-\sqrt{8E_J/E_C} [1 + (\pi^2 - 12)\eta^2/96]} + \dots$$

$$\Gamma_U \simeq E_C^{1/4} E_J^{3/4} e^{-\sqrt{16(2 - \eta)E_J/E_C}} + \dots$$

$$\eta = \frac{2C}{2C + C_g + C_J}$$

Appendix: Exactly solvable line

open boundary conditions

$$H = \sum_{i=1}^{N-1} h_i, \quad h_i = -t\sigma_i^x \sigma_{i+1}^x + U\sigma_i^z \sigma_{i+1}^z - \frac{\mu}{4} \left(\sigma_i^z + \sigma_{i+1}^z \right)$$

local Green function

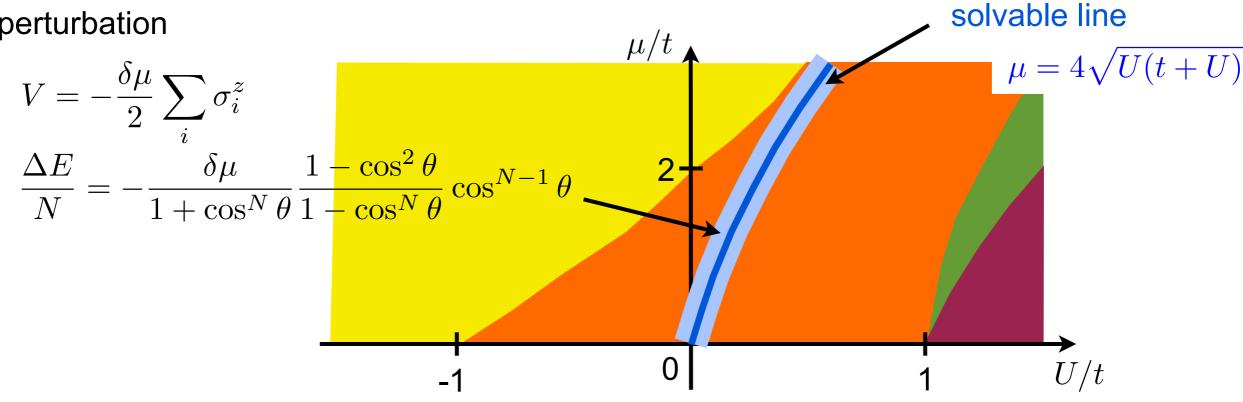
chemical potential halved at boundary

exponentially small in N

$$\cos \theta = \frac{\mu}{4(t+U)} = \frac{\sqrt{U(t+U)}}{t+U} < 1$$

 $\langle \Phi_{\pm} | c_i c_{i+1}^{\dagger} | \Phi_{\pm} \rangle = -\frac{1}{4} \frac{\sin^2 \theta}{1 + \cos^N \theta} \left(1 \mp \cos^{N-2} \theta \right)$

perturbation



Appendix: Knabe's method

rescale Hamiltonian

$$\tilde{H} = \sum_{i=1}^{N-1} \tilde{h}_i, \quad \tilde{h}_i = \frac{1}{2(t+2U)} (h_i + t + U)$$

$$\longrightarrow \quad 0 \leq \tilde{h}_i \leq 1 \ \Rightarrow \ \tilde{h}_i^2 \leq \tilde{h}_i \quad \text{ in the sense } \quad \langle \Psi | \ \tilde{h}_i^2 \ | \Psi \rangle \leq \langle \Psi | \ \tilde{h}_i \ | \Psi \rangle \leq \langle \Psi | \ \Psi \rangle$$

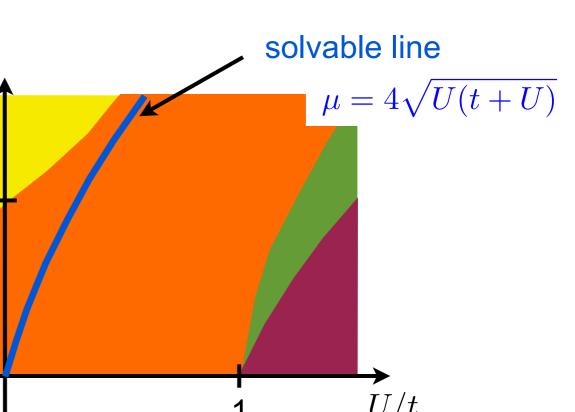
if (m+1)-site Hamiltonian
$$\tilde{H}_m = \sum_{i=1}^m \tilde{h}_i$$
 satisfies $\tilde{H}_m^2 \geq \epsilon_m \tilde{H}_m, \ \epsilon_m > \frac{1}{m}$

$$\longrightarrow \quad \tilde{H}^2 \geq \epsilon \tilde{H}, \quad \epsilon = \frac{m}{m-1} \left(\epsilon_m - \frac{1}{m} \right) > 0 \quad \longrightarrow \quad \text{gap of } H \quad \Delta E > 2(t+2U)\epsilon$$

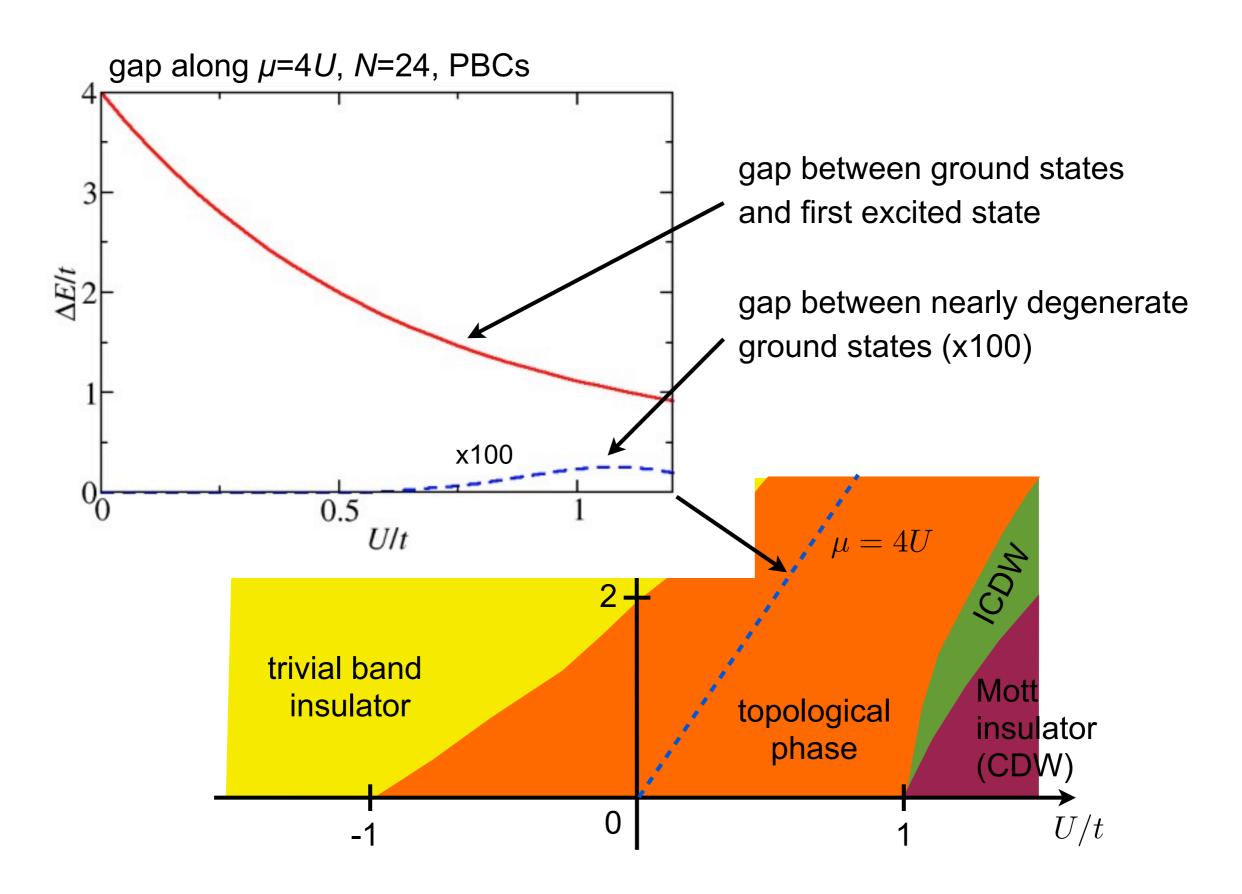
0

verified by exact diagonalisation for m=9, $0 \le U/t \le 0.5$

existence of gap for all *U* can be proven using relation to free-fermion model



Appendix: Gap in topological phase

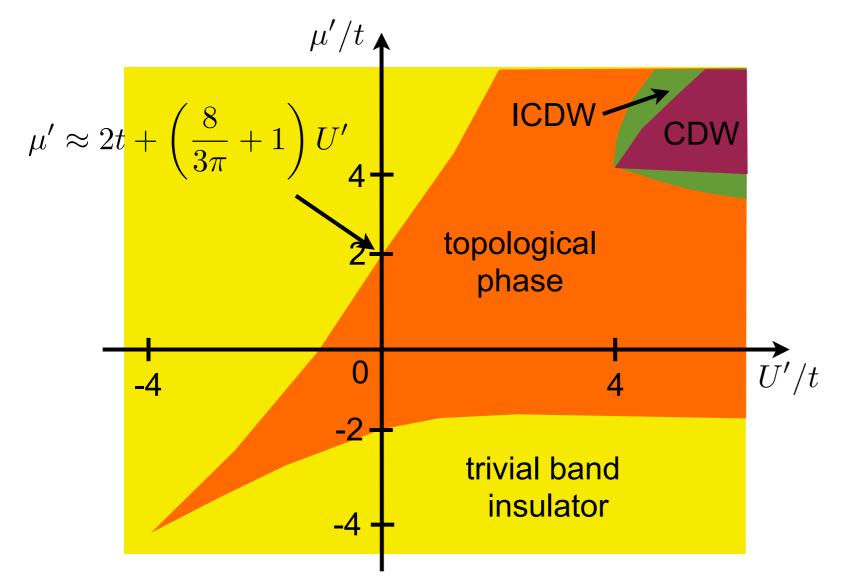


Appendix: Broken particle-hole symmetry

$$H' = -t \sum_{i} \left(c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i} - c_{i} c_{i+1} - c_{i+1}^{\dagger} c_{i}^{\dagger} \right) - \mu' \sum_{i} c_{i}^{\dagger} c_{i} + U' \sum_{i} c_{i}^{\dagger} c_{i} c_{i+1}^{\dagger} c_{i+1}$$

mapping to Majorana fermions

$$H' = it \sum_{i} \gamma_{i,b} \gamma_{i+1,a} - \frac{i}{2} \left(\mu' - U' \right) \sum_{i} \gamma_{i,a} \gamma_{i,b} - \frac{U'}{4} \sum_{i} \gamma_{i,a} \gamma_{i,b} \gamma_{i+1,a} \gamma_{i+1,b} + \text{const}$$



relation of parameters

$$\mu = \mu' - U'$$

$$U = U'/4$$

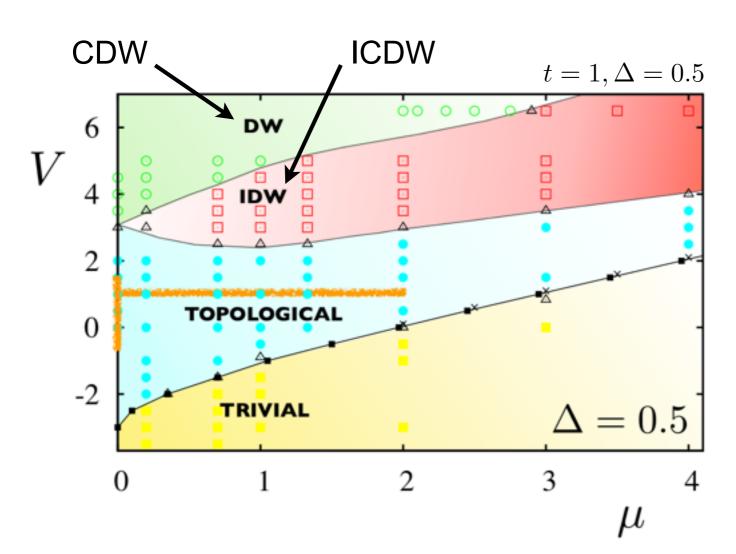
phase diagram invariant under

$$(U', \mu') \to (U', -\mu' + 2U)$$

remark: H' is not invariant under particle-hole transformations $c_i o (-1)^i \, c_i^\dagger$

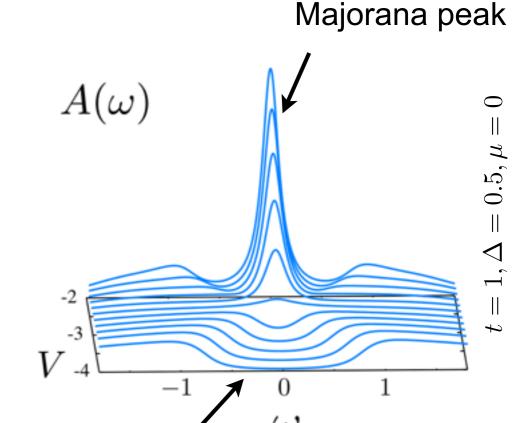
Appendix: DMRG study

$$H = \sum_{i} \left[-t \left(c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i} \right) + \Delta \left(c_{i} c_{i+1} + c_{i+1}^{\dagger} c_{i}^{\dagger} \right) \right] - \mu \sum_{i} c_{i}^{\dagger} c_{i} + V \sum_{i} c_{i}^{\dagger} c_{i} c_{i+1}^{\dagger} c_{i+1}$$



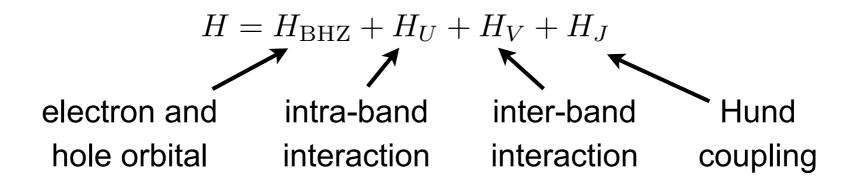
DMRG study for up to 96 sites investigated also $t \neq \Delta$

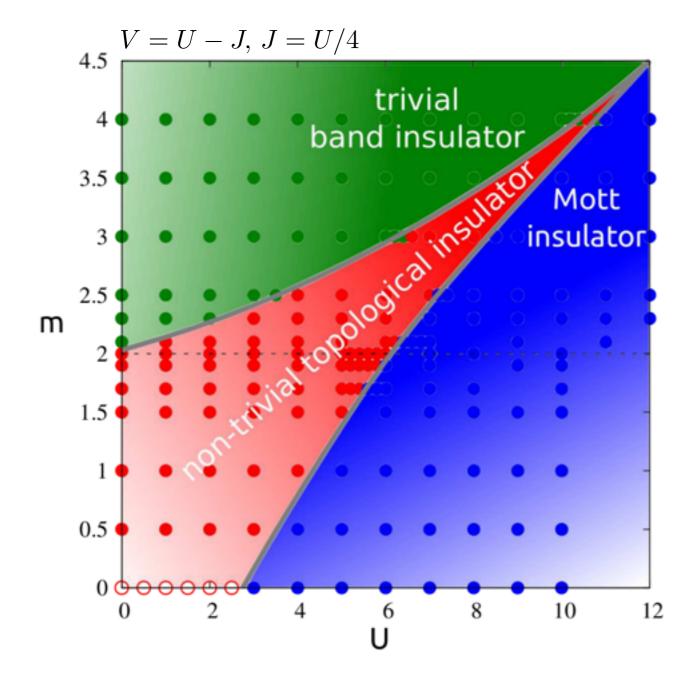
phase diagram very similar to our finding for $t=\Delta$



proximity gap

Appendix: Hund insulator





model for HgTe quantum wells

DMFT study of self energy

system can be driven into topological phase by interactions

relation to interacting Majorana chain unclear